Approximate Graph Operations on Parallel

Platforms

G. Kollias, M. Sathe, O. Schenk, A. Grama !

1F’urdue University, USA (G. Kollias, A. Grama), University of Basel, Switzerland (M. Sathe, O. Schenk)

Approximate Graph Operations on Parallel Platforms

Overview

@ Computing similarity of nodes in two graphs
o Essentially ranking pairs of nodes

Network similarity decomposition NSD

e Algorithm
e Sequential implementation, experiments and applications

Parallel NSD-based computation of node similarity scores
e Algorithm, parallel implementation, experiments
e The alignment graph

o Parallel NSD

e Algorithm, parallel implementation, auction matching

o Large scale experiments

e Strong and weak scaling results

Conclusions and future work

Approximate Graph Operations on Parallel Platforms

Graph similarity in figures

Protein-Protein Interaction (PPI)

networks for 2 species Wikipedia categories and Library of
Congress subject headings

How similar are any two
nodes of these networks? ?

figures from M. Bayati, M.Gerritsen,
D. Gleich, A. Saberi, and Y. Wang,
Algorithms for Large, Sparse Network
Alignment, ICDM 2009

Approximate Graph Operations on Parallel Platforms

An example of similarity of a graph with itself

(self-similarity)

_ o Allow matching a node to itself
@ Applying the similarity pipeline

presented here]
@ (i,j) square denotes a) i
matching of node / to node j. : '
Example graph : :

Approximate Graph Operations on Parallel Platforms

Rank-inspired definition of similarity

Node Ranking

A node is important if it is linked by other important nodes

Graph Similarity

Two nodes are similar if they are linked by other similar node pairs

‘ V.D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. Van Dooren.

A Measure of Similarity between Graph Vertices: Applications to Synonym
Extraction and Web Searching.

SIAM Rev., 46(4):647-666, 2004.

¥ R. Singh, J. Xu, and B. Berger.

Global alignment of multiple protein interaction networks with application
to functional orthology detection

Proceedings of the National Academy of Sciences, 105(35):12763, 2008.
Singh's et al approach, IsoRank, is our focus, has been typically applied to
undirected graphs

Approximate Graph Operations on Parallel Platforms

Notation

@ A, B the the adjacency matrices of input graphs Ga, Gg.

@ Ais AT normalized by columns, i.e. (A); = aji/ S, aji; similarly for B.

@ h = vec(H) a normalized vector where Hj; are independently known similarity
scores between node sets, i € Vg and j € Vj.

@ vec(-) operation for building a vector from a matrix (stacking its columns);
unvec(+) is the inverse operation.

@ «: percentage of network data contribution in the algorithm.

@ C=A®B=A®B

@ Computed matrix X contains similarity scores: Xj; entry denotes how “similar”
nodes i € Vg and j € V, are.

Kronecker product A ® B of two matrices:

aj1bin aribip --- arbin arpphip
a11b21 a11b22 a1 b1 a12b22
al’lB a12B .
a 1B ayoB .
AR B = b b
o a1bi1 a1bip
a1by1 a1bo2

Approximate Graph Operations on Parallel Platforms

IsoRank algorithm

IsoRank iteration

o x —alx+(1—a)h

until convergence.

Alternatively X <« aBXAT + (1 — a)H as the iteration kernel

@ Because AXB = unvec((BT @ A)x) (property of Kronecker products)
@ MATS3 (triple matrix product implementation of IsoRank idea)

o In IsoRank kernel x — aCx + (1 — a)h, set x(0) = h
e Expanding, after n steps
n—1
XN =(1- a)ZakC'kh—l—oz”&”h
k=0
@ Alternatively

XM = (1—a) Y)_g a*BKH(AT)k + a"B"H(AT)"
Similarity scores are sums of contributions from all k-hop
neighbors (similarity score aggregation)

