
Large-scale Graph Analysis in
Data-Centric Models like MapReduce

Ananth Grama

Dept. of Computer Science, Purdue University
Science of Information

Purdue University

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 1 / 1

Outline

Web-scale graph-structured datasets require distributed
processing

Most graph algorithms are a series of matrix-vector
multiplications

Optimal implementation of a single mat-vec in MapReduce

Optimizations across iterations

Asynchronous algorithms through Relaxed Synchronization
Speculative parallelism through TransMR (transactional
MapReduce)
Locking techniques for efficient distribution transactions

Future Work

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 2 / 1

Large-scale graph analysis

Dataset characteristics

Massive distributed graph-structured datasets
Graphs with billions of nodes, running into petabytes of storage
(e.g., web graphs and social networks)

Application characteristics

Most graph algorithms can be modeled as a series of
matrix-vector products (mat-vecs)
e.g., PageRank, Shortest-path problems, etc.
Each mat-vec requires distributed execution
Algorithmic efficiency achieved through asynchrony and
amorphous data-parallelism

MapReduce for scalable, distributed execution of each mat-vec

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 3 / 1

Single Source Shortest Path problem

Input: Adjacency matrix – A; and the source vertex – u.

Let x be the distance (from u) vector.

A =

∞ 2 8
2 ∞ 3
8 3 ∞

 x =

 0
∞
∞


Single Source Shortest Path can be computed as:

Iterations of mat-vecs until the resultant vector converges

In each mat-vec , each element aij is computed as:

aij = min∀j(aij + xj)

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 4 / 1

MapReduce

Parallely executes user-defined functions on individual data-items
distributed across several machines.

Simple programming model — map and reduce functions

Scalable, distributed execution of these functions on massive
amounts of data on commodity hardware

0DS��

Ɣ ,QSXW���.����9��!
Ɣ 2XWSXW��.C���9C��!����

������������.C�Q�9C�Q!

0DS��

Ɣ ,QSXW���.����9��!
Ɣ 2XWSXW��.C���9C��!����

������������.C�Q�9C�Q!

0DS��

Ɣ ,QSXW���.����9��!
Ɣ 2XWSXW��.C���9C��!����

������������.C�Q�9C�Q!

,17(50(',$7(��NH\��YDOXH�OLVW!��OLVW����

5HGXFH��

Ɣ ,QSXW���.C����9C���OLVW!
Ɣ 2XWSXW��.CC���9CC��!�����

�.CC�Q�9CC�Q!

5HGXFH��

Ɣ ,QSXW���.C����9C���OLVW!
Ɣ 2XWSXW��.CC���9CC��!�����

�.CC�Q�9CC�Q!

,1387��NH\��YDOXH!��OLVW����

287387�YDOXH��OLVW����

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 5 / 1

MapReduce: DataFlow

VSOLW�� PDS

VSOLW�� PDS

VSOLW�� PDS

VRUW

VRUW

VRUW

UHGXFH SDUW��

UHGXFH SDUW��

PHUJH

PHUJH

LQSXW

RXWSXW

FRS\

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 6 / 1

Shotest Path (Iterative mat-vec) in MapReduce

map(node , adjList) {

for each arc in adjList {

output(arc.dst , node.distance + arc.weight)

}

}

reduce(node , newDistList) {

node.distance = min(newDistList)

}

while(not converged) {

runMapReduceJob(map , reduce , Ax)

}

We call this the Naive mat-vec — map takes an adjacency list
as input

Pegasus (CMU) implementation reads one edge per map

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 7 / 1

Naive mat-vec : Resource Utilizaton

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

%
 C

P
U

Time

CPU Usage

user
waiting

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 200 400 600 800 1000 1200

K
B

/s

Time

Network I/O

In

Out

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 200 400 600 800 1000 1200

K
B

s

Time

Disk I/O

Block In

Block Out

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 8 / 1

Optimizing the mat-vec further

 0

 20

 40

 60

 80

 100

map spill merge shuffle reduce

P
e

rc
e

n
ta

g
e

 o
f

to
ta

l
ti
m

e

Stages

Stages overlap; hence, sum of percentages > 100

I/O time > Computation time

For performance:

