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MOTIVATING EXAMPLE—INVERTED E
PENDULUM

I
= Standard control system in laboratories is the rotational disk system

Inverted
pendulum

[E—

implementation

Source: ECP Systems

= Dynamical system is modeled with = =4 states

= Using classic design techniques (such as state feedback), the complexity
of the controller is the same as the plant ny = 4 states

= Standard algorithms (Matlab & LabVIEW) work fine

= What happens if n > 17?
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MOTIVATING EXAMPLE—SPACE
Ez_j STATION

= Complex flexible structure of many modules 77 ~ 1000 states each
= Controllers to be implemented on-board must be low complexity

Stage 1R - Dec 99 Stage 4A - Mar 00 Stage 13A - May 02
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Source: Draper Labs - Gugercin
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MOTIVATING EXAMPLE—BUILDING
E=_j CONTROL

= Concern with structural dynamics: terrorist attacks & earthquakes
= Control strategies have been implemented in buildings and bridges
employing passive/semi-active/active control strategies

= More than 50 buildings and bridges have been subjected to actual wind
forces and earthquakes

Kajima Shikuoka Building (1999) — semi-active Source: Ananth Grama et a/, “High-Fidelity Simulation
of Large-Scale Structures”

= Control of a large-scale civil structure must be implemented in real-time
= PROBLEM: these systems are on the order 7 ~ 106 states
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MOTIVATING EXAMPLE—RESERVOIR 2
E=_j SIMULATION
|
= Oil Extraction and Water Flooding
i =
= Flow modeled by PDE'’s;
= PDE solution: discretization in
space to millions of grid blocks
= Solution time: in the order of days
Source: “Toward Improved Prediction of Reservoir U PrObIem: feedba‘(:k contro' deSign
Flow Performance”, John J. Buckles, et al (Smart We||S)
Source: Brouwer, D.R, “Dynamic water flood optimization with
smart wells using optimal control theory”
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E=_j MODEL REDUCTION PARADIGM

= Model reduction is necessary for simulation of problems
involving large numbers of degrees of freedom

= For practical applications, controller reduction should be
addressed

= Efficient algorithms must be developed

CONTRIBUTIONS

= Development of an efficient scheme for model and
controller reduction in a closed-loop framework applied to
large-scale systems which guarantees closed-loop stability
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Ez_j‘ OUTLINE
I

= Problem Formulation
= Model and Controller Reduction
= Mathematical Background
= Approximation Methods (Model and Controller)
= SVD-based methods
= Krylov-based methods
= Nodal truncation methods
= System Dissipativity and Positive Realness
= Passivity preserving model reduction
= Structural Control in Civil Engineering
= Actuation schemes and Benchmark problems
= Passivity-based Controller Reduction and Results
= Conclusions and Future Directions
= Q&A
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MODEL REDUCTION PROBLEM

i

= Given the following structural model
M%(1) + D %(t) + Kx(t) = Bu(t)  y(t) = Cox(t) + CyX(?) + Du(t)
ﬂ M, Dy, K € R%%"s Bg € R**™and C; € RP*"s m,p < n

] x(t) = Ax(t) + Bu(?) _| A B (n+p) x (n+m)
E'{ v(t) = Cx(t) + Du(t) &> = { C D } € RiTP
ﬂ Obtain reduced-order model
Afr Bfr

— (r+p) x (r+m)
Zir = [ C, D, | €R

where 7 < 1 such that:

Approximation error is small (global error bound)

System properties are preserved (stability, passivity)
The procedure is computationally efficient

Can use X, for simulation and a reduced order controller
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Ez_j CONTROLLED SYSTEM BLOCK DIAGRA

= Standard control system block diagram Complex plant
sy x
Comr\:ly / L Actuators Plant
'W—‘O—» Gels) — —+ Gals) 1 Gls) w+— Qutputs
Inputs Sensor
£
Mis)

= Generally, a large scale plant X implies a large scale controller
= Problems with large-scale controller:

= Need for complex hardware

= Degraded accuracy

= Restriction on computational speed in real-time applications
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APPROACHES TO REDUCED
E=_j COMPLEXITY CONTROL DESIGN

= Reduced-order controller High-order bl
must be a good Sl
approximation of Ge(s) Large-Scale | e~ | High-order
and reduced closed-loop Plant Controller
system must
approximate the full- parameter
closed-loop system Model Optimization Controller
Reduction Direct Reduction
= Two methods for
obtaining reduced-order
controller are possible: LOW-SCale | g | LOW-OTder
= Direct Plant Controller
= Indirect t‘;‘r']"tr%rﬁ:rr
= In obtaining the reduced | i oct Design

controller, closed-loop
behavior should be
taken into account
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Eﬁ‘ APPROXIMATION METHODS