Approximate Graph Operations on Parallel Platforms

An example of similarity score aggregation in IsoRank

@ Let Gs and Gg with nodes {a, b,c,d,e,f,g} and {1,2,3,4,5,6}

@ Suppose nodes (b, 1), (f,4) and (g,6) pairs are somewhat similar
(H information)

@ Sum the contributions of all 1-hop, 2-hop, 3-hop,... neighbors in the
two networks (along paths like c—b—1—-2, c—d—f—-4—-3-2,
c—a—e—g—6—5—4—2) with known or previously computed
similarity)

Approximate Graph Operations on Parallel Platforms

A look into BXAT term “mechanics”

. Top to bottom, left to right:
© © @ Graphs Gg, Ga

122 L. ° B similarity matrix X and AT
1/2 1 12172, . . .
.4J T - | | How to update similarity score
=L 1 — between nodes 2 of Gg and 1 in
‘_l Ga, i.e. Xo1 entry (green)?

@ Node 2 of Gg can pull score from its neighbors 1 and 3

@ It can do so in four different ways because these neighbors are
assumed connected with “virtual links” to every other of the four
nodes in the other network Ga, i.e. yT « By X

@ However two of these ways are relevant since node 1 of G4 can pull
score from its two neighbors, namely 2 and 3, i.e. Xy «— y Aa,, 1

Approximate Graph Operations on Parallel Platforms

Decomposing graphs: The NSD idea

In IsoRank, using H as the initial condition (X(®) = H), after n
steps we get X(") = (1 — a) Y 7_5 a¥BKH(AT)k + a"B"H(AT)"
o Let H=uv" (1 component, i.e. 1 outer vector product).

Two phases for computing X then:

@ u¥) = By and v(k) = /~4kv (preprocess/compute iterates)
Q@ XM = (1-a)7 L aku®) MOV ON O (construct
X)

This extends to the case H is approximated by s components (sum
of s outer vector products): H ~ > 7_; w;z.

NSD key points

@ Instead of triple matrix products we compute sums of outer
products of vectors

@ These vectors in turn are sparse matrix-vector iterates than
can be computed independently

Approximate Graph Operations on Parallel Platforms

NSD-based similarity matrix construction

1: {Input: A, B, {w;,z]i=1,...,s}, Remarks
« and n, Output: X = X(")}

2: compute A, B {phase 1}

3: for i=0to s do

@ Decomposition happens along the
set of paths of succesively larger

. (0) (0) length k, however with increasing
& ‘fN" ki ‘{)Vi’ “i d<_ zi “damping” (because of the
Z or (k) tg n(kfl) (1 — a)a* factor with « € [0,1])

: w;" «— Bw;
7. 2K A1) @ The computation does not involve
8 end’ for : either explicitly building the
0. zero X" {phase 2 start} product graph related C or
10: for k . Oton—1do computing triple matrix products
11 XM x| OO of the form BXAT at each step.
12: difor i P Only computing outer vector
13: ;r:n) o products at the end.

(1- Q)Xgn) i a,,W_(n)z_(n)T @ (Sparse) matrix-vector products

14: end for I for the two graphs can be
15: X() 27:1 Xi(n) computed quite independently

Approximate Graph Operations on Parallel Platforms

Block diagram of the decomposition approach

NSD algorithm Matching algorithm
—I> (?omputatmn of @
networks i >
vector iterates [c.on.str\.ictlon Df. ma.tchmg no§e T
— similarity matrix pairs extraction matches

(preprocessing)

t

elemental similarities
as component vectors

@ Input a network pair and its elemental similarities H as component vectors;
Preprocess/compute vector iterates

@ Construct similarity matrix X by summing outer products of vectors
© Produce a set of pairs (matches) of nodes from one network that are “most
similar” to nodes from the other: rows and columns of X as nodes of a weighted
bipartite graph, Xj; its weights.
e Matching algorithms used in experiments for this 3rd phase:
Primal Dual Matching (PDM), Greedy Matching (1/2
approximation, GM), Hungarian, auction.

