
Approximate Graph Operations on Parallel
Platforms

G. Kollias, M. Sathe, O. Schenk, A. Grama 1

1
Purdue University, USA (G. Kollias, A. Grama), University of Basel, Switzerland (M. Sathe, O. Schenk)

Approximate Graph Operations on Parallel Platforms

Overview

Computing similarity of nodes in two graphs

Essentially ranking pairs of nodes

Network similarity decomposition NSD

Algorithm
Sequential implementation, experiments and applications

Parallel NSD-based computation of node similarity scores

Algorithm, parallel implementation, experiments
The alignment graph

Parallel NSD

Algorithm, parallel implementation, auction matching
Large scale experiments
Strong and weak scaling results

Conclusions and future work

Approximate Graph Operations on Parallel Platforms

Graph similarity in figures

Protein-Protein Interaction (PPI)
networks for 2 species Wikipedia categories and Library of

Congress subject headings

How similar are any two
nodes of these networks? a

afigures from M. Bayati, M.Gerritsen,
D. Gleich, A. Saberi, and Y. Wang,
Algorithms for Large, Sparse Network
Alignment, ICDM 2009

Approximate Graph Operations on Parallel Platforms

An example of similarity of a graph with itself
(self-similarity)

Applying the similarity pipeline
presented here

(i , j) square denotes a
matching of node i to node j .

Example graph

1

2

3

4

5

6

7

8

9

10

Allow matching a node to itself

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Do not allow matching a node to
itself

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Approximate Graph Operations on Parallel Platforms

Rank-inspired definition of similarity

Node Ranking

A node is important if it is linked by other important nodes

Graph Similarity

Two nodes are similar if they are linked by other similar node pairs

V.D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. Van Dooren.

A Measure of Similarity between Graph Vertices: Applications to Synonym
Extraction and Web Searching.

SIAM Rev., 46(4):647–666, 2004.

R. Singh, J. Xu, and B. Berger.

Global alignment of multiple protein interaction networks with application
to functional orthology detection

Proceedings of the National Academy of Sciences, 105(35):12763, 2008.

Singh’s et al approach, IsoRank, is our focus, has been typically applied to

undirected graphs

Approximate Graph Operations on Parallel Platforms

Notation

A, B the the adjacency matrices of input graphs GA, GB .
Ã is AT normalized by columns, i.e. (Ã)ij = aji/

PnA
i=1 aji ; similarly for B̃.

h = vec(H) a normalized vector where Hij are independently known similarity
scores between node sets, i ∈ VB and j ∈ VA.
vec(·) operation for building a vector from a matrix (stacking its columns);
unvec(·) is the inverse operation.
α: percentage of network data contribution in the algorithm.
C̃ = ˜A⊗ B = Ã⊗ B̃
Computed matrix X contains similarity scores: Xij entry denotes how “similar”
nodes i ∈ VB and j ∈ VA are.

Reminder

Kronecker product A⊗ B of two matrices:

A⊗ B =

2664
a1,1B a1,2B · · ·
a2,1B a2,2B

.

.

.
. . .

3775 =

266666666664

a1,1b1,1 a1,1b1,2 · · · a1,2b1,1 a1,2b1,2 · · ·
a1,1b2,1 a1,1b2,2 a1,2b2,1 a1,2b2,2

.

.

.
. . .

a2,1b1,1 a2,1b1,2
a2,1b2,1 a2,1b2,2

.

.

.

377777777775
.

Approximate Graph Operations on Parallel Platforms

IsoRank algorithm

IsoRank iteration

x ← αC̃ x + (1− α)h

until convergence.