’ Approximation Methods ‘

— N

SVD Krylov Nodal
Methods Subspaces Truncation
o :
Linear Systems « Arnoldi « Ritz Reduction
« Balanced Truncation * Lanczos « Guyan Reduction
« Hankel Norm Approx. * Rational « Dynamic Cond.
Krylov « Modal Trunc.
Nonlinear Systems il
* POD Methods
e Empirical Gramian
SVD-Krylov
Methods
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Eﬁ‘ MODEL REDUCTION BY PROJECTION
|

= Assume Linear System
= Achieve model reduction by projection
= Construct 7 = VW7, whereV, WT ¢ R**" with WI'V =1,

(1) = WLAVx.(t) + W Bu(t)

=A, =B,
yr(t) = CV x-(t) + D u(®)
::Cr ::DT‘

= Such that, for instance, min ||y (¢) — y,-(t)||
= Approximation error measures:

= The Ho norm: [|X(s) — Xr(s)|..

* The Ho norm: || X(s) — Br(s) |3,
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Eﬁ‘ BASIC DEFINITIONS

|
= Dynamical Systems
= Infinite gramians
P = /OO ABBTA Tdr  and Q= /OO AT CeA dr.
0 - 0
Controllability gramian Observability gramian
= They satisfy two Lyapunov equations

AP+PAT+BBT =0 and ATo+o0A+CiC =o0.

= Define Hankel Operator

Hiu (t) -y (t) :=Hu ) = /Ooo H(t—7)u_(r)dr, t>0.

= Define Hankel Singular Values

O-Z(E):V/\Z(PQ)7 i:]-a"'ana
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Eﬁ‘ SVD - BALANCED TRUNCATION
|

= Balanced Model Reduction
= Approximation of a matrix in the 2-norm = based on the SVD
A=UZ,; V' e R = A =ogju1v] + oouovs + -+ + onunvy,.
mingankx <klA — Xll2 = 0341(A) = Xj =oju1vy + - + g vy
= Mimic the SVD method = What is the SVD of X ?
= Recall the Hankel Operator and Controllability and Observability

gramians
= HSV form a discrete set of singular values for a dynamical system

= Hankel Singular Values 100
= In most cases: «: (%) = /\ (P0) decay rapidly -\
= Eliminate the states corresponding to small HSV §,-‘
= Choice of states with small HSV are based on .
simultaneously diagonalizing P and Q i
g

1/30/2007 Purdue Talk - Eduardo Gildin Approx. Method. - SVD 14




Eﬁ‘ SVD — BALANCED TRUNCATION(2)
I

Contains small ;

= Balanced System:
P =0 = 2d = diag (o’llml, sy Uquq> = diag(Ela EQ)

= Partition £ conformably

A 11 A12 B 1 The Reduced order
3 = A21 A22 B2 model is 2 - A]_]_ B]_
—— r =
Ci Co ’ D A1 € R™XT Cl D

= Properties of the reduced-order model
= X, is stable and balanced
= There is an a priori error bound

IG(5) = Gr(8) 1740 < 2 (kg1 + -+ ) -
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Eﬁ‘ SVD — CONTROLLER REDUCTION

= Use frequency-weighted (FW) balanced truncation [enns 84]:
= Form FW gramians based on FW transfer function Wea(a)G(a)W;{s)
= Suppose K(a) is a stabilizing controller to &(s)

= Ky(8)is a stabilizing controller if: K{(8) and Kr{(s8) have the same
number of unstable poles and no poles on the imag. axis and

[Wo(s) (K(s) — Kr(s)) Wi(s)ll 3o

= Controller reduction proceeds as the regular frequency-weighted
balanced truncation
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NUMERICAL EXAMPLE - ROTATIONAL

2| piscs

|
= | QG Design > 8t order controller vs. 4t order reduced controller
= (1) model reduction + controller design; (2) controller design + reduction

— Full-order loop gain
Motor Reduced-order | i del reducti
Disk #3 educed-order loop gain (model reduction)
= Reduced-order loop gain (controller reduction)

i |

+

Low frequency ,..»"'7
constraint

‘-.__ch;h frequency
'l constraint

EH
Magnitude (dE)

v

Measure
Disk #1 )
Frequency (rad/sec]
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Eﬁ‘ SVD METHODS - PRO’S AND CON’S
|