In the sequel IsoRank refers to the implementation of the IsoRank idea followed by the application of Hungarian

and PDM algorithms to resulting X (as available in Singh'’s binary code).

Approximate Graph Operations on Parallel Platforms

Protein-Protein Interaction (PPI) networks (sequential)

Species pair NSD MAT3 PDM GM IsoRank

(secs) | (secs) (secs) (secs) (secs)

Species Nodes Edges celeg-dmela 3.15 64.20 152.12 | 7.29 783.48
celeg (worm) 2805 4572 celeg-hsapi 3.28 69.74 163.05 9.54 1209.28

dmela (fly) 7518 25830 celeg-scere 1.97 44.61 127.70 4.16 949.58

ecoli (bacterium) 1821 6849 dmela-ecoli 1.86 37.79 86.80 4.78 807.93
hpylo (bacterium) 706 1414 dmela-hsapi 8.61 211.19 590.16 28.10 7840.00
hsapi (human) 9633 36386 dmela-scere 4.79 131.22 182.91 12.97 4905.00
mmusc (mouse) 290 254 ecoli-hsapi 2.41 47.48 79.23 476 2029.56
scere (yeast) 5499 31898 ecoli-scere 149 | 3586 | 69.88 | 2.60 1264.24
hsapi-scere 6.09 152.02 181.17 15.56 6714.00

@ We computed the similarity matrices X for various possible pairs of species
using only PPI data (network data)

@ « = 0.80, uniform initial conditions (outer product of suitably normalized 1's for
each pair), 20 iterations, 1 component.

Finding
1-3 orders of magnitude speedup of NSD-based approaches compared to comparable
MAT3-based (with PDM, GM) and IsoRank ones (no parallelization yet).

Q G. Kollias, S. Mohammadi, and A. Grama.
Network Similarity Decomposition (NSD): A Fast and Scalable Approach to Network Alignment.
IEEE Transactions on Knowledge and Data Engineering, 2011

Approximate Graph Operations on Parallel Platforms

Parallel NSD-based

similarity matrix construction

Parallel NSD: Root process

Parallel NSD: Worker process (r, u)

(“,

k
Receive correspondmg w, ,(u) fragments,

compute A B Vi=1, ,k=0,...,n from the root process
.p7 | fori:ltosdo
for i = 1 to s do
W- — w;, Z(O) — zj zero XI ru
fork—Otondc()k) fork(_)Oton(—)ldo ()()
1 n ko (k
wi wi X — Xi,m WilrZiu
2K A k=1 end for -
end for ! x(n (- a)X‘") +amw™
Iyru 1yru Srohu
}and.for 5 o . en(d for ”
or i = .s,k=0,...,ndo s n
. () *) Xru® = Xia Xy
Partition w; in p fragments, Wil A »
(k) k) (k)
| I:artltlon z; in g fragments, Z:,l N N Zi‘q dmela-hsapi hsapi-scere
end for
t) ts;, t) tsj,
Send to every process (r, u) in the process grid p X q its num4cores Olt;lsl 2%’”{’(\)/’;‘ Oltleg4 2‘?"(’)’6\;’5’:
k
corresponding W(), z; u) fragments, 9 0.210 15.914 0.213 11.865
v,:LH_s,k:o,,,‘,n(,:l,_,,,,g, 16 0.219 9.851 0215 7.478
u=1,...,q) 25 0.202 7.072 0.195 5.283
36 0.311 6.080 0.209 4.493
49 0.193 5.809 0.240 4.233
64 0.207 4.915 0.253 3.576

@ Java implementation, MPJ for message passing, csparsej for sparse matvec's
@ 2 heterogeneous clusters (40 + 24 cores)

@ 1 component, 20 iters, @ = 0.8 (times in secs)

Approximate Graph Operations on Parallel Platforms

The alignment graph

Build the alignment graph Topological quality of computed matchings?