Alternatively X ← αB̃X ÃT + (1− α)H as the iteration kernel
Because AXB = unvec((BT ⊗ A)x) (property of Kronecker products)

MAT3 (triple matrix product implementation of IsoRank idea)

In IsoRank kernel x ← αC̃ x + (1− α)h, set x (0) = h

Expanding, after n steps

x (n) = (1− α)
n−1∑
k=0

αk C̃ kh + αnC̃nh

Alternatively
X (n) = (1− α)

∑n−1
k=0 α

k B̃kH(ÃT)k + αnB̃nH(ÃT)n

Similarity scores are sums of contributions from all k-hop
neighbors (similarity score aggregation)

Approximate Graph Operations on Parallel Platforms

An example of similarity score aggregation in IsoRank

Let GA and GB with nodes {a, b, c , d , e, f , g} and {1, 2, 3, 4, 5, 6}
Suppose nodes (b, 1), (f , 4) and (g , 6) pairs are somewhat similar
(H information)

Sum the contributions of all 1-hop, 2-hop, 3-hop,... neighbors in the
two networks (along paths like c − b− 1− 2, c − d − f − 4− 3− 2,
c − a− e − g − 6− 5− 4− 2) with known or previously computed
similarity)

Approximate Graph Operations on Parallel Platforms

A look into B̃X ÃT term “mechanics”

Top to bottom, left to right:

Graphs GB , GA

B̃, similarity matrix X and ÃT

How to update similarity score
between nodes 2 of GB and 1 in
GA, i.e. X21 entry (green)?

Node 2 of GB can pull score from its neighbors 1 and 3

It can do so in four different ways because these neighbors are
assumed connected with “virtual links” to every other of the four
nodes in the other network GA, i.e. yT ← B̃2,allX

However two of these ways are relevant since node 1 of GA can pull
score from its two neighbors, namely 2 and 3, i.e. X21 ← yT ÃT

all,1

Approximate Graph Operations on Parallel Platforms

Decomposing graphs: The NSD idea

In IsoRank, using H as the initial condition (X (0) = H), after n
steps we get X (n) = (1− α)

∑n−1
k=0 α

k B̃kH(ÃT)k + αnB̃nH(ÃT)n

Let H = uvT (1 component, i.e. 1 outer vector product).
Two phases for computing X then:

1 u(k) = B̃ku and v (k) = Ãkv (preprocess/compute iterates)

2 X (n) = (1− α)
∑n−1

k=0 α
ku(k)v (k)T + αnu(n)v (n)T (construct

X)

This extends to the case H is approximated by s components (sum
of s outer vector products): H ∼

∑s
i=1 wiz

T
i .

NSD key points

Instead of triple matrix products we compute sums of outer
products of vectors

These vectors in turn are sparse matrix-vector iterates than
can be computed independently

Approximate Graph Operations on Parallel Platforms

NSD-based similarity matrix construction

1: {Input: A, B, {wi , zi |i = 1, . . . , s},
α and n, Output: X = X (n)}

2: compute Ã, B̃ {phase 1}
3: for i = 0 to s do
4: w

(0)
i ← wi , z

(0)
i ← zi

5: for k = 0 to n do
6: w

(k)
i ← B̃w

(k−1)
i

7: z
(k)
i ← Ãz

(k−1)
i

8: end for
9: zero X

(n)
i {phase 2 start}

10: for k = 0 to n − 1 do

11: X
(n)
i ← X

(n)
i + αkw

(k)
i z

(k)
i

T

12: end for
13: X

(n)
i ←

(1− α)X
(n)
i + αnw

(n)
i z

(n)
i

T

14: end for
15: X (n) ←

∑s
i=1 X

(n)
i

Remarks

Decomposition happens along the
set of paths of succesively larger
length k , however with increasing
“damping” (because of the
(1− α)αk factor with α ∈ [0, 1])

The computation does not involve
either explicitly building the
product graph related C̃ or
computing triple matrix products
of the form B̃X ÃT at each step.
Only computing outer vector
products at the end.

(Sparse) matrix-vector products
for the two graphs can be
computed quite independently

Approximate Graph Operations on Parallel Platforms

Block diagram of the decomposition approach

1 Input a network pair and its elemental similarities H as component vectors;
Preprocess/compute vector iterates

2 Construct similarity matrix X by summing outer products of vectors

3 Produce a set of pairs (matches) of nodes from one network that are “most

similar” to nodes from the other: rows and columns of X as nodes of a weighted

bipartite graph, Xij its weights.