= Reduced-order model is stable for Lyapunov BT and some
variants
= Controller reduction schemes
= Approximates the loop transfer function
= No closed-loop guaranteed to be stable
= Drawbacks in large scale settings:
= Dense computations, matrix factorizations and inversions may be ill-

conditioned (large-scale Lyapunov equations)
= Need whole transformed system in order to truncate

= Arithmetic Operations: ©{n3)

= Memory Requirement: o(n?)
= Experience with Matlab Control Toolbox is that the
balanced reduction may fail at low order (7 ~ 20)
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E=_j‘ KRYLOV-BASED METHODS E

|
= Problem Definition
« Given Ex(t) = Ax(t)+ Bu(¥)
y(t) = Cx(t) + Du(t)
= Expand transfer function around s = o :
G(s) = CSE—A)"'B=C(GE+cE-cE—-A)"'B
= mo+mi(oc—s)+mo(oc—s)°Fmalc—s)>+---

~N X «F///
moments

= Model Reduction Problem = Find f}
G(s) = C(sE-A) 'B
= 1o+ m1(o —s) +ma(o —s)2 +mz(oc—s)3+ -

= Such that for appropriate £

‘mj:fhj, j:1,2,"',k‘1
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E=_j‘ KRYLOV-BASED METHODS(2) E

|
= Special cases:

Frequency to be Power Series ith Moment
Approximated Expansion of the TF
o0 . -
About ¢ = ¢ Y omosT? C (E_:LA)£ 'g-1B
i=1
Partial Realization
o0 . i—1
About ¢ = 0 or 3 miqsit -C (A—lE)’ A-1B
i=1
Padé
sl 1 1@yi-1
About s = o or S mi1(s—o)t | C {(JE —A)” E} X
i=1
Shifted Padé x(cE—A)" B

Multiple frequencies: Rational Interpolation
= Problem: computation of moments is numerically
problematic
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Ez_j‘ MOMENT MATCHING

= Moment matching methods can be implemented in a
numerically efficient way:
= moments can be matched without moment computation

= Projection = columns spaces of projectors span unions of Krylov
Subspaces

K(A,b, k) = span {b, Ab, A2b, . ,Ak_lb} .

= iterative implementation: RATIONAL KRYLOV - Dual rational Arnoldi

= If [Grimme 97]

K

U K, ((or I = A) " (oI = A) "I B) € V = Im(V)
k=1

K o g

U K ((oxl = AT, (041 = A) T CT) € W = Im(W)
k=1

= Then

m((’ik) = m((T‘zck)7 forjk = Oa 1727' t ,bk+Ck_1 and k= 1’27” . 7K
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RATIONAL KRYLOV — CLOSED LOOP
Ez_j SYSTEM

[
= Closed-loop system:
e | = T(s) = [I + G(s)K(s)] "' G(s).

o —3() w o O " -

T = T,(s) = [+ G(s)Kr ()] G(s).
= It can be shown that: [Gugercin, er a/ 2004]

(—1)/ T (s) (1) dT(s)
! dsi o dsJ

1
s=oy, J: s=o0y},

for k=1,...,2K and for j =1,...,

= Reduced-order controller is guaranteed to yield closed-loop behavior
which approximates the full-order closed-loop system, at least in the
neighborhood of selected frequencies
= How to choose the interpolation points?
= Frequency response of the loop gain > bz =475 x logspace(wl, wg)
« Take 0; from the union of mirror images of the poles of T(s) and K(s)
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NUMERICAL EXAMPLE—MOMENT E
E=_j MATCHING

Sigma Plot - frequency response
" CD player MOdel Reduced-order models: r = 14
= Model of the

lens actuators
= N1 = 120 states
= 3inputs
= 3 outputs

Wagritude [dE:

Shifted Padé

matches well a 104
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NUMERICAL EXAMPLE—CONTROLLER [%
E=_j REDUCTION

= Controller Reduction for the CD player
= LQG controller design (120t order - 18t order)

/ Uncompensated

Compensated

]
3
: NAanpon i
5 U AAA A é‘
E
Full koop gain
———heduced loop gain (mirror)
Reduced loop gain (rasdom |
Tirme {sec) Frequency [rad/sec)
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Eﬁ‘ KRYLOV METHODS - PRO’S AND CON’

|
= Efficiency
= Number of operations: ©(k2n) or ©(n2) vs O(n3)
= Only matrix-vector multiplications are required
= Sparsity is preserved
= Drawbacks
= No global error bounds
= Choice of interpolation points > ad hoc
= May not be stable
= Can use implicit restart, but loses moment matching
= Controller Reduction

= Approximates the loop transfer function in the neighborhood of the
interpolation points