@ Nodes are pairs of matching nodes (b;/a;) ° Num:e(r of edgej HLthe)allgnment
from the original networks Gg, Gp grap conserved edges]

@ (bj/a;) is connected to (bp/aq) iff b, by e S;.Zen;f ::le ionEected subgraphs in the
and aj, aq are neighbors in Gg, Ga alighment grap

@ Each conserved edge implies matching the corresponding edges connecting the elements of the matching
pairs at its endpoints in the input networks.

@ These subgraphs are essentially matchings of substructures in the input networks (CCS, Common
Connected Subgraphs).

e B i el sk
L

}{’%@~wa)< ST e 0
S g5

P i Y Y

X =Y — r¥r=mrvrtve-
AR Rk

\T/ T YT e

T e T e T
B R I

CCS for the alignment graph based on H (sequence similarity) and X (MAT3

computed) for a PPl network pair (dmela-scere)

Approximate Graph Operations on Parallel Platforms

St L
NN
— X XTI
Y1 ——

CCS and H approximation

a2 Y
KA XX
XX
R

o 6 3 Nl kR
sl e g e S
R A g
XYAXNXTr=—T XX
KXXK==T TV =X
AR ESRRRIRRIRIS
T T
T e T T
S S St G o SRR

RV R S b
¥ ond A e
KX WAL XT X
N XX X=Xy XXy
XIXTXXYX——X
e S e
TR et S e
e e T e LT
B it S (R

@ NSD on the dominant s = 5 and s = 10 components of H as computed by
NMF (upper row) and s = 500 and s = 1000 components as computed by SVD
(lower row). 20 iters, o = 0.8 (dmela-scere)

@ More components offer more opportunities for CCS development and thus more
conserved edges; smaller CCS are favored over very large ones

Approximate Graph Operations on Parallel Platforms

Parallel NSD: Matching Ga, Gg network nodes in parallel

Parallel NSD similarity matrix construction and parallel
auction combined

{0 = root process, no labels = all processes r}

[ary

2: [load adjacency matrices A, B and component vectors w;, z;

3: [compute A, B;

4: broadcast ,Z\ w;, zi;

5: distribute B by row blocks {each process r gets its B, part};

6: {for all components i and steps k (z,-(o) =z, W,.(O) =w;)}

7: compute vector iterates z.(k) — Az(kfl)

8: compute vector iterates W(k) — B, W(-1 ,gather W (// matvec);
9: compute row-wise the Iocal 5|m||ar|ty matrix X, (embarrassmgly //)
10: {NSD-based, sparsify if needed (sort row entries, keep largest ones)};
11: compute weighted matchings by // auction

12: {matching permutation lands on root};

13: [compute number of conserved edges;

Approximate Graph Operations on Parallel Platforms

Auction algorithm and experimental setup

Auction algorithm (implemented in parallel)

1: M = 0; {current matching}

2: | ={i:1<i< m}, {set of unassigned
persons}

3: pj—0forj=1,...,n; {prices for the
objects}

4: while | # 0 do

5: {find object j with best and second best
profit};

6 Ji — argmax;{x; — pj};

v maxi{xg, — pjks

8 wi — maxjy {xj — pj; }i

9: {update price with the bid v; — w; + €}

10: pj; < pj; tVvi—wit+¢

11: {assign person to the desired object};

122 Me— MU{ij}, | — I\ {i};

13: {free previous owner k if available}

14: M — M\ A{k,ji}, | —1U{k};

15: end while

@ Based on the metaphor of buyers
and objects

@ Favors 1D distribution of row block
in the parallel setting

@ Actually a special adaptive parallel
auction variant is implemented
providing faster convergence

@ constant nonzero entries/X row:
strong scaling for auction

@ constant nonzero entries/core: weak
scaling for auction

@ strong scaling for similarity score
computations

@ Up to 3,072 cores (CRAY XES,

consists of 2-hexacore processors)

@ Hybrid programming model

(C/MPI/OpenMP)

