Large-scale Graph Analysis in

Data-Centric Models like MapReduce

Ananth Grama
Dept. of Computer Science, Purdue University

Science of Information
Purdue University

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 1/1

@ Web-scale graph-structured datasets require distributed
processing

@ Most graph algorithms are a series of matrix-vector
multiplications

@ Optimal implementation of a single mat-vec in MapReduce

@ Optimizations across iterations

e Asynchronous algorithms through Relaxed Synchronization
e Speculative parallelism through TransMR (transactional
MapReduce)

o Locking techniques for efficient distribution transactions
o Future Work

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 2/1

Large-scale graph analysis

@ Dataset characteristics
e Massive distributed graph-structured datasets
e Graphs with billions of nodes, running into petabytes of storage
(e.g., web graphs and social networks)

@ Application characteristics
e Most graph algorithms can be modeled as a series of
matrix-vector products (mat-vecs)
e.g., PageRank, Shortest-path problems, etc.
e Each mat-vec requires distributed execution
o Algorithmic efficiency achieved through asynchrony and
amorphous data-parallelism

@ MapReduce for scalable, distributed execution of each mat-vec

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 3/1

Single Source Shortest Path problem

@ Input: Adjacency matrix — A; and the source vertex — u.

@ Let x be the distance (from u) vector.

a 2 b
3 oo 2 8 0
o A=12 o~ 3 X= 100
8 3 o 00

Single Source Shortest Path can be computed as:
@ lterations of mat-vecs until the resultant vector converges

@ In each mat-vec, each element a;; is computed as:

ajj = miny;(aj + x;)

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce

MapReduce

Parallely executes user-defined functions on individual data-items
distributed across several machines.
@ Simple programming model — map and reduce functions
@ Scalable, distributed execution of these functions on massive
amounts of data on commodity hardware

INPUT <key, value>: list

v

o Input: <K11, V11> o Input: <K21, V21> ® Input: <K31, V31>
o Output:<K'11,V°11>, o Output<K'21,V'21>,... o Output:<K'31,V'31>,...

<K1nV1n> <K'2n,V'2n> 1<K'3n,V'3n>

INTERMEDIATE <key, value:list>: list

o Input: <K11, V'11:list> o Input: <K'21, V'21:list>
o Output:<K™ 11V 11>,..., o Outputi<K™'21,V"21>,...,
<K 10,V 1n> <K"2n,V"2n>

v

OUTPUT value: list

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce

MapReduce: DataFlow

input
output
Ny
py
| | —
sort
merge
\
N1 .
sort
L¥]
ap L merge

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce

Shotest Path (Iterative mat-vec) in MapReduce

map (node, adjList) {
for each arc in adjList {
output (arc.dst, node.distance + arc.weight)
}
}

reduce (node, newDistList) {
node.distance = min(newDistList)

}

while (not converged) {
runMapReduceJob (map, reduce, Ax)

}
@ We call this the Naive mat-vec — map takes an adjacency list
as input

@ Pegasus (CMU) implementation reads one edge per map

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce

7/1

Naive mat-vec: Resource Utilizaton

CPU Usage Network /0
100 35000
user In ——
waiting 30000 Out
25000
E © 20000
g g
R® 15000
10000
5000 A‘ /\ A
; S
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Time Time
Disk /O
35000
Block In ——
30000 Block Out B
25000 i 1
, 20000 —
¢
15000 1
10000 ' 1
5000 4
0 Y
0 200 400 600 800 1000 1200
Time

Ananth Grama (Purdue Universit

cale Graph Analysis in MapReduce

Optimizing the mat-vec further

100

80

Percentage of total time

map spill merge shuffle reduce
Stages

@ Stages overlap; hence, sum of percentages > 100
@ 1/0 time > Computation time

@ For performance:

o Batch read data
e Each map processes more data (as much as can fit in memory)