Batch read data
Each map processes more data (as much as can fit in memory)

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 9 / 1

Partitioned mat-vec

Each map operates on a graph partition — a bunch of adjacency
lists

Partition size is constrained by the heap size

On our setup, maximum partition size was 219 nodes

 215

 220

 225

 230

 235

 240

 245

 250

 255

 260

 265

 15.5 16 16.5 17 17.5 18 18.5

T
im

e
 (

s
e
c
o
n
d
s
)

Sub-graph size (powers of 2)

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 10 / 1

Pegasus vs Naive vs Partitioned – 1

Partition-size = 218

 100

 1000

 10000

23 24 25

T
im

e
 (

s
e
c
o
n
d
s
)

Graph size (powers of 2)

naive
partitioned

pegasus

(a) 4 Amazon EC2 nodes

 100

 1000

 10000

23 24 25 26

T
im

e
 (

s
e
c
o
n
d
s
)

Graph size (powers of 2)

naive
partitioned

pegasus

(b) 8 Amazon EC2 nodes

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 11 / 1

Pegasus vs Naive vs Partitioned – 2

 10

 100

 1000

 10000

23 24 25 26 27

T
im

e
 (

s
e
c
o
n
d
s
)

Graph size (powers of 2)

naive
partitioned

pegasus

(c) 16 Amazon EC2 nodes

 10

 100

 1000

23 24 25 26 27
T

im
e
 (

s
e
c
o
n
d
s
)

Graph size (powers of 2)

naive
partitioned

(d) 32 Amazon EC2 nodes

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 12 / 1

Optimizations across iterations

Algorithmic optimizations:

Asynchronous algorithms: Algorithms that allow asynchrony
— ordering of updates doesn’t affect the correctness of the
algorithm
e.g., Single Source Shortest Path, PageRank

Amorphous data-parallelism: Algorithms where concurrent
computations can have potential conflicts, the conflicts are rare
and can only be detected at runtime
e.g., Boruvka’s MST, Single Source Shortest Path

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 13 / 1

Asynchronous (Iterative) Algorithms

Improve performance in parallel environments.

Infrequent synchronization reduces communication
Examples

Graph algorithms, Numerical methods, Classification, etc.

More pronounced gains in distributed environments

Higher communication and data-movement costs
Read once, process multiple times allows more computation for
the same I/O cost

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 14 / 1

Proposal: Relaxed Synchronization

Goal: Synchronize once every few iterations

Approach: Two levels of MapReduce
Global MapReduce: The regular MapReduce

Requires global synchronization

Local MapReduce: MapReduce within a global map

Each global map runs a few iterations of local MapReduce
Partial synchronization of data of a single global map task

Input data partitioning for fewer dependencies across partitions

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 15 / 1

Shortest Path using traditional MapReduce

General PageRank

IEEE CLUSTER, Heraklion, Greece
23rd September 2010 10

Synchronization Barrier

Maps
Reduces

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 16 / 1

Shortest Path with Relaxed Synchronization

Relaxed PageRank

IEEE CLUSTER, Heraklion, Greece
23rd September 2010 12

Synchronization Barrier

Maps
Reduces

Barrier
BarrierBarrier

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 17 / 1

Relaxed Synchronization: PL Semantics

Semantics: Iterative MapReduce

IEEE CLUSTER, Heraklion, Greece
23rd September 2010 13

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 18 / 1

Realizing the semantics

Code gmap, greduce, lmap, lreduce

lmap, lreduce use EmitLocalIntermediate() and Emit Local()
Synchronized hashtables for local storage

gmap(xs : X list) {

while(no-local -convergence -intimated) {

for each element x in xs {

lmap(x); // emits lkey , lval

}

lreduce (); // operates on the output of lmap functions

}

for each value in lreduce -output{

EmitIntermediate(key , value);