= No closed-loop stability is guaranteed
= Choice of interpolation points
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NODAL TRUNCATION — GUYAN
E=_j CONDENSATION

|
= Suppose the following second—order equation

My My Xr + Krr Kre Xr — P,
Mer Mee Xec Ko Kee Xc P.

s Define the modal solution Kx — w2Mx

Krr Kie Xr | w2 Myr Kie X Statczc':t'
= condition
Ker Kee Xc Ko Kee Xc P.=0
c
= Partition M = 0

_ Xr _ _ I'f"r —
X = |: Xe } =Tx, = [ _Kc_clKCT :| Xy = X,= —chchrXr
= Projection

M=T1'MT, K=T'KT, D=T'DT and P,=TTP,

1/30/2007 Purdue Talk - Eduardo Gildin Approx. Method. - Guyan 26
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Ez_j‘ BRIEF SUMMARY
I

= Three methods were presented:

= SVD-based methods
= Good choice for small to medium systems
= Not suitable for large-scale systems
= Controller reduction schemes through FWBT
= No closed-loop stability guaranteed

= Krylov-based methods
= Suitable for large-scale systems
= Controller reduction schemes through closed-loop moment matching
= No closed-loop stability guaranteed

= Nodal truncation
= Not suitable for large-scale systems
= No reduced controller design procedure

= Can we devise an efficient method for controller
reduction that guarantees CL stability?
= YES! Let's see how...
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Eﬁ‘ SYSTEM DISSIPATIVITY

I
= System Dissipativity
= Generalization of the concept of Lyapunov stability
= Define supply function > s : U x Y — R, (u,y) — s(u,y)

t1
© (x(t,i)) — 0O (x(t0)) < /t s (u(®), (1) dt e $O(x(1)) < s(u(t), y(t))
(6]
Storage function 2 generalizes the concept of Lyapunov function

= Some commonly used supply or energy functions are:

wn =" ][ & N3]

« Passive (Q=0,R=0,N=1) = s(u,y)=y u+uly
= Norm-Bounded
= Sector-Bounded

1/30/2007 Purdue Talk - Eduardo Gildin Dissipativity 28
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Eﬁ‘ POSITIVE REALNESS

|
= Question - given s(u,y) determine ©

= It turns out that for linear systems dissipativity is
connected to the concept of positive realness of a system
= &(8) is positive real (PR) if and only if
« G(s)+ G*(s) >0in Re(s) >0 or

1+ Pole on the imaginary axis are simple with non-negative residue
2 G(jw) + G*(jw) > 0 for w € (—o0, 00)

= There exists spectral factorization => G(s) 4+ G’ (—s) = W(s)W7' (—s)

u SpeCtral ZEr0S [sorensen 2004] /

= Zeros of W(s) = eigenvalue problem
I
, and &= I
0
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A 0 B
0o —AT _cT
¢ BT D+DT

Eﬁ‘ POSITIVE REALNESS IN CLOSED-LOOP

|
= Positive Real Lemma (KYP Lemma)
= Asystem @G(s) is positive real if there exists X = X* > 0, K, L
A*X + XA+ KK =0
XB + K*L = C* A = (D+D*) !
D + D* = L*L nonsingular
(A* — C*AB*) X+X (A — BAC)+XBAB*X+C*AC =0
= Negative feedback interconnection of two passive systems

e Obtain passive

Passive \ Stable plant and controller

Closed-loop ==

System = Passive reduced-
order plant and
controller

Passive
1/30/2007 Purdue Talk - Eduardo Gildin Passivity Preserving MR 30
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Eﬁ‘ MAIN RESULT [aildin 0]
|

= PASSIVITY IN FLEXIBLE STRUCTURES

= System is passive if actuators and sensors are collocated
Mx(t) + Dax(t) + Kx(t) = Bsu(t)
State —nT.
S y(t) = BIx(t)
0 I ) _ 0 |
z:-{ x(t) = Ax(t) + Bu)J A = [ ~M-1K —M~-1D, } . B= [ M-t ] '
: t) = Cx(t Du(t .
y(t) x(t) + “()C=[0 B;;]; D=o.
= Solution to the Positive Real Lemma [Gildin 2006]
= Assume symmetric and positive definite matrices - Cholesky factorization

K=K/K;; M=M{M;; D,=DlD,.