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce

Partitioned mat-vec

@ Each map operates on a graph partition — a bunch of adjacency
lists

@ Partition size is constrained by the heap size

@ On our setup, maximum partition size was 2'° nodes

265
260 1
255 1
250 ¢
245
240 t
235
230
225
220

215 I I l

155 16 16.5 17 175 18 185
Sub-graph size (powers of 2)

Time (seconds)

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 10/1

Pegasus vs Naive

vs Partitioned — 1

o Partition-size = 218

10000)
.......... e
R o
oo
5 wog |
1000 Z T |

| e
—
partitioned ---w--- S ____________________ " e
asus Q- egasus - '._.
100 9 . ‘ R
23 2 25 23 . 2 |

Ananth Grama (Purdue University)

Graph size (powers of 2)

(a) 4 Amazon EC2 nodes

Graph size (powers of 2)

(b) 8 Amazon EC2 nodes

Large-scale Graph Analysis in MapReduce

Pegasus vs Naive vs Partitioned — 2

10000 1000
2 1000)
=4 =4
3 3
Q Q
<o L
S e g
= 100 ¢ E S
naive —s—
partitioned ---w--- naive ——
10) pegasus e 10)) partilioped --y--
23 24 25 26 27 23 24 25 26 27
Graph size (powers of 2) Graph size (powers of 2)
(c) 16 Amazon EC2 nodes (d) 32 Amazon EC2 nodes

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce

Optimizations across iterations

Algorithmic optimizations:

@ Asynchronous algorithms: Algorithms that allow asynchrony
— ordering of updates doesn't affect the correctness of the
algorithm
e.g., Single Source Shortest Path, PageRank

e Amorphous data-parallelism: Algorithms where concurrent
computations can have potential conflicts, the conflicts are rare
and can only be detected at runtime
e.g., Boruvka's MST, Single Source Shortest Path

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 13/1

Asynchronous (lterative) Algorithms

@ Improve performance in parallel environments.

e Infrequent synchronization reduces communication
o Examples

o Graph algorithms, Numerical methods, Classification, etc.
@ More pronounced gains in distributed environments

e Higher communication and data-movement costs
o Read once, process multiple times allows more computation for
the same /O cost

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 14 /1

Proposal: Relaxed Synchronization

@ Goal: Synchronize once every few iterations
@ Approach: Two levels of MapReduce
o Global MapReduce: The regular MapReduce
@ Requires global synchronization
o Local MapReduce: MapReduce within a global map

e Each global map runs a few iterations of local MapReduce
o Partial synchronization of data of a single global map task

o Input data partitioning for fewer dependencies across partitions

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 15/1

Shortest Path using traditional MapReduce

@ GY @

Qchmnization BarD

B Maps
B Reduces @ @

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 16 /1

Shortest Path with Relaxed Synchronization

Synchronization Barrier

G

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 17 /1

B Maps
M Reduces

8 €
ol A

Relaxed Synchronization: PL Semantics

Apply(L < e, fr. frl>) = Le fr fir]

while(cond,) G condy fm fr g, A =l," X
Lcond, fo frlg A =0, N

chi, Ao=1D,\ea
whilecond map (L f,,, f,) e =1", 0" agg I, o, A = Lo N fold f, 1" N ==,1," N
G oond fo frlg Ao :,vqlg"‘ XN,

map fo, I, 0 =" a" fold f, 1" 0 =)', 0"
L fo fr oo =2l 0’

chly=h =l |1 Cly & Ny b = &)1, oulls = A(D)]

aggly =1y = Uy bV, Ml — 1]

l,e = ofl) (LoCAL-LOOKUP) 1A = A(l) (GLOBAL-LOOKUP)

(APPLY-ITER)

(ITER-MAPRED)

(MAPRED-GLOBAL)

(MAPRED-LOCAL)

(CHUNKIFY)

(AGGREGATE)