}

}

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 19 / 1

Evaluation — Relaxed Synchronization

3 applications

Single Source Shortest Path (MST, transitive closure, etc.)
PageRank (mat-vec: eigen value and linear system solvers)

Test bed
8 Amazon EC2 Large Instances

64-bit compute units with 15 GB RAM, 4x 420 GB storage
Hadoop 0.20.1; 4 GB heap space per slave

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 20 / 1

Single Source Shortest Path

Single Source Shortest Path

0

50

100

150

100 200 400 800 1600 3200 6400

Ite

ra
tio

ns

General SSSP Relaxed SSSP

IEEE CLUSTER, Heraklion, Greece
23rd September 2010 19

0
2000
4000
6000
8000

100 200 400 800 1600 3200 6400Ti
m

e
(s

ec
on

ds
)

Partitions

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 21 / 1

PageRank

Input: Partitioned using METIS (less than 10 seconds)

Damping factor = 0.85

GraphA GraphB
Nodes 280,000 100,000
Edges 3 million 3 million

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 22 / 1

PageRank Performance: GraphA

Performance: Graph A

17

0
10
20
30
40

100 200 400 800 1600 3200 6400

Ite

ra
tio

ns

General PageRank
Relaxed PageRank

0

1000

2000

3000

4000

100 200 400 800 1600 3200 6400

Ti
m

e
(s

ec
on

ds
)

Partitions

General PageRank
Relaxed PageRank

IEEE CLUSTER, Heraklion, Greece 23rd September 2010

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 23 / 1

PageRank Performance: GraphB

Performance: Graph B

0

10

20

30

40

100 200 400 800 1600 3200 6400

Ite

ra
tio

ns

General PageRank

Relaxed PageRank

18

0

1000

2000

3000

4000

100 200 400 800 1600 3200 6400

Ti
m

e
(s

ec
on

ds
)

#Partitions

General PageRank

Relaxed PageRank

IEEE CLUSTER, Heraklion, Greece 23rd September 2010

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 24 / 1

Beyond Data-Parallelism

Amorphous data-parallelism

Most of the data can be operated on in parallel.
Some of them conflict, which can only be detected at runtime.

“The Tao of Parallelism”, Pingali et.al., PLDI’11
The Galois System

Online algorithms/ Pipelined workflows

MapReduce Online [Condie’10] is an approach needing havy
checkpointing.

Software Transactional Memory (STM)

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 25 / 1

TransMR: Transactional MapReduce

Goal: Exploit amorphous data-parallelism

Support data-sharing across concurrent computations to detect
and resolve conflicts at runtime

Solution:

Use distributed key-value stores as shared address space across
computations
Address inconsistencies arising due to the disparate
fault-tolerance mechanisms
Transactional execution of map and reduce functions

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 26 / 1

TransMR: System Architecture

Distributed key-value store provides a shared-memory
abstraction to the distributed execution-layer.

…

N1 N2 Nn

Distributed

Execution Layer

Distributed

Key-Value Store

…

GS

CU

LS

CU

LS
…

GS

CU

LS

CU

LS
…

GS

CU

LS

CU

LS

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 27 / 1

Semantics of the API

Data-centric function scope – Map/Reduce/Merge etc, – termed
as a Computation Unit (CU), is executed as a transaction.

Optimistic reads and write-buffering. Local Store (LS) forms the
write-buffer of a CU.

Put (K, V): Write to LS which is later atomically committed to
GS.
Get (K, V): Return from LS, if already present; otherwise, fetch
from GS and store in LS.
Other Op: Any thread local operation.

The output of a CU is always committed to the GS before being
visible to other CUs of the same or different type.

