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Motivating applications – PageRank, Graph Alignment

Case study: single mat-vec in MapReduce
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Speculative parallelism through TransMR (transactional
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Locking techniques for efficient distribution transactions

Online Analytics

Motivating applications
Streams (Storm) and Machine Learning (Vowpal Wabbit)
Runtime and optimizations
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Motivating Example: Functional PageRank (PR)

Computing PageRank (PR)

PageRank as a random surfer process: Start surfing from a random
node and keep following links with probability µ restarting with
probability 1− µ; the node for restarting will be selected based on a
personalization vector v . The ranking value xi of a node i is the
probability of visiting this node during surfing.

PR can also be cast in power series representation as
x = (1− µ)

∑k
j=0 µ

jS jv ; S encodes column-stochastic adjacencies.

Functional rankings

A general method to assign ranking values to graph nodes as
x =

∑k
j=0 ζjS

jv . PR is a functional ranking, ζj = (1− µ)µj .

Terms attenuated by outdegrees in S and damping coefficients ζj .

Ananth Grama (Purdue University) Big Data Analytics Infrastructure 3 / 53



Motivating Example: Graph Matching

Node similarity: Two nodes
are similar if they are linked by
other similar node pairs. By
pairing similar nodes, the two
graphs become aligned.

Let Ã and B̃ be the normalized adjacency matrices of the graphs
(normalized by columns), Hij be the independently known similarity
scores (preferences matrix) of nodes i ∈ VB and j ∈ VA, and µ be
the fractional contribution of topological similarity.

To compute X , IsoRank iterates:

X ← µB̃X ÃT + (1− µ)H
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MapReduce: Basics

Execute in parallel user-defined functions on individual data-items
distributed across machines.

Simple programming model — map and reduce functions

Scalable, distributed execution of these functions on massive
amounts of data on commodity hardware
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MapReduce: DataFlow
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Example: Shotest Path (mat-vec) in MapReduce

map(node , adjList) {

for each arc in adjList {

output(arc.dst , node.distance + arc.weight)

}

}

reduce(node , newDistList) {

node.distance = min(newDistList)

}

while(not converged) {

runMapReduceJob(map , reduce , Ax)

}

We call this the Naive mat-vec — map takes an adjacency list
as input

Pegasus (CMU) implementation reads one edge per map
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Naive mat-vec : Resource Utilizaton
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Optimizing the mat-vec further
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Partitioned mat-vec

Each map operates on a graph partition — a set of adjacency
lists

Partition size is constrained by the heap size

On our setup, maximum partition size was 219 nodes
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Performance: Pegasus vs Naive vs Partitioned

16 Amazon EC2 nodes
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Optimizations Across Iterations

Algorithmic optimizations:

Asynchronous algorithms: Algorithms that allow asynchrony
— ordering of updates doesn’t affect the correctness of the
algorithm
e.g., PageRank, Alignments

Speculative Parallelism: Algorithms where concurrent
computations can have potential conflicts, the conflicts are rare
and can only be detected at runtime
e.g., Boruvka’s MST, Single Source Shortest Path
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Asynchronous Iterations

Improve performance in parallel environments.

Infrequent synchronization reduces communication
Examples

Graph algorithms, Numerical methods, ML kernels, etc.

More pronounced gains in distributed environments

Higher communication and data-movement costs
Read once, process multiple times allows more computation for
the same I/O cost
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Relaxed Synchronization

Synchronize once every few iterations

Approach: Two levels of MapReduce
Global MapReduce: The regular MapReduce

Requires global synchronization

Local MapReduce: MapReduce within a global map

Each global map runs a few iterations of local MapReduce
Partial synchronization of data of a single global map task

Input data partitioning for fewer dependencies across partitions
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PageRanks Using Traditional MapReduce

General PageRank

IEEE CLUSTER, Heraklion, Greece
23rd September 2010 10

Synchronization Barrier

Maps
Reduces

Ananth Grama (Purdue University) Big Data Analytics Infrastructure 15 / 53



PageRank with Relaxed Synchronization

Relaxed PageRank

IEEE CLUSTER, Heraklion, Greece
23rd September 2010 12
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Realizing Relaxed Synchronization Semantics

Code gmap, greduce, lmap, lreduce

lmap, lreduce use EmitLocalIntermediate() and Emit Local()
Synchronized hashtables for local storage

gmap(xs : X list) {

while(no-local -convergence -intimated) {

for each element x in xs {

lmap(x); // emits lkey , lval

}

lreduce (); // operates on the output of lmap functions

}

for each value in lreduce -output{

EmitIntermediate(key , value);

}

}
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Evaluation — Relaxed Synchronization

Sample applications

Single Source Shortest Path (MST, transitive closure, etc.)
PageRank (mat-vec: eigen value and linear system solvers)

Experimental Testbed
8 Amazon EC2 Large Instances

64-bit compute units with 15 GB RAM, 4x 420 GB storage
Hadoop 0.20.1; 4 GB heap space per slave
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Single Source Shortest Path

Single Source Shortest Path
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PageRank

Input: Partitioned using METIS ( less than 10 seconds)

Damping factor = 0.85

GraphA GraphB
Nodes 280,000 100,000
Edges 3 million 3 million
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PageRank Performance: GraphA

Performance: Graph A
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PageRank Performance: GraphB

Performance: Graph B
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Beyond Data-Parallelism: Speculation

Speculative parallelism

Most of the data can be operated on in parallel.