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce

Realizing the semantics

o Code gmap, greduce, Imap, Ireduce

e Imap, Ireduce use EmitLocallntermediate() and Emit Local()
e Synchronized hashtables for local storage

gmap (xs : X list) {

while(no-local-convergence-intimated) {
for each element x in xs {
lmap(x); // emits lkey, lwval
}

lreduce(); // operates on the output of lmap functions
}

for each value in lreduce-output{
EmitIntermediate (key, value);
}
}

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce

19 /1

Evaluation — Relaxed Synchronization

@ 3 applications
e Single Source Shortest Path (MST, transitive closure, etc.)
e PageRank (mat-vec: eigen value and linear system solvers)
@ Test bed
e 8 Amazon EC2 Large Instances

@ 64-bit compute units with 15 GB RAM, 4x 420 GB storage
o Hadoop 0.20.1; 4 GB heap space per slave

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 20/1

Single Source Shortest Path

M General SSSP W Relaxed SSSP

. 150
c
.2 100
L
©
g 50
=
* 0
100 200 400 800 1600 3200 6400
_. 8000
%] &
S 6000 — — .
§ 4000
£ 2000 y ————F———
o 0 o - o o o
.g T T T
= 100 200 400 800 1600 3200 6400
Partitions

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce

PageRank

@ Input: Partitioned using METIS (' less than 10 seconds)
e Damping factor = 0.85

GraphA | GraphB
Nodes | 280,000 | 100,000
Edges | 3 million | 3 million

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce

PageRank Performance: GraphA

40 -
30
20 -
10 -

Iterations

100

4000 -+
3000 -

200 400 800 1600 3200 6400

2000 -
1000 -

Time (seconds)

100

Ananth Grama (Purdue University)

200 400 800 1600 3200 6400
Partitions

Large-scale Graph Analysis in MapReduce

M General PageRank
M Relaxed PageRank

—General PageRank

—Relaxed PageRank

PageRank Performance: GraphB

40
30 4
20
10

Iterations

100

4000 -
3000 -~

200

400 800 1600 3200 6400

2000 -

Time (seconds)

1000 < e

100

Ananth Grama (Purdue University)

200

400 800 1600 3200 6400
#Partitions

Large-scale Graph Analysis in MapReduce

B General PageRank
M Relaxed PageRank

—General PageRank
—Relaxed PageRank

2 /1

Beyond Data-Parallelism

@ Amorphous data-parallelism

o Most of the data can be operated on in parallel.
e Some of them conflict, which can only be detected at runtime.

@ “The Tao of Parallelism”, Pingali et.al., PLDI'11
o The Galois System

@ Online algorithms/ Pipelined workflows
e MapReduce Online [Condie'10] is an approach needing havy
checkpointing.
e Software Transactional Memory (STM)

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 25/1

TransMR: Transactional MapReduce

@ Goal: Exploit amorphous data-parallelism
@ Support data-sharing across concurrent computations to detect
and resolve conflicts at runtime
@ Solution:
o Use distributed key-value stores as shared address space across
computations
o Address inconsistencies arising due to the disparate
fault-tolerance mechanisms
o Transactional execution of map and reduce functions

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 26/1

TransMR: System Architecture

@ Distributed key-value store provides a shared-memory
abstraction to the distributed execution-layer.

Distributed
Execution Layer

Distributed
Key-Value Store

[N\

Ananth Grama (Purdue University)

Large-scale Graph Analysis in MapReduce

Semantics of the API

e Data-centric function scope — Map/Reduce/Merge etc, — termed
as a Computation Unit (CU), is executed as a transaction.

e Optimistic reads and write-buffering. Local Store (LS) forms the
write-buffer of a CU.
o Put (K, V): Write to LS which is later atomically committed to

GS.
e Get (K, V): Return from LS, if already present; otherwise, fetch

from GS and store in LS.
o Other Op: Any thread local operation.
@ The output of a CU is always committed to the GS before being
visible to other CUs of the same or different type.
o Eliminates the costly shuffle phase of MapReduce.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 28 /1

Design Principles

@ Optimistic concurrency control over pessimistic locking

e Locks are acquired at the end of the transaction. Write-buffer
and read-set is validated against those of concurrent Trx
assuring serializability.

o Client is potentially executing on the slowest node in the
system; in this case, pessimistic locking hinders parallel
transaction execution.

