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@ Web-scale graph-structured datasets require distributed
processing

@ Most graph algorithms are a series of matrix-vector
multiplications

@ Optimal implementation of a single mat-vec in MapReduce

@ Optimizations across iterations

e Asynchronous algorithms through Relaxed Synchronization
e Speculative parallelism through TransMR (transactional
MapReduce)

o Locking techniques for efficient distribution transactions
o Future Work
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Large-scale graph analysis

@ Dataset characteristics
e Massive distributed graph-structured datasets
e Graphs with billions of nodes, running into petabytes of storage
(e.g., web graphs and social networks)

@ Application characteristics
e Most graph algorithms can be modeled as a series of
matrix-vector products (mat-vecs)
e.g., PageRank, Shortest-path problems, etc.
e Each mat-vec requires distributed execution
o Algorithmic efficiency achieved through asynchrony and
amorphous data-parallelism

@ MapReduce for scalable, distributed execution of each mat-vec
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Single Source Shortest Path problem

@ Input: Adjacency matrix — A; and the source vertex — u.

@ Let x be the distance (from u) vector.

a 2 b
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Single Source Shortest Path can be computed as:
@ lterations of mat-vecs until the resultant vector converges

@ In each mat-vec, each element a;; is computed as:

ajj = miny;(aj + x;)
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MapReduce

Parallely executes user-defined functions on individual data-items
distributed across several machines.
@ Simple programming model — map and reduce functions
@ Scalable, distributed execution of these functions on massive
amounts of data on commodity hardware

INPUT <key, value>: list

v

o Input: <K11, V11> o Input: <K21, V21> ®  Input: <K31, V31>
o Output:<K'11,V°11>, o Output<K'21,V'21>,... o Output:<K'31,V'31>,...

<K1nV1n> <K'2n,V'2n> 1<K'3n,V'3n>

INTERMEDIATE <key, value:list>: list

o Input: <K11, V'11:list> o Input: <K'21, V'21:list>
o Output:<K™ 11V 11>,..., o Outputi<K™'21,V"21>,...,
<K 10,V 1n> <K"2n,V"2n>

v

OUTPUT value: list
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MapReduce: DataFlow
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Shotest Path (Iterative mat-vec) in MapReduce

map (node, adjList) {
for each arc in adjList {
output (arc.dst, node.distance + arc.weight)
}
}

reduce (node, newDistList) {
node.distance = min(newDistList)

}

while (not converged) {
runMapReduceJob (map, reduce, Ax)

}
@ We call this the Naive mat-vec — map takes an adjacency list
as input

@ Pegasus (CMU) implementation reads one edge per map
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Naive mat-vec: Resource Utilizaton
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Optimizing the mat-vec further

100

80

Percentage of total time

map spill  merge shuffle reduce
Stages

@ Stages overlap; hence, sum of percentages > 100
@ 1/0 time > Computation time

@ For performance:

o Batch read data
e Each map processes more data (as much as can fit in memory)
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Partitioned mat-vec

@ Each map operates on a graph partition — a bunch of adjacency
lists

@ Partition size is constrained by the heap size

@ On our setup, maximum partition size was 2'° nodes
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Pegasus vs Naive

vs Partitioned — 1

o Partition-size = 218
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Pegasus vs Naive vs Partitioned — 2
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Optimizations across iterations

Algorithmic optimizations:

@ Asynchronous algorithms: Algorithms that allow asynchrony
— ordering of updates doesn't affect the correctness of the
algorithm
e.g., Single Source Shortest Path, PageRank

e Amorphous data-parallelism: Algorithms where concurrent
computations can have potential conflicts, the conflicts are rare
and can only be detected at runtime
e.g., Boruvka's MST, Single Source Shortest Path
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Asynchronous (lterative) Algorithms

@ Improve performance in parallel environments.

e Infrequent synchronization reduces communication
o Examples

o Graph algorithms, Numerical methods, Classification, etc.
@ More pronounced gains in distributed environments

e Higher communication and data-movement costs
o Read once, process multiple times allows more computation for
the same /O cost
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Proposal: Relaxed Synchronization

@ Goal: Synchronize once every few iterations
@ Approach: Two levels of MapReduce
o Global MapReduce: The regular MapReduce
@ Requires global synchronization
o Local MapReduce: MapReduce within a global map

e Each global map runs a few iterations of local MapReduce
o Partial synchronization of data of a single global map task

o Input data partitioning for fewer dependencies across partitions

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 15/1



Shortest Path using traditional MapReduce
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Shortest Path with Relaxed Synchronization