Approximate Graph Operations on Parallel Platforms

Summary of base timing results (1/2)

[Pair [Graph [#£Vertices| #£Edges[Total time (s)[#Cores]
] g | S B s |
etfpfinan | 0S| qarsy smers T |
R TR
napB | o edoon1 | 77300, sos.4c8 4T | 8
woads | guoie | 1146 lor.0s0 2 | 3
R N R
53 rcezb3 | 200,200 so0.a00 153 | 3¢
e | eI e Ty
stonford | o Sotord | 2610035, 312.407 5 | 78

Approximate Graph Operations on Parallel Platforms

Summary of base timing results (2/2)

[Pair | Graph [#Vertices] #Edges[Total time (s)[#Cores|
amazon | TS000r | 40304 37,308 5% | 3072
e | s oo
o] S | I MDY on
coPapers | oo eeeCiteseer | 434,102)16,036.720 >107 | 3072
papersSelf| o e Citeseer | 434.102]16,036,720 1630 | 3,072
dopedil | 5.1 500k 500,000010. 546,881 1732 | 128
on | e BEEEE
v | R |

Approximate Graph Operations on Parallel Platforms

Summary of speed improvements (1/2)

@ Absolute values for the time ratio nominator part correspond to
base timings

@ x-axis is the number of cores

@ Speed improvements for both the two basic phases of the parallel
similarity pipeline (similarity scores matrix construction followed by
matching by auction) and the total procedure are depicted

Size 10k Size 100k

mt-total @ t-similarityMatrix = t-parallel Auction mt-total mt-similarityMatrix = t-parallel Auction

=
_

Speed Improvement (T core / Tparaia)

i
=
£
=)
E
g
g
g
2
&
k]
o
g
g
2
&

2 4 8 16 32 64
Protein-Protein Interaction net /pfinan snapA snapB

96 192 384 T68 1536 96 192 384 768 1536 96 192 384 768 1536

Approximate Graph Operations on Parallel Platforms

Summary of speed improvements (2/2)

Size 200k Size 300k
mt-total mt-similarityMatrix ® t-parallel Auction mt-total mt-similarityMatrix ® t-parallel Auction
—_ 8 —_ 8
23 =
< £
£4 g
g)
g £
S 2 § 2
£ £
£ H
g g
3 Z
3 =
: T
i i
w 768 1536 3072 768 1536 3072 768 1536 3072 2 1536 3072 1536 3072 1536 3072
usroads dnvs b3 coAuthors notreDame stanford
[Pair lamazon|delaunay|coPapers|papersSelf|authorsSelf|

t_similarityMatrix

481.73

935.04

2,156.20

1,620.30

222.56

t_parallelAuction

76.18

2.61

10.37

9.47

3.01

t_total

557.91

937.65

2,166.57

1,629.77

22557

Approximate Graph Operations on Parallel Platforms

Quality measurement indices

e Conserved Edges (CE)

@ Rate: Ratio of conserved edges over the minimum of the
edges in the two networks

| Pair [#CE [Rate |

| protein-protein | 745 [0.03] l Pair ‘ #CE ‘ Rate ‘

net/pfinan 74,778 | 0.22 amazon 46,278 | 0.01

snapA 14,296 | 0.02 delaunay 112,152 | 0.14

snapB 77,617 | 0.09 authorsSelf 814,134 | 1.00

usroads 2,666 | 0.02 coPapers 3,520, 545 0.23

dnvs 1,750,799 | 0.29 papersSelf | 16,036,720 1.00

b3 29,217 | 0.15 dbpedial 1,100 | 0.004

coAuthors 85,437 | 0.11 eu/in 80,884 | 0.04

notreDame 113,992 | 0.12 dbpedia2 2,082 | 0.007

stanford 107,968 | 0.05 euSelf 219,759 | 0.26

Approximate Graph Operations on Parallel Platforms

Strong scaling experiments with (the small) PPl networks

dmela and scere

[Cores [1] 2 | 4] 8] 16 [32 [64 |
t_similarityMatrix 11.73 6.10 2.94 1.46 0.73 0.36 0.18
t_parallelAuction 62.68 34.02 17.61 9.49 5.07 3.47 2.80
t_totalSimilarityProcess 74.52 40.23 20.65 11.05 5.90 3.94 3.10

