PageRank (PR)

- **Q:** What makes a web page important? **A:** many important pages contain links to it; however a page containing many links has reduced impact on the importance of the pages it contains links to. This is the basic idea in *PageRank* for ranking graph nodes.
- PageRank as a random surfer process: Start surfing from a random node and keep following links with probability μ restarting with probability 1 - μ; the node for restarting will be selected based on a personalization vector v. The ranking value x_i of a node i is the probability of visiting this node during surfing.
- PR can also be cast in power series representation as $x = (1 \mu) \sum_{j=0}^{k} \mu^{j} S^{j} v$; S encodes column-stochastic adjacencies.

Functional rankings

- A general method to assign ranking values to graph nodes as $x = \sum_{j=0}^{k} \zeta_j S^j v$. PR is a functional ranking, $\zeta_j = (1 \mu)\mu^j$.
- Terms attenuated by outdegrees in *S* and damping coefficients ζ_j .

Q: Is there a way to encode functional rankings as surfing processes? **A: Multidamping**

Computing μ_j in multidamping

Simulate a functional ranking by random surfers following emanating links with probability μ_j at step j given by : $\mu_j = 1 - \frac{1}{1 + \frac{\rho_{k-j+1}}{1 - \mu_{j-1}}}, j = 1, ..., k,$ where $\mu_0 = 0$ and $\rho_{k-j+1} = \frac{\zeta_{k-j+1}}{\zeta_{k-j}}$

Examples

LinearRank (LR)
$$x^{\text{LR}} = \sum_{j=0}^{k} \frac{2(k+1-j)}{(k+1)(k+2)} S^{j} \mathbf{v} : \mu_{j} = \frac{j}{2}, j = 1, ..., k.$$

TotalRank (TR) $x^{\text{TR}} = \sum_{j=0}^{\infty} \frac{1}{(j+1)(j+2)} S^{j} \mathbf{v} : \mu_{j} = \frac{k-j+1}{k-j+2}, j = 1, ..., k.$

Advantages of multidamping

- Reduced computational cost in *approximating* functional rankings using the Monte Carlo approach. A random surfer terminates with probability $1 \mu_j$ at step *j*.
- Inherently parallel and synchronization free computation.

Approximate ranking: Run *n* surfers to completion for graph size *n*. How well does the computed ranking capture the "reference" ordering for top-*k* nodes (Kendall τ , y-axis) in comparison to the one calculated by standard iteration (for a number of steps, x-axis) of equivalent computational cost/number of operations? [Left] **Approximate personalized ranking:** Run < *n* surfers to completion (each called a microstep, x-axis), but only from a selected node (personalized). How well can we capture the "reference" top-*k* nodes, i.e. how many of them are shared (y-axis), compared to the iterative approach of equivalent computational load? [*Right*] [uk-2005: 39, 459, 925 nodes, 936, 364, 282 edges. in-2004: 1, 382, 908 nodes, 16, 917, 053 edges]

- < A

- Node similarity: Two nodes are similar if they are linked by other similar node pairs. By pairing similar nodes, the two graphs become *aligned*.
- In *IsoRank*, a state-of-the-art graph alignment method, first a matrix X of similarity scores between the two sets of nodes is computed and then maximum-weight bipartite matching approaches extract the most similar pairs.
- Let Ã, B̃ the adjacencies A^T, B^T of the two graphs normalized by columns (network data), H_{ij} independently known similarity scores (preferences matrix) between nodes i ∈ V_B and j ∈ V_A and μ the percentage of contribution of network data in the algorithm.
- To compute X, IsoRank iterates:

$$X \leftarrow \mu ilde{B} X ilde{A}^{T} + (1-\mu) H$$

Network Similarity Decomposition (NSD)

- We reformulate IsoRank iteration and gain speedup and parallelism.
- In *n* steps of we reach $X^{(n)} = (1-\mu) \sum_{k=0}^{n-1} \mu^k \tilde{B}^k H(\tilde{A}^T)^k + \mu^n \tilde{B}^n H(\tilde{A}^T)^n$
- Assume for a moment that $H = uv^T$ (1 component). Two phases for X:
 - u^(k) = \$\tilde{B}^k u\$ and \$v^{(k)} = \$\tilde{A}^k v\$ (preprocess/compute iterates)
 X⁽ⁿ⁾ = (1 \mu) \$\sum_{k=0}^{n-1} \mu^k u^{(k)} v^{(k)^T} + \mu^n u^{(n)} v^{(n)^T}\$ (construct \$X\$)

This idea extends to *s* components, $H \sim \sum_{i=1}^{s} w_i z_i^T$.

 NSD computes matrix-vector iterates and builds X as a sum of outer products of vectors; these are much cheaper than triple matrix products.

We can then apply Primal Dual Matching (PDM) or Greedy Matching (1/2 approximation, GM) to extract the actual node pairs.

			Species pair	NSD	PDM	GM	IsoRank
				(secs)	(secs)	(secs)	(secs)
Species	Nodes	Edges	celeg-dmela	3.15	152.12	7.29	783.48
celeg (worm)	2805	4572	celeg-hsapi	3.28	163.05	9.54	1209.28
dmela (fly)	7518	25830	celeg-scere	1.97	127.70	4.16	949.58
ecoli (bacterium)	1821	6849	dmela-ecoli	1.86	86.80	4.78	807.93
hpylo (bacterium)	706	1414	dmela-hsapi	8.61	590.16	28.10	7840.00
hsapi (human)	9633	36386	dmela-scere	4.79	182.91	12.97	4905.00
mmusc (mouse)	290	254	ecoli-hsapi	2.41	79.23	4.76	2029.56
scere (yeast)	5499	31898	ecoli-scere	1.49	69.88	2.60	1264.24
			hsapi-scere	6.09	181.17	15.56	6714.00

- We computed the similarity matrices X for various possible pairs of species using Protein-Protein Interaction (PPI) networks. $\mu = 0.80$, uniform initial conditions (outer product of suitably normalized 1's for each pair), 20 iterations, one component.
- Then we extracted node matches using PDM and GM.
- 3 orders of magnitude speedup of NSD-based approaches compared to IsoRank ones.

Parallelization: NSD has also been ported to parallel/distributed platforms:

- We have aligned up to million-node graph instances using up to 3,072 cores in a supercomputer installation.
- We have managed to process graph pairs of over a billion nodes and twenty billion edges each, over MapReduce-based platforms.