

KRYLOV-BASED METHODS(2)											
	I Special cases:										
•	special cases.			_							
	Frequency to be Approximated	Power Series Expansion of the TF	i th Moment								
	About $\sigma = \infty$	$\sum_{i=1}^{\infty} m_{-i} s^{-i}$	$\mathbf{C}\left(\mathbf{E}^{-1}\mathbf{A}\right)^{i-1}\mathbf{E}^{-1}\mathbf{B}$								
	Partial Realization	<i>i</i> —1									
	About $\sigma = 0$ or	$\sum_{i=1}^{\infty} m_{i-1} s^{i-1}$	$-\mathbf{C}\left(\mathbf{A}^{-1}\mathbf{E}\right)^{i-1}\mathbf{A}^{-1}\mathbf{B}$	-							
	Padé	<i>i</i> —1									
	About $s = \sigma$ or	$\sum_{i=1}^{\infty} m_{i-1} \left(s - \sigma \right)^{i-1}$	$\mathbf{C}\left\{(\mathbf{\sigma}\mathbf{E}-\mathbf{A})^{-1}\mathbf{E} ight\}^{i-1} imes$	-							
	Shifted Padé	1=1	$ imes (\sigma {f E} - {f A})^{-1} {f B}$								
Multiple frequencies: Pational Interpolation											
 Problem: computation of moments is numerically problematic 											
1/30)/2007	Purdue Talk - Eduardo Gildin	Approx. Method H	(rylov 20							

	RES	ULTS –	EVALU	ATION C	RITERI	A	34
	1	Benchmark: Modal Reduction	Krylov Model Red + LQG cont	LQG cont. + Krylov Reduction	Passive LQG cont	Passive LQG red.	
	Index	r = 62	r = 40	r = 20	r = 212	r = 80]
Floor displac ⇒	J_1	0.84169	0.83478	0.84207	0.81745	1.015	
Inter. drift ⇒	J_2	0.89064	0.91473	0.89061	1.0376	0.9938	1
Floor accel ⇒	J_3	0.90873	0.90204	0.90288	14.464	1.0693	
	J_4						
	•						
	J_{12}						
# cont. dev. ⇒	J_{13}	50	50	50	20	20]
# sensors ⇒	J_{14}	5	5	5	20	20]
cont. size ⇒	J_{15}	62	40	20	212	80	
							-
1/30/2007	1/30/2007 Purdue Talk - Eduardo Gildin Results					S	38