= The Positive Real Lemma is satisfied if

X:{Ig 18[}; K=[0 v2D], |.
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PASSIVITY PRESERVING MODEL
E=_j REDUCTION

= Krylov—based [Antoulas 2004]

= Obtain passivity preserving model reduction through interpolation of
the spectral zeros of the full-order system (assume passive FOM)

= Form projection matrices as
Vo= {(MI_A)—lB ()\kI—A)_lB] W = W(V*W) 1
W = [('Yll - AT)‘1 ct o (wl- AT)‘1 CT} det(W*V) # 0

Spectral Zeros Mirror images

= Where Az;&’na Za]:]-a ,k?, >\lv"' 7>\k€Zand ’Yz=_>\;k

= then {G(%) =Gr(vi) ____  Reduced-order system
G(Ai) = Gr(N) interpolates the SZ and
is passive
= How to choose the spectral zeros? - ad hoc procedure
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Eﬁ‘ PASSIVE LQG CONTROLLER DESIGN E

= Passive LQG Controller poshi 2000]
= Recall the solution of the PRL for the flexible structure
A*X + XA + KK =0

s EEL S - Recall the solution
XB + K*L = C* =>X = X@ of the PRL for
N N flexible structures
D+ D*=L"L . [x o1,
a M|’

= By means of a similarity transformation ¢ = X{x & = [0 v20f |.
= one defines a self-dual realization of a PR system which satisfies:

X=I K=-(A+AT);, B=cT
= Define: Passive LQG controller

Xe = Acxc+ch

Ye = Cexe; u= —Yyec

Controller obtained by the
===> golution of two special
Riccati equations
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BUILDING CONTROL — BENCHMARK E
E=_j PROBLEMS
|

= Several building models were considered for model and

controller reduction Benchmark
Twenty-story
Six-story n= 540 DOF’s
Three-story n= 184 DOF’s o -—
n=3 DOF’s s S . - - ==
“l— v __b o o @] .
I (< el a ] —1 i
" e— <} > o @ -
I < ol - - = %5
— o - 8 ¥ 1 9 e i
\ | s o alo s N :_ 1 1
5 o o o " )
wdo do do kb do b o 1
S
o i | “-a 1
1/30/2007 Purdue Talk - Eduardo Gildin Structural Control 34
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Eﬁ‘ BENCHMARK PROBLEMS(2)

|
= Bowen Lab Building at Purdue

Bowen Model
n = 4950 DOF’s

F

Purdue Talk - Eduardo Gildin

1/30/2007
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Bracing

5
GE@
EI —

Eﬁ‘ ACTIVE CONTROL OF BUILDINGS
|

Active gCtr:/e I;Aass
= Actuators Tendons ampe
P
Active Semi-active
MR’s

F

€} €]
Q Q.
0 9
1/30/2007 Purdue Talk - Eduardo Gildin Structural Control 36
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E:j BENCHMARK PROBLEMS [Spencer, et al 97] E

= Model and controller reduction methods were applied to the 20-story
benchmark problem (linear) > n= 540 DOF’s

o _ i

HH
H

Floce Displaceant

e

a4

Infeastony Onit

Mormed Floor Desplacement

s att |
T
Cne | [l=

e

g

T a &

1/30/2007
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Evaluation Criteria

Control Fores

Results

Coritol Dinioss.

devices requined

Sarsors
1y = number of sensors
required

ired
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E=_j‘ RESULTS — EVALUATION CRITERIA

Benchmark:
Modal
Reduction

Krylov LQG cont.
Model Red +

+ Krylov
LQG cont Reduction

Passive
LQG cont

Passive

LQG red.

|Indea:| r =62 | r =40 | r =20 |r=212|r=80|

Floor displac =

Inter. drift =

Floor accel =

# cont. dev. =

# sensors =

cont. size =

1/30/2007

J1 0.84169 | 0.83478 | 0.84207 | 0.81745 | 1.015

Jo 0.89064 | 0.91473 | 0.89061 | 1.0376 | 0.9938

J3 0.90873 | 0.90204 | 0.90288 | 14.464 | 1.0693

J4

J12

Ji3 50 50 50 20 20

J14 5 5 5 20 20

J1s 62 40 20 212 80
Purdue Talk - Eduardo Gildin Results
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E=_j‘ RESULTS — BUILDING RESPONSES

|
= Comparison of the displacement of the roof

0.3 T

02f
E
3 oir
[+
b
=
5 0
=
Q
E
i
& 01+
[=%
o
o
g
E -0.2¢
@
14

Uncontrolled
0.3F Benchmark - r = 62
Passive LQG -r=80|
04 . . 1 . .
0 10 20 30 40 50 60
Time (sec)
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E=_j‘ RESULTS — BUILDING RESPONSES

|
= Comparison of the displacement of the roof

— Uncont. == Benchmark —— Cont.Red. — Mod.Red. | ____ % Using SVD

Relative displacement of the roof (m)

