PageRank (PR)

@ Q: What makes a web page important? A: many important pages contain
links to it; however a page containing many links has reduced impact on the
importance of the pages it contains links to. This is the basic idea in
PageRank for ranking graph nodes.

@ PageRank as a random surfer process: Start surfing from a random node
and keep following links with probability w restarting with probability 1 — y;
the node for restarting will be selected based on a personalization vector v.
The ranking value x; of a node i is the probability of visiting this node
during surfing.

@ PR can also be cast in power series representation as

x=(1—p) Zjl'(zo W Siv; S encodes column-stochastic adjacencies.

Functional rankings

® A general method to assign ranking values to graph nodes as
= ZJ’.;O (jS’v. PR is a functional ranking, ¢; = (1 — p)v/.

@ Terms attenuated by outdegrees in S and damping coefficients (;.
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Q: Is there a way to encode functional rankings as surfing processes?
A: Multidamping

u/@ Computing 1 in multidamping

Simulate a functional ranking by random surfers
following emanating links with probability 1; at
step j given by :

/I’J:]' ﬁv./ 1) oo U5,
=

where g =0 and Pr—jt1 = Czk‘—’f
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Advantages of multidamping

@ Reduced computational cost in approximating functional rankings using the
Monte Carlo approach. A random surfer terminates with probability 1 — p;
at step J.

@ Inherently parallel and synchronization free computation.
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TotalRank: Kendall tau vs step for Topk=1000 nodes (uk-2005) Personalized LinearRank: Number of shared nodes (max=30) vs mictostep (n2004)
For the seed node 20% of the nodes has better ranking in the Non-Personalized run.
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Approximate ranking: Run n surfers to completion for graph size n. How well does the
computed ranking capture the “reference” ordering for top-k nodes (Kendall 7, y-axis)
in comparison to the one calculated by standard iteration (for a number of steps, x-axis)
of equivalent computational cost/number of operations? [Left]

Approximate personalized ranking: Run < n surfers to completion (each called a
microstep, x-axis), but only from a selected node (personalized). How well can we
capture the “reference” top-k nodes, i.e. how many of them are shared (y-axis),
compared to the iterative approach of equivalent computational load? [Right]

[uk-2005: 39,459,925 nodes, 936, 364, 282 edges. in-2004: 1,382,908 nodes, 16,917,053
edges]

microstep
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@ Node similarity: Two nodes are
similar if they are linked by other
similar node pairs. By pairing
similar nodes, the two graphs
become aligned.

@ In IsoRank, a state-of-the-art
graph alignment method, first a
matrix X of similarity scores
between the two sets of nodes is
computed and then
maximum-weight bipartite
matching approaches extract the
most similar pairs.

@ Let A, B the adjacencies AT, BT of the two graphs normalized by columns
(network data), Hj; independently known similarity scores (preferences
matrix) between nodes i € Vg and j € V4 and u the percentage of
contribution of network data in the algorithm.

@ To compute X, IsoRank iterates:
X + puBXAT 4 (1 - p)H
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Network Similarity Decomposition (NSD)

@ We reformulate IsoRank iteration and gain speedup and parallelism.
o In n steps of we reach X(") = (1 — 1) S 728 ¥ B¥H(AT )k + "B H(AT)"
@ Assume for a moment that H = uv ' (1 component). Two phases for X:
@ v = Bky and vk = Akv (preprocess/compute iterates)
Q X =(1-p)¥i: uku(k)v(k)T + u”u(")v(")T (construct X)
This idea extends to s components, H ~ Zle w,-z,-T.

@ NSD computes matrix-vector iterates and builds X as a sum of outer
products of vectors; these are much cheaper than triple matrix products.

We can then apply Primal Dual Matching (PDM) or Greedy Matching (1/2
approximation, GM) to extract the actual node pairs.

elemental similarities

elemental similarities as matrix
as component vectors

—> —>
networks IsoRank matches
— —>

matches

networks —»|  NSD
—>
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Species pair NSD PDM GM IsoRank

(secs) | (secs) (secs) (secs)

Species Nodes Edges celeg-dmela 3.15 152.12 7.29 783.48
celeg (worm) 2805 4572 celeg-hsapi 3.28 163.05 9.54 1209.28

dmela (fly) 7518 25830 celeg-scere 1.97 127.70 4.16 949.58

ecoli (bacterium) 1821 6849 dmela-ecoli 1.86 86.80 4.78 807.93
hpylo (bacterium) 706 1414 dmela-hsapi 8.61 590.16 28.10 7840.00
hsapi (human) 9633 36386 dmela-scere 4.79 182.91 12.97 4905.00
mmusc (mouse) 290 254 ecoli-hsapi 2.41 79.23 476 2029.56
scere (yeast) 5499 31898 ecoli-scere 149 | 69.88 | 2.60 1264.24
hsapi-scere 6.09 181.17 15.56 6714.00

@ We computed the similarity matrices X for various possible pairs of species using
Protein-Protein Interaction (PPI) networks. p = 0.80, uniform initial conditions
(outer product of suitably normalized 1's for each pair), 20 iterations, one
component.

@ Then we extracted node matches using PDM and GM.

@ 3 orders of magnitude speedup of NSD-based approaches compared to IsoRank
ones.

Parallelization: NSD has also been ported to parallel/distributed platforms:

@ We have aligned up to million-node graph instances using up to 3,072 cores in a
supercomputer installation.

@ We have managed to process graph pairs of over a billion nodes and twenty billion
edges each, over MapReduce-based platforms.
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