@ Consistency (C) and Tolerance to Network Partitions (P) over
Availability (A) in CAP Theorem for Distributed transactions.

e Application correctness mandates strict consistency of
execution. Relaxed consistency models are application-specific
optimizations.

e Intermittent non-availability is not too costly for
batch-processing applications, where client is fault-prone in
itself.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 29 /1

Evaluation

@ We show performance gains on two applications, which are
hitherto implemented sequentially without transactional support;
both exhibit Optimistic data-parallelism.

@ Boruka's MST

e Each iteration is coded as a Map function with input as a node.
Reduce is an identity function. Conflicting maps are serialized
while others are executed in parallel.

o After n iterations of coalescing, we get the MST of an n node
graph.

e A graph of 100 thousand nodes, with average degree of 50,
generated based on the forest-fire model.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 30/1

Boruvka's MST

@ Speedup of 3.73 on 16 nodes, with less than 0.5 % re-executions

due to aborts.

50 T
45
40
35
30
25
20
15

Time (mins)

'Executior'1 Time —
Number of Aborts

N

RN
T
IANARAY

10

Ananth Grama (Purdue University)

2 4
Computing Nodes

Large-scale Graph Analysis in MapReduce

250

200

150

100

50

Aborts

31/1

Maximum flow using Push-Relabel algorithm

@ Each Map function executes a Push or a Relabel operation on
the input node, depending on the constraints on its neighbors.

@ Push operation increases the flow to a neighboring node and
changes their “Excess”.

@ Relabel operation increases the height of the input node if it is
the lowest among its neighbors.

@ Conflicting Maps — operating on neighboring nodes — get
serialized due to their transactional nature.

@ Only sequential implementation possible without support for
runtime conflict detection.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 32/1

Maximum flow using Push-Relabel algorithm

@ Speedup of 4.5 is observed on 16 nodes with 4% re-executions
on a windown of 40 iterations.

55 T T 6000

Execution Time s
50 Number of Aborts S 5000

MO
SN
AN
NN
45
\
| 4000
40
\
NN
ARRERYY
RSN
35 w3000
SN
30
NN
D Wi

15

Time (mins)
Aborts

\

w1000

NARNY

ARRERT
NN

W
AN

1 2 4 8 16
Computing Nodes

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 33/1

TransMR: Conclusions

@ TransMR programming model enables data-sharing in
data-centric programming models for enhanced applicability.

@ Similar to other data-centric programming models, the
programmer only specifies operation on the individual
data-element without concerning about its interaction with other
operations.

@ Prototype implementation shows that many important
applications can be expressed in this model while extracting
significant performance gains through increased parallelism.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 34 /1

Distributed Transactions on Key-Value Stores

@ Transactions are costly in a large scale distributed settings

e two-phase locking (concurrency control)
e two-phase commit (atomicity)

@ Careful examination of the protocols and optimizations crucial to
performance of TransMR-like systems

@ These optimizations also useful for general purpose transactions
on databases using key-value store as the underlying storage

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 35/1

Lock management in distributed transactions

@ Lock management the major bottleneck affecting the latency of
distributed transactions.

@ Consider Strong Strict two phase locking (SS2PL) — waiting
case: The lock-acquiring stage is the only sequential stage. The
other stages can be parallelized to finish in a single round-trip.

@ Holds true even in optimistic-concurrency techniques where the
locks are acquired at the end.