Eliminates the costly shuffle phase of MapReduce.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 28 / 1

Design Principles

Optimistic concurrency control over pessimistic locking

Locks are acquired at the end of the transaction. Write-buffer
and read-set is validated against those of concurrent Trx
assuring serializability.
Client is potentially executing on the slowest node in the
system; in this case, pessimistic locking hinders parallel
transaction execution.

Consistency (C) and Tolerance to Network Partitions (P) over
Availability (A) in CAP Theorem for Distributed transactions.

Application correctness mandates strict consistency of
execution. Relaxed consistency models are application-specific
optimizations.
Intermittent non-availability is not too costly for
batch-processing applications, where client is fault-prone in
itself.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 29 / 1

Evaluation

We show performance gains on two applications, which are
hitherto implemented sequentially without transactional support;
both exhibit Optimistic data-parallelism.

Boruka’s MST

Each iteration is coded as a Map function with input as a node.
Reduce is an identity function. Conflicting maps are serialized
while others are executed in parallel.
After n iterations of coalescing, we get the MST of an n node
graph.
A graph of 100 thousand nodes, with average degree of 50,
generated based on the forest-fire model.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 30 / 1

Boruvka’s MST

Speedup of 3.73 on 16 nodes, with less than 0.5 % re-executions
due to aborts.

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 4 8 16
 0

 50

 100

 150

 200

 250

T
im

e
 (

m
in

s
)

#
 A

b
o
rt

s

Computing Nodes

Execution Time
Number of Aborts

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 31 / 1

Maximum flow using Push-Relabel algorithm

Each Map function executes a Push or a Relabel operation on
the input node, depending on the constraints on its neighbors.

Push operation increases the flow to a neighboring node and
changes their “Excess”.

Relabel operation increases the height of the input node if it is
the lowest among its neighbors.

Conflicting Maps – operating on neighboring nodes – get
serialized due to their transactional nature.

Only sequential implementation possible without support for
runtime conflict detection.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 32 / 1

Maximum flow using Push-Relabel algorithm

Speedup of 4.5 is observed on 16 nodes with 4% re-executions
on a windown of 40 iterations.

 15

 20

 25

 30

 35

 40

 45

 50

 55

1 2 4 8 16
 0

 1000

 2000

 3000

 4000

 5000

 6000

T
im

e
 (

m
in

s
)

#
 A

b
o
rt

s

Computing Nodes

Execution Time
Number of Aborts

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 33 / 1

TransMR: Conclusions

TransMR programming model enables data-sharing in
data-centric programming models for enhanced applicability.

Similar to other data-centric programming models, the
programmer only specifies operation on the individual
data-element without concerning about its interaction with other
operations.

Prototype implementation shows that many important
applications can be expressed in this model while extracting
significant performance gains through increased parallelism.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 34 / 1

Distributed Transactions on Key-Value Stores

Transactions are costly in a large scale distributed settings

two-phase locking (concurrency control)
two-phase commit (atomicity)

Careful examination of the protocols and optimizations crucial to
performance of TransMR-like systems

These optimizations also useful for general purpose transactions
on databases using key-value store as the underlying storage

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 35 / 1

Lock management in distributed transactions

Lock management the major bottleneck affecting the latency of
distributed transactions.

Consider Strong Strict two phase locking (SS2PL) – waiting
case: The lock-acquiring stage is the only sequential stage. The
other stages can be parallelized to finish in a single round-trip.

Holds true even in optimistic-concurrency techniques where the
locks are acquired at the end.

Lock
Read /

Execute
Update

Unlock /

Commit / Abort

Locking StageStart

l1 l2 ln

Continue Trx
ExecutionIf all locks

acquired

Busy waitBusy wait Busy wait

Move to next if
lock acquired

Sequential locking on
ordered locks

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 36 / 1

Workload aware lock management

Contention based Lock-ordering: Order the locks so as to
decrease the total amount of waiting time.

For the waiting case, the lock with the least contention should
be acquired first. This increases pipelining while decreasing
lock-holding times.