10 20 30 40 50 60

Time (sec)
1/30/2007 Purdue Talk - Eduardo Gildin

r=62 r=20 r=40 based methods
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Ez_j‘ CONCLUDING REMARKS

= Model and controller reduction schemes have been
investigated and evaluated through some examples
= SVD-based methods

= Lyapunov based methods

= Frequency-weighted methods

= Controller reduction > No closed-loop stability guarantee
= Suitable for small to medium systems

= Krylov methods
= Rational interpolation
= Interpolation using frequencies in the imag. axis
= Controller reduction > No closed-loop stability guarantee
= Suitable for large-scale systems

= Nodal model reduction
= No controller reduction schemes

1/30/2007 Purdue Talk - Eduardo Gildin Conclusions 41

Eﬁ‘ CONCLUDING REMARKS — cont.

= A model and controller reduction scheme for flexible
structures have been developed such that the reduced
closed-loop system is guaranteed to be stable
= Based on dissipativity (positive realness) of a linear system

= Use Krylov methods - efficient algorithms for model and controller
reduction

= Passivity preserving through interpolation on the spectral zeros
= No theoretical solution for the choice of spectral zeros

= Building control have been investigated using a family of
benchmark building problems
= Evaluation of control strategies through performance criteria

= Passive LQG controller have shown to yield good control
performance with guaranteed closed-loop stability

1/30/2007 Purdue Talk - Eduardo Gildin Conclusions 42
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E=_j FUTURE DIRECTIONS

= Large-scale model size
problems:

= WTC structural model: 1 hour
to load in a fast PC

= Candidate for model and
controller reduction

LA Building WTC
n = 52000 DOF’s

n = 1e6 DOF’s

Source: Ananth Grama et a/, “High-Fidelity Simulation
of Large-Scale Structures”

= Smart Wells Technologies

= Development of algorithms to
improve oil extraction through
the use of measurement and
control

= Candidate for model and
controller reduction

disturbances noise
O servoir + wel O‘—
Low-order
introl Algoritl
Low-order Model ‘
On-line
Identification
Welltestsand | Full-order model
seismics

E

1/30/2007 Purdue Talk - Eduardo Gildin

Future Directions
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"B | quesTions?
|

E

... Thank you!!!

1/30/2007 Purdue Talk - Eduardo Gildin Q&A

44

22



EEj REFERENCES

= E. Gildin, A.C. Antoulas, D. Sorensen, and R.H. Bishop “Mode/ and Controller
Reduction Applied to Structural Control Using Passivity Theory’, submitted to the
Structural Control and Health Monitoring Journal, 2006.

= E. Gildin, A.C. Antoulas, R.H. Bishop and D. Sorensen, “Model and Controller
Reduction for the Second Generation Benchmark Control Problem for Seismic
Excited Buildings”, In Proceedings of the Fourth World Conference on Structural
Control and Monitoring, July 2006, San Diego.

= S. Gugercin, A.C. Antoulas, C.A. Beattie and E. Gildin, “Krylov-based controller
reduction for large-scale systems”, Proceedings of the 43rd IEE Conference on
Decision and Control, December 2004.

= A.C. Antoulas. “Approximation of Large-Scale Dynamical Systems”.
Philadelphia:SIAM, 2005.

= A.C. Antoulas. “A new result on positive real interpolation and model reduction”,
Systems and Control Letters, 54:361-374, 2005.

= D.F. Enns. “Model reduction with balanced realizations. An error bound and
frequency weighted generalizations”, Proceedings of the IEEE Conference on
Decisions & Control, pages 127-132, 1984.

1/30/2007 Purdue Talk - Eduardo Gildin 45

Cmm. )| REFERENCES (2)

= E. J. Grimme, “Krylov projection methods for model reduction”. PhD thesis, ECE
Dept., University of Illinois, Urbana-Champaign, 1997.

= S. Gugercin and A.C. Antoulas. “An H2 error expression for the Lanczos
procedure”. In Proceedings of the 42nd IEEE Conference on Decision and
Control, December 2003.

= S.M. Joshi. “Robust Control of Uncertain Systems via Dissipative LQG Type
Controllers”. NASA, Technical Report, NASA/TM-2000-209866, 2000.

= D.C. Sorensen. “Passivity Preserving Model Reduction via Interpolation of
Spectral Zeros”. Systems and Control Letters, 54:347—-360, 2005.

= B.F. Spencer Jr. http://sstl.cee.uiuc.edu/Default.html. University of lllinois
Urbana-Champaign, 1997.