Read / Undate Unlock /
Execute P ommit / Abor
Locking Stage
acquired
Move to next if
lock acquired

Busy wait Busy wait Busy wait

Sequential locking on
ordered locks

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 36/1

Workload aware lock management

e Contention based Lock-ordering: Order the locks so as to
decrease the total amount of waiting time.

@ For the waiting case, the lock with the least contention should
be acquired first. This increases pipelining while decreasing
lock-holding times.

@ Contention order is a runtime characteristic, and is updated
consistently. All clients should adhere to the same order to avoid
deadlocks.

Group 1 Group » Group 3

R L)
ORORIOROING
Locks ordered based on increasing >
or decreasing contention-order

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 37 /1

Constrained k-way graph partitioning

@ Graph partitioning algorithm to split the locking into k
non-overlapping partitions, minimizing the sum of weights on
cut-edges, while approximately balancing the total weight (sum
of node-weights) of individual partitions.

@ The result of the partitioning algorithm is the
load-balanced-partitioning of locks among k storage nodes.

Co-occurence count

Partition a Partition b

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce

38 /1

Evaluation

@ A cluster of 20 machines was used for all evaluations. Each
machine had a Quad-core xeon processor with 8 GB of RAM.
HBase is the underlying key-value store.

@ The YCSB benchmark was extended with the atomic multi-put
operation. A client transaction involves an atomic
Read-Modify-Write operation on a set of keys.

@ The keys for the atomic operation are generated using a Zipfian
generator with variable zipfian parameter. Each transaction
updates 15 keys out of 50K keys.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 39/1

Two phase locking: waiting version

600
-+ z=0.7, order=inc
2=0.7, order=dec
500} =~ 2=0:8, order=inc
2=0.8, order=dec
*— 2=0.9, order=inc
+—+ z=0.9, order=dec

400

Throughput

8 10 12 14 16 18 20
Number of clients

Figure: Performance of Lock Partitioning

@ Ordering of keys in increasing-order of their contention
significantly better than the decreasing order.

@ The increasing-order reduced lock holding time for highest
contended locks reducing waiting time for other transactions.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 40 /1

Two phase locking: waiting version

Throughput

2 4 6 8 10 12 14 16 18 20
Number of clients

Figure: Performance of Lock Partitioning

e Partitioning is done using Metis and partitions are placed at
separate nodes. Lock-partitioning improves the throughput by
reducing the number of network-roundtrips needed for sequential
locking by the client.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 41 /1

Optimistic concurrency control — no-waiting version

450
- 2=0.7, order=inc
400 2=0.7, order=dec
- - 2=0.8, order=inc |----.-._
2=0.8, order=dec
3500 4w 2=0.9, order=inc
+—+ 2=0.9, order=dec
300 -
H
2 250
=)
3
£ 200]
F -
150
100
50
0
2 4 6 14 16 18 20

8 10 12
Number of clients
Figure: Performance of Lock Ordering

@ Smaller improvement for OCC mainly due to the shorter
duration of locking.

@ At similar contention levels, the throughput of optimistic
concurrency control is significantly lower.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce

Optimistic concurrency control — no-waiting version

- 2=0.7, order=inc
400}| — 2=0.7, order=dec
- - 2=0.8, order=inc

2-0.8, order=dec
*—= 2=0.9, order=inc
+—+ 2=0.9, order=dec

Avg Locks Acquired Per Trx

10 12 14 16 18 20
Number of clients

Figure: Lock wastage due to restarts
@ Optimistic techniques not suitable at high contention levels as

the time spent in reading and local updating gets wasted due to
conflicts during commit.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce

Lock Optimization: Conclusions

@ The waiting version of SS2PL with increasing-contention-order
and partitioning outperforms the other protocols significantly.

@ locks is an important step towards increasing performance.

@ Understanding the workload - even simple statistics on
contention - is enough to achieve significant gains (up to 200%).

@ Lock-partitioning through graph clustering and partitioning
techniques can be performed dynamically to achieve
performance gains.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 44 /1