Contention order is a runtime characteristic, and is updated
consistently. All clients should adhere to the same order to avoid
deadlocks.

l1 l2 l3 l4 l5 l6

Locks ordered based on increasing

or decreasing contention-order

Group 1 Group 2 Group 3

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 37 / 1

Constrained k-way graph partitioning

Graph partitioning algorithm to split the locking into k
non-overlapping partitions, minimizing the sum of weights on
cut-edges, while approximately balancing the total weight (sum
of node-weights) of individual partitions.

The result of the partitioning algorithm is the
load-balanced-partitioning of locks among k storage nodes.

k1

k4

k2

k6

k5

k3

8

2

4

6 8

9

7

Partition a Partition b

15

10

10
10

12

15

Co-occurence count
Occurrence count

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 38 / 1

Evaluation

A cluster of 20 machines was used for all evaluations. Each
machine had a Quad-core xeon processor with 8 GB of RAM.
HBase is the underlying key-value store.

The YCSB benchmark was extended with the atomic multi-put
operation. A client transaction involves an atomic
Read-Modify-Write operation on a set of keys.

The keys for the atomic operation are generated using a Zipfian
generator with variable zipfian parameter. Each transaction
updates 15 keys out of 50K keys.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 39 / 1

Two phase locking: waiting version

2 4 6 8 10 12 14 16 18 20
Number of clients

0

100

200

300

400

500

600

Th
ro

ug
hp

ut

z=0.7, order=inc
z=0.7, order=dec
z=0.8, order=inc
z=0.8, order=dec
z=0.9, order=inc
z=0.9, order=dec

Figure: Performance of Lock Partitioning

Ordering of keys in increasing-order of their contention
significantly better than the decreasing order.

The increasing-order reduced lock holding time for highest
contended locks reducing waiting time for other transactions.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 40 / 1

Two phase locking: waiting version

2 4 6 8 10 12 14 16 18 20
Number of clients

0

100

200

300

400

500

600

Th
ro

ug
hp

ut

z=0.7
z=0.8
z=0.9

Figure: Performance of Lock Partitioning

Partitioning is done using Metis and partitions are placed at
separate nodes. Lock-partitioning improves the throughput by
reducing the number of network-roundtrips needed for sequential
locking by the client.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 41 / 1

Optimistic concurrency control – no-waiting version

2 4 6 8 10 12 14 16 18 20
Number of clients

0

50

100

150

200

250

300

350

400

450

Th
ro

ug
hp

ut

z=0.7, order=inc
z=0.7, order=dec
z=0.8, order=inc
z=0.8, order=dec
z=0.9, order=inc
z=0.9, order=dec

Figure: Performance of Lock Ordering

Smaller improvement for OCC mainly due to the shorter
duration of locking.

At similar contention levels, the throughput of optimistic
concurrency control is significantly lower.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 42 / 1

Optimistic concurrency control – no-waiting version

2 4 6 8 10 12 14 16 18 20
Number of clients

0

50

100

150

200

250

300

350

400

450

Av
g

Lo
ck

s
Ac

qu
ire

d
Pe

r T
rx

z=0.7, order=inc
z=0.7, order=dec
z=0.8, order=inc
z=0.8, order=dec
z=0.9, order=inc
z=0.9, order=dec

Figure: Lock wastage due to restarts

Optimistic techniques not suitable at high contention levels as
the time spent in reading and local updating gets wasted due to
conflicts during commit.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 43 / 1

Lock Optimization: Conclusions

The waiting version of SS2PL with increasing-contention-order
and partitioning outperforms the other protocols significantly.

locks is an important step towards increasing performance.

Understanding the workload - even simple statistics on
contention - is enough to achieve significant gains (up to 200%).

Lock-partitioning through graph clustering and partitioning
techniques can be performed dynamically to achieve
performance gains.

Ananth Grama (Purdue University) Large-scale Graph Analysis in MapReduce 44 / 1