[Conserved edges [625 | 691 | 688 [737 | 745 [668 658

@ roughly 3 secs for getting
Strong Scaling: Protein-Protein Interaction . .
et oty i matching pairs (a = 0.8, 20

C — iterations, 1 component, 64
i cores); cf. over an hour (4905
E secs) for the inherently
P = sequential IsoRank

o ; : . . . - @ nice scaling properties for the

Number of Compute Cores

critical parallel auction phase

Approximate Graph Operations on Parallel Platforms

Strong scaling experiments

[Cores [128 | 256 | 512 | 1024 |
t_generatelterates 5.07 5.04 5.33 6.13
t-generateRow 16,450.88 8,152.49 4,030.19 1,224.77
t_sort 1,577.80 788.39 394.80 197.03
t_similarityMatrix 18,045.54 8,949.46 4,429.16 1,423.65
t_parallelAuction 55.16 28.82 16.32 11.90
t_totalSimilarityProcess 18,121.54 8,998.95 4,466.56 1,457.53

[Conserved edges [80,884 [80,884 [80,884 | 80,884 |

dbpedia-3.0_30

k and dbpedia-3.5.1_500k

[Cores [128 | 256 | 512 | 1024 |
t-generatelterates 11.00 11.19 11.53 12.36
t_generateRow 15,703.82 7,475.45 3,254.46 1,228.59
tsort 1,606.47 802.44 400.97 200.69
t_similarityMatrix 17,327.27 8,286.56 3,659.58 1,431.17
t_parallelAuction 31.97 19.78 14.37 14.93
t_totalSimilarityProcess 17,382.15 8,329.41 3,697.45 1,470.62

[Conserved edges [1,010/1,100 | 1,018/1,097 [1,014/1,088 | 1,014/1,088 |

@ Timings for various phases, number of conserved edges
e a = 0.8, 20 iterations, 10 random components for all large

scale experiments

Approximate Graph Operations on Parallel Platforms

Weak scaling experiments (for auction)

Self-similarity for eu-2005_300k

Strong + Weak Scaling: Self-Similarity Web Graph
Strong + Weak Scaling: Large Wikipedia Graphs ——t_total —B—t_auction
——t_total —=t_auction s
12 5 4 >
5 T 35
£ £
3 / i ——
5 5 2
§ & H
H H
: _— £
£ s 1
E g - e
H é & os
g2
& o
N 256 suz 1024 2048
256 512 1024 2048 Number of Compute Cores.
Number of Compute Cores

@ The expected almost ideal scaling properties of parallel matrix
construction phase compensates for deviations from optimality
of the auction phase in the total time speedup.

Approximate Graph Operations on Parallel Platforms

Conclusions

@ Graph similarity computations can be decomposed with
respect to

o the identical link patterns occuring in the graphs
e the rank-one terms building up the initial condition
o Interpretation insight

@ Graph similarity computations can be uncoupled

e Each graph is processed independently, sparse matrix-vector
kernel

o Merging through outer products only at the end

e Speedup

Highlights of NSD

@ Massive performance gains from Parallel NSD-based similarity
matrix construction, no scale up limit (embarrassingly //).

@ Parallel NSD is an integrated, performant approach for
processing very large networks

Approximate Graph Operations on Parallel Platforms

@ Evaluate the effect of more components on the quality of the
similarity scores for various application domains

@ Develop and implement heuristics for parallel matching,
suitable for different application domains

Weighted matching algorithm for matrices represented as sum of
outers products of vectors?

Approximate Graph Operations on Parallel Platforms