Some executions conflict. These can only be detected at
runtime. [Pingali et.al., PLDI’11]

Online algorithms/ Pipelined workflows

MapReduce Online [Condie’10] is an approach needing havy
checkpointing.

Software Transactional Memory (STM)
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TransMR: Transactional MapReduce

Goal: Exploit speculative data-parallelism

Support data-sharing across concurrent computations to detect
and resolve conflicts at runtime

Solution:

Use distributed key-value stores as shared address space across
computations
Address inconsistencies arising due to the disparate
fault-tolerance mechanisms
Transactional execution of map and reduce functions
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TransMR: System Architecture

Distributed key-value store provides a shared-memory
abstraction to the distributed execution-layer.
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Semantics of the API

Data-centric function scope – Map/Reduce/Merge etc, – termed
as a Computation Unit (CU), is executed as a transaction.

Optimistic reads and write-buffering. Local Store (LS) forms the
write-buffer of a CU.

Put (K, V): Write to LS, which is later atomically committed to
GS.
Get (K, V): Return from LS, if already present; otherwise, fetch
from GS and store in LS.
Other Op: Any thread local operation.

The output of a CU is always committed to the GS before being
visible to other CUs of the same or different type.

Eliminates the costly shuffle phase of MapReduce.
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Design Principles

Optimistic concurrency control over pessimistic locking

Locks are acquired at the end of the transaction. Write-buffer
and read-set is validated against those of concurrent Trx
assuring serializability.
Client is potentially executing on the slowest node in the
system; in this case, pessimistic locking hinders parallel
transaction execution.

Consistency (C) and Tolerance to Network Partitions (P) over
Availability (A) in CAP Theorem for Distributed transactions.

Application correctness mandates strict consistency of
execution. Relaxed consistency models are application-specific
optimizations.
Intermittent non-availability is not too costly for
batch-processing applications, where client is fault-prone in
itself.
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Evaluation

We show performance gains on two applications, which are
hitherto implemented sequentially without transactional support;
both exhibit Optimistic data-parallelism.

Boruka’s MST

Each iteration is coded as a Map function with input as a node.
Reduce is an identity function. Conflicting maps are serialized
while others are executed in parallel.
After n iterations of coalescing, we get the MST of an n node
graph.
A graph of 100 thousand nodes, with average degree of 50,
generated based on the forest-fire model.
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Boruvka’s MST

Speedup of 3.73 on 16 nodes, with less than 0.5 % re-executions
due to aborts.
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Maximum Flow Using Push-Relabel Algorithm

Each Map function executes a Push or a Relabel operation on
the input node, depending on the constraints on its neighbors.

Push operation increases the flow to a neighboring node and
changes their “Excess”.

Relabel operation increases the height of the input node if it is
the lowest among its neighbors.

Conflicting Maps – operating on neighboring nodes – get
serialized due to their transactional nature.

Only sequential implementation possible without support for
runtime conflict detection.
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Maximum flow using Push-Relabel algorithm

Speedup of 4.5 is observed on 16 nodes with 4% re-executions
on a windown of 40 iterations.
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TransMR: Intermediate Lessons

TransMR programming model enables data-sharing in
data-centric programming models for enhanced applicability.

Similar to other data-centric programming models, the
programmer only specifies operation on the individual
data-element without concerning about its interaction with other
operations.

Prototype implementation shows that many important
applications can be expressed in this model while extracting
significant performance gains through increased parallelism.

BUT: What about the locking operations!
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Distributed Transactions on Key-Value Stores

Transactions are costly in a large scale distributed settings

two-phase locking (concurrency control)
two-phase commit (atomicity)

Careful examination of the protocols and optimizations crucial to
performance of TransMR-like systems

These optimizations also useful for general purpose transactions
on databases using key-value store as the underlying storage
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Lock Management in Distributed Transactions

Lock management the major bottleneck affecting the latency of
distributed transactions.

Consider Strong Strict two phase locking (SS2PL) – waiting
case: The lock-acquiring stage is the only sequential stage. The
other stages can be parallelized to finish in a single round-trip.

Holds true even in optimistic-concurrency techniques where the
locks are acquired at the end.
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Locking StageStart
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Continue Trx 
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Workload Aware Lock Management

Contention based Lock-ordering: Order the locks so as to
decrease the total amount of waiting time.

For the waiting case, the lock with the least contention should
be acquired first. This increases pipelining while decreasing
lock-holding times.