Synchronization Barrier
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Relaxed Synchronization: PL Semantics
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Realizing the semantics

o Code gmap, greduce, Imap, Ireduce

e Imap, Ireduce use EmitLocallntermediate() and Emit Local()
e Synchronized hashtables for local storage

gmap (xs : X list) {

while(no-local-convergence-intimated) {
for each element x in xs {
lmap(x); // emits lkey, lwval
}

lreduce(); // operates on the output of lmap functions
}

for each value in lreduce-output{
EmitIntermediate (key, value);
}
}
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Evaluation — Relaxed Synchronization

@ 3 applications
e Single Source Shortest Path (MST, transitive closure, etc.)
e PageRank (mat-vec: eigen value and linear system solvers)
@ Test bed
e 8 Amazon EC2 Large Instances

@ 64-bit compute units with 15 GB RAM, 4x 420 GB storage
o Hadoop 0.20.1; 4 GB heap space per slave
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Single Source Shortest Path
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PageRank

@ Input: Partitioned using METIS (' less than 10 seconds)
e Damping factor = 0.85

GraphA | GraphB
Nodes | 280,000 | 100,000
Edges | 3 million | 3 million
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PageRank Performance: GraphA
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PageRank Performance: GraphB
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Beyond Data-Parallelism

@ Amorphous data-parallelism

o Most of the data can be operated on in parallel.
e Some of them conflict, which can only be detected at runtime.

@ “The Tao of Parallelism”, Pingali et.al., PLDI'11
o The Galois System

@ Online algorithms/ Pipelined workflows
e MapReduce Online [Condie'10] is an approach needing havy
checkpointing.
e Software Transactional Memory (STM)
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TransMR: Transactional MapReduce

@ Goal: Exploit amorphous data-parallelism
@ Support data-sharing across concurrent computations to detect
and resolve conflicts at runtime
@ Solution:
o Use distributed key-value stores as shared address space across
computations
o Address inconsistencies arising due to the disparate
fault-tolerance mechanisms
o Transactional execution of map and reduce functions
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TransMR: System Architecture

@ Distributed key-value store provides a shared-memory
abstraction to the distributed execution-layer.

Distributed
Execution Layer

Distributed
Key-Value Store

[N\
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Semantics of the API

e Data-centric function scope — Map/Reduce/Merge etc, — termed
as a Computation Unit (CU), is executed as a transaction.

e Optimistic reads and write-buffering. Local Store (LS) forms the
write-buffer of a CU.
o Put (K, V): Write to LS which is later atomically committed to

GS.
e Get (K, V): Return from LS, if already present; otherwise, fetch

from GS and store in LS.
o Other Op: Any thread local operation.
@ The output of a CU is always committed to the GS before being
visible to other CUs of the same or different type.
o Eliminates the costly shuffle phase of MapReduce.
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Design Principles

@ Optimistic concurrency control over pessimistic locking

e Locks are acquired at the end of the transaction. Write-buffer
and read-set is validated against those of concurrent Trx
assuring serializability.

o Client is potentially executing on the slowest node in the
system; in this case, pessimistic locking hinders parallel
transaction execution.

@ Consistency (C) and Tolerance to Network Partitions (P) over
Availability (A) in CAP Theorem for Distributed transactions.

e Application correctness mandates strict consistency of
execution. Relaxed consistency models are application-specific
optimizations.

e Intermittent non-availability is not too costly for
batch-processing applications, where client is fault-prone in
itself.
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Evaluation

@ We show performance gains on two applications, which are
hitherto implemented sequentially without transactional support;
both exhibit Optimistic data-parallelism.

@ Boruka's MST

e Each iteration is coded as a Map function with input as a node.
Reduce is an identity function. Conflicting maps are serialized
while others are executed in parallel.

o After n iterations of coalescing, we get the MST of an n node
graph.

e A graph of 100 thousand nodes, with average degree of 50,
generated based on the forest-fire model.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 30/1



Boruvka's MST

@ Speedup of 3.73 on 16 nodes, with less than 0.5 % re-executions

due to aborts.
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Maximum flow using Push-Relabel algorithm

@ Each Map function executes a Push or a Relabel operation on
the input node, depending on the constraints on its neighbors.

@ Push operation increases the flow to a neighboring node and
changes their “Excess”.