1/30/2007 Purdue Talk - Eduardo Gildin 46




Eﬁ‘ SOME SIMULATIONS - RESERVOIR
|

= Single-Phase Flow (2D)
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SOME SIMULATIONS — RESERVOIR(2) ﬁ

)

= Simulation with full-order nonlinear model, full-order linear model and
reduced-order models of a single-phase flow reservoir model-> total flow
in the producer

x10"
267
25k s Full Nonlinear I
= = = Full Linear
il =+= POD-r=10 ——
- BT—r=100
I Krylov - r =90
23 Krylov = r=135
£ 221
2 N
B2} \\

18} Krylow L, ]
r=90 =1
1.70 160 [-h 429
time steps (~ 2000 days)
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ES
|
E=_j BASIC DEFINITIONS i
|
= Norms
= Hankel Norm
3] 1= 01(3).
= Hoo Norm
124, = SUp omaz (H(jw)),
weR
= Ho Norm
— .. . 1/2
[l := ([ trace (G*(jw)Gjw)) o)
= Define generalized controllability matrix
Ry (A,B; o) = [ (cIn—A)" !B (oI, -A) 2B --- (ol,-A)*B ] :
1/30/2007 Purdue Talk - Eduardo Gildin Mathematical Background 50
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Eﬁ‘ BASIC DEFINITIONS Il

= Singular Value Decomposition (SVD)
= Every matrix can be decomposed as

)

U= [111, up, - ‘“rn. £ pmxm = |:Z[:J1 g] ‘ V = lvl_ S o
¥ = diag(oq, - o) € RV

= Define dyadic decomposition
A = o1uiv] + oouovs + - - - + opunvy,.

= Matrix Optimal Approximation in the 2-norm (Schmidt-
Mirsky, Eckart-Young Solution)

min,gnkx <kllA — X2 = op41(A)

Xk = crlulv’{ + O’QU.QVE + -+ o—kukvz

1/30/2007 Purdue Talk - Eduardo Gildin Mathematical Background 51

SVD — FREQUENCY-WEIGHTED
E=_j BALANCED TRUNCATION

= Use frequency weighted Lyapunov equations
= Ouput weight

A, B, A 0| B
Wo(S)G(S) = _ = Boc Ao 0
Co | Do D,C C,|D,D
= Input weight
G(s)Wi(s) = | =|0 A; | B
Ci| 0 C 0 |DD;

= Lyapunov equations
AP+ PAT +BB! =

0
0

AZQ"‘ QAO_FC:—)FCO = . Gr(s) — All B,
« Balance and truncate / C; | D
P11 = Qu1 = diag (o1lny, -+, okTny, Okt1lng s e ogl,)
1/30/2007 Purdue Talk - Eduardo Gildin Approx. Method. - SVD
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Eﬁ‘ RATIONAL KRYLOV - DERIVATION E

= Rational Krylov [rimme 97]
= Muilti-frequency interpolation > If

K
Ky, ((op I —A) 1 (o, I — A IB)CV=1Im(V
U b (R = A)1 (I - A)"'B) C VN
K
U K (oI = AT (oI = A)TCcT) c W = Im(Wj/
k=1
= Then

m$e) = @) forj = 0,1,2,- -+ bytep—1 and k=1,2,---, K

(W IHE)| (1) dH(s)

jtdsT |, J! ds) =g,
= =
RATIONAL KRYLOV - ALGORITHM
|

= Efficient Computations of V and W
= Iterative implementations: Dual Rational Arnoldi

1. Initialize parameters: — m = 0;

V=[W=][]
2. for j=1,---,J
(a) fork=1,--- K

L Ifj=1
Vm = (A -0, )" B, and W,, = (A — o, I) " CT;
else
Vm = (A — cr,J)f1 Vin—k, and Wy, = (A — UA,I)fT Won—k;
end

ii. V=V — VVT9, and Wi, = W, — WWTg,,;
iil. V=[V ¥/[0nl ] and W=[W W /[Wnl ];
iv. m=m+1;

3. W W (VIW) ™
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RATIONAL KRYLOV — INTERPOLATION [&&"
E=_j POINTS

= How to select 9 ? [Gugercin 2002]
= Full order model and the reduced order model given as:

G(s) = [éig} O G(s) = [%} Y. = G(s)—G(s)

= Where the residues are:
QZSZ' = G(S)(S - )‘Z)|S=)\Z7 1= 17 e, N and
(Ej = G(S)(S - 5‘])|3=3\J7 ] = 17 Tt k

= It can be shown that:

ISe2, = 3° 61 (G-A) — G+ Y 8 (G(=3)) — G(-1)
i=1 j=1

« Error is due to the mismatch at A; and A

= So, in the Rational Krylov, choose:
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E=_j‘ RESULTS — MODEL REDUCTION E

= Model Reduction by several techniques
= Frequency Responses

Sigma Plots Error Sigma Plots
Sigma Plots (48) --> ROM = 100 Sigma of Ermar Plots (d8) --> ROM = 100
507 - —————— 20
FOM Suyan
40+ Guyan Reduction |4 @ T
| ROM Provided R L

s Balred from BC |4 20 v Balrg .
| Balred from Guyan —_— 232'& :'0"‘ g"_
20F Vi SOSR from BC |4 o SR from Guyan | |
A SOSR from Guyan
0 \, 60
e , &
g 0 € a0
El |
o] I 100
20t I, -
0t b
'.\ 140
-0} \
160 — i -
0 s " ] 107 10 10 10 10 10
w0 10° 10° 10" Frequancy
Fraquency o
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Roof

®

® Multiple

E=j‘ Actuators placement
|

< actuation i
S:NE / 7

@ s

Nodal elements _—*"
al the center hil}.\ €)

Ist Floor

Reaction force

Ground

@
@l
€]

€l Lo actuation. 21

[y
[55
L6
Due to application
f40 of actuation.
[
f3

(O]
-

€]
yaQ -
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E:j MR Actuator
|

= Actuator and Model

Accumulator  Diaphragr

n Be

Elegtromagnet

aring & Scal

Cy

T —

V X
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ko A AN
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E:j Controller Design
|

= Clipped Optimal Controller

MR Damper X, (1) Structure
X, X g O [ F > =
| Ml A
r-——— - — — - 71 — — — 7 7 -
| Command Signal Selection Optimal Controller |
| \-'i_Vmax%[(fc- F) F] : Fr ‘KC(“’) -t |
| fc |

Clipped-optimal Controller
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E=_j‘ PASSIVE LQG CONTROLLER DESIGN E

= The passive LQG controller is the defined in the following

Ac= A-BR;'B"P,—P;C"R;'C; B.=P;C'R;*; C. =R;'B'P;

manner:
= State space realization:

= where

P,A+ AP, —P,BR, 'B'P, +Q, = 0
T Tp—1 —
P;AT + APy —P.C'R;'CP; 4+ Qf = 0

= Which satisfy

Q- > BR B = Q,=Qz+BR BT, forQz >0

Rf == Rr
Q; = —(A+AT)+BR,'BT
1/30/2007 Purdue Talk - Eduardo Gildin
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BENCHMARK PROBLEMS — MODEL

E=_j‘ REDUCTION
|

ﬁ

= Model reduction six-story building model

= Reduced model - r = 30

Sigma Plots (dB) —-> ROM = 30

40
30 |
0 Il
I
an
10 VA I|I
wip
Vip
. h
1
Gl
A
FOM 1
-0 Guyan Reduction 10
o Ritz Recluction =
Balved from BC |
—40 Balred from Guyan \ |
SO5R from BC \,
—50 SOSR from Guyan ot 1
e -4 = Io H : 4 L]
0 10 o 0 10 10
Frequency o
1/30/2007 Purdue Talk

Sigma af Ermar Plots (dB) === ROM = 30

20

_at
_an}
el

!

——y

-wo
—i20f

—uof

Guyan Reduction
Balred from BC
= Balred from Guyan
SOSR from BC

——— SOSR from Guyan |

—160

w?
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| esuirs o

Sigma Plots (dB) ~> ROM =20
T T
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Eﬁ‘ SOME SIMULATIONS ﬁ

= Given the systems equations for Oil-water phase (
= There are 2 wells (1 injector on the right one producer on the left)
= PDE discretization using implicit-explicit formulation

Tp"+1—D<pn+1—p”)—G—Q=O=R

= Wwhere T, the transmissibility coefficients; D, the pore volume and
compressibility coefficients; G, the gravity coefficients

= Well> Q=W(p"—-Py)
= G is disregarded here.

= Matrices T and D are generally nonlinear and time-variant. In this
case, they have been fixed according to the first time step to yield
the linear model
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Eﬁ‘ SVD - OTHER TYPES OF BALANCING u
I

= Other types of balancing are possible
= Stochastic Balancing

Wo(s)G(s)Wi(s)

G(s)W;(s) = [

QI b=
——

Ci| C AP+PAT +BB! = 0
A,|B = T~ A% =T =
Wo()G(s) = { Ao | Bo ] ATG 4 0A,+CLC, = 0
(s} DO
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