Contention order is a runtime characteristic, and is updated
consistently. All clients should adhere to the same order to avoid
deadlocks.

l1 l2 l3 l4 l5 l6

Locks ordered based on increasing 

or decreasing contention-order

Group 1 Group 2 Group 3
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Constrained k-way Graph Partitioning

Graph partitioning algorithm to split the locking into k
non-overlapping partitions, minimizing the sum of weights on
cut-edges, while approximately balancing the total weight (sum
of node-weights) of individual partitions.

The result of the partitioning algorithm is the
load-balanced-partitioning of locks among k storage nodes.
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Evaluation

A cluster of 20 machines was used for all evaluations. Each
machine had a Quad-core xeon processor with 8 GB of RAM.
HBase is the underlying key-value store.

The YCSB benchmark was extended with the atomic multi-put
operation. A client transaction involves an atomic
Read-Modify-Write operation on a set of keys.

The keys for the atomic operation are generated using a Zipfian
generator with variable zipfian parameter. Each transaction
updates 15 keys out of 50K keys.
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Two Phase Locking: Waiting Version
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Figure : Performance of Lock Partitioning

Ordering of keys in increasing-order of their contention
significantly better than the decreasing order.
The increasing-order reduced lock holding time for highest
contended locks reducing waiting time for other transactions.
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Two Phase Locking: Waiting Version
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Figure : Performance of Lock Partitioning

Partitioning is done using Metis and partitions are placed at
separate nodes. Lock-partitioning improves the throughput by
reducing the number of network-roundtrips needed for sequential
locking by the client.
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Optimistic Concurrency Control – No-waiting
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Figure : Performance of Lock Ordering

Smaller improvement for OCC mainly due to the shorter
duration of locking.
At similar contention levels, the throughput of optimistic
concurrency control is significantly lower.
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Optimistic Concurrency Control – No-waiting

Version

2 4 6 8 10 12 14 16 18 20
Number of clients

0

50

100

150

200

250

300

350

400

450

Av
g 

Lo
ck

s 
Ac

qu
ire

d 
Pe

r T
rx

z=0.7, order=inc
z=0.7, order=dec
z=0.8, order=inc
z=0.8, order=dec
z=0.9, order=inc
z=0.9, order=dec

Figure : Lock wastage due to restarts

Optimistic techniques not suitable at high contention levels as
the time spent in reading and local updating gets wasted due to
conflicts during commit.
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Lock Optimization: Conclusions

The waiting version of SS2PL with increasing-contention-order
and partitioning outperforms the other protocols significantly.

Restarts due to conflicts constitute a major overhead in
distributed transactions. Reducing restarts by busy-waiting for
locks is an important step towards increasing performance.

Understanding the workload - even simple statistics on
contention - is enough to achieve significant gains (up to 200%).

Lock-partitioning through graph clustering and partitioning
techniques can be performed dynamically to achieve
performance gains.
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Towards Online Learning

Figure :
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Motivating Applications of Online Learning

Ad-Servers (learning from click-streams, spatial parameters)

Real-time sentiment classification (learning from twitter feeds,
blogs, etc.)

Read-time content recommendation (correlating tweets,
hashtags, etc.)
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Case Study: Stochastic Gradient Descent

Randomly shuffle training samples

repeat {
for i := 1, 2, ..., m {

T j := T j - a(ht(x(i) - y(i)) x(j)

(for every j = 0, 1, ..., n)

}
}

Can be used in applications like Supervised Semantic Indexing (e.g.,
Minimize loss function F = 1− q∗W+d+ + q∗W+d−, where q is the
query document, W is a weight matrix, d+ corresponds to a positive
document and d− corresponds to a negative document.)
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Stream Processing Solutions

Storm is a stream processing envine built at Twitter. It executes a
DAG of operators consisting of Spouts and Bolts.

Figure :
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Building Online Applications: Storm and Vowpal

Wabbit

Figure :

Ananth Grama (Purdue University) Big Data Analytics Infrastructure 47 / 53



Limitations of Simple Integration

Long reduction times, network bandwidth bottlenecks, static
topologies and dynamic system state.

Figure :

Ananth Grama (Purdue University) Big Data Analytics Infrastructure 48 / 53



Limitations of Simple Integration

Impedance mismatch between synchronous reductions and
asynchronous execution engine (LMAX Disruptor).

Figure :
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A dynamically orchestrated online learning

framework

Controller dynamically schedules reductions and forces rate control
and routing on input data streams

Figure :
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Controller Dexign: Asynchronous Reductions

Schedules asynchronous reductions (staggered butterfly) while forcing
rate control (blacklisting reducers)

Figure :
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Controller Design: Dynamic Mapping of Virtual

Overlay to Physical Operators

Controller uses operator metrics to decide on dynamic mapping and
schedule reductions. Metrics: Model sparsity triggers new reduction;
Latency and throughput of individual operators (scale-in/scale-out)

Figure :
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Continuing Efforts

TransMR and Concurrency Control Modules available on request.
Online analytics framework currently being validated. Available in
limited release.
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