@ Relabel operation increases the height of the input node if it is
the lowest among its neighbors.

@ Conflicting Maps — operating on neighboring nodes — get
serialized due to their transactional nature.

@ Only sequential implementation possible without support for
runtime conflict detection.
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Maximum flow using Push-Relabel algorithm

@ Speedup of 4.5 is observed on 16 nodes with 4% re-executions
on a windown of 40 iterations.
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TransMR: Conclusions

@ TransMR programming model enables data-sharing in
data-centric programming models for enhanced applicability.

@ Similar to other data-centric programming models, the
programmer only specifies operation on the individual
data-element without concerning about its interaction with other
operations.

@ Prototype implementation shows that many important
applications can be expressed in this model while extracting
significant performance gains through increased parallelism.
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Distributed Transactions on Key-Value Stores

@ Transactions are costly in a large scale distributed settings

e two-phase locking (concurrency control)
e two-phase commit (atomicity)

@ Careful examination of the protocols and optimizations crucial to
performance of TransMR-like systems

@ These optimizations also useful for general purpose transactions
on databases using key-value store as the underlying storage
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Lock management in distributed transactions

@ Lock management the major bottleneck affecting the latency of
distributed transactions.

@ Consider Strong Strict two phase locking (SS2PL) — waiting
case: The lock-acquiring stage is the only sequential stage. The
other stages can be parallelized to finish in a single round-trip.

@ Holds true even in optimistic-concurrency techniques where the
locks are acquired at the end.

Read / Undate Unlock /
Execute P ommit / Abor
Locking Stage
acquired
Move to next if
lock acquired

Busy wait Busy wait Busy wait

Sequential locking on
ordered locks
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Workload aware lock management

e Contention based Lock-ordering: Order the locks so as to
decrease the total amount of waiting time.

@ For the waiting case, the lock with the least contention should
be acquired first. This increases pipelining while decreasing
lock-holding times.

@ Contention order is a runtime characteristic, and is updated
consistently. All clients should adhere to the same order to avoid
deadlocks.

Group 1 Group » Group 3

R L )
ORORIOROING
Locks ordered based on increasing >
or decreasing contention-order
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Constrained k-way graph partitioning

@ Graph partitioning algorithm to split the locking into k
non-overlapping partitions, minimizing the sum of weights on
cut-edges, while approximately balancing the total weight (sum
of node-weights) of individual partitions.

@ The result of the partitioning algorithm is the
load-balanced-partitioning of locks among k storage nodes.

Co-occurence count

Partition a Partition b
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Evaluation

@ A cluster of 20 machines was used for all evaluations. Each
machine had a Quad-core xeon processor with 8 GB of RAM.
HBase is the underlying key-value store.

@ The YCSB benchmark was extended with the atomic multi-put
operation. A client transaction involves an atomic
Read-Modify-Write operation on a set of keys.

@ The keys for the atomic operation are generated using a Zipfian
generator with variable zipfian parameter. Each transaction
updates 15 keys out of 50K keys.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 39/1



Two phase locking: waiting version
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Figure: Performance of Lock Partitioning

@ Ordering of keys in increasing-order of their contention
significantly better than the decreasing order.

@ The increasing-order reduced lock holding time for highest
contended locks reducing waiting time for other transactions.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 40 /1



Two phase locking: waiting version
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Figure: Performance of Lock Partitioning

e Partitioning is done using Metis and partitions are placed at
separate nodes. Lock-partitioning improves the throughput by
reducing the number of network-roundtrips needed for sequential
locking by the client.
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Optimistic concurrency control — no-waiting version
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Figure: Performance of Lock Ordering

@ Smaller improvement for OCC mainly due to the shorter
duration of locking.

@ At similar contention levels, the throughput of optimistic
concurrency control is significantly lower.
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Optimistic concurrency control — no-waiting version
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Figure: Lock wastage due to restarts
@ Optimistic techniques not suitable at high contention levels as

the time spent in reading and local updating gets wasted due to
conflicts during commit.
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Lock Optimization: Conclusions

@ The waiting version of SS2PL with increasing-contention-order
and partitioning outperforms the other protocols significantly.

@ locks is an important step towards increasing performance.

@ Understanding the workload - even simple statistics on
contention - is enough to achieve significant gains (up to 200%).

@ Lock-partitioning through graph clustering and partitioning
techniques can be performed dynamically to achieve
performance gains.
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