Matching algorithms used in experiments for this 3rd phase:
Primal Dual Matching (PDM), Greedy Matching (1/2
approximation, GM), Hungarian, auction.

In the sequel IsoRank refers to the implementation of the IsoRank idea followed by the application of Hungarian

and PDM algorithms to resulting X (as available in Singh’s binary code).
Approximate Graph Operations on Parallel Platforms

Protein-Protein Interaction (PPI) networks (sequential)

Species Nodes Edges
celeg (worm) 2805 4572
dmela (fly) 7518 25830
ecoli (bacterium) 1821 6849
hpylo (bacterium) 706 1414
hsapi (human) 9633 36386
mmusc (mouse) 290 254
scere (yeast) 5499 31898

Species pair NSD
(secs)

MAT3
(secs)

PDM
(secs)

GM
(secs)

IsoRank
(secs)

celeg-dmela 3.15 64.20 152.12 7.29 783.48
celeg-hsapi 3.28 69.74 163.05 9.54 1209.28
celeg-scere 1.97 44.61 127.70 4.16 949.58
dmela-ecoli 1.86 37.79 86.80 4.78 807.93
dmela-hsapi 8.61 211.19 590.16 28.10 7840.00
dmela-scere 4.79 131.22 182.91 12.97 4905.00
ecoli-hsapi 2.41 47.48 79.23 4.76 2029.56
ecoli-scere 1.49 35.86 69.88 2.60 1264.24
hsapi-scere 6.09 152.02 181.17 15.56 6714.00

We computed the similarity matrices X for various possible pairs of species
using only PPI data (network data)

α = 0.80, uniform initial conditions (outer product of suitably normalized 1’s for
each pair), 20 iterations, 1 component.

Finding

1-3 orders of magnitude speedup of NSD-based approaches compared to comparable
MAT3-based (with PDM, GM) and IsoRank ones (no parallelization yet).

G. Kollias, S. Mohammadi, and A. Grama.
Network Similarity Decomposition (NSD): A Fast and Scalable Approach to Network Alignment.
IEEE Transactions on Knowledge and Data Engineering, 2011.

Approximate Graph Operations on Parallel Platforms

Parallel NSD-based similarity matrix construction

Parallel NSD: Root process

compute Ã, B̃
for i = 1 to s do

w
(0)
i ← wi , z

(0)
i ← zi

for k = 0 to n do

w
(k)
i ← B̃w

(k−1)
i

z
(k)
i ← Ãz

(k−1)
i

end for
end for
for i = 1, . . . s, k = 0, . . . , n do

Partition w
(k)
i in p fragments, w

(k)
i,1 , . . . ,w

(k)
i,p

Partition z
(k)
i in q fragments, z

(k)
i,1 , . . . , z

(k)
i,q

end for
Send to every process (r, u) in the process grid p × q its

corresponding w
(k)
i,r , z

(k)
i,u fragments,

∀i = 1, . . . s, k = 0, . . . , n (r = 1, . . . , p,
u = 1, . . . , q)

Parallel NSD: Worker process (r, u)

Receive corresponding w
(k)
i,r , z

(k)
i,u fragments,

∀i = 1, . . . s, k = 0, . . . , n from the root process
for i = 1 to s do

zero X
(n)
i,ru

for k = 0 to n − 1 do

X
(n)
i,ru ← X

(n)
i,ru + αkw

(k)
i,r z

(k)
i,u

T

end for

X
(n)
i,ru ← (1− α)X

(n)
i,ru + αnw

(n)
i,r z

(n)
i,u

T

end for

X
(n)
ru ←

Ps
i=1 X

(n)
i,ru

dmela-hsapi hsapi-scere
num cores tIters tSimMat tIters tSimMat

4 0.211 28.103 0.194 21.062
9 0.210 15.914 0.213 11.865

16 0.219 9.851 0.215 7.478
25 0.202 7.072 0.195 5.283
36 0.311 6.080 0.209 4.493
49 0.193 5.809 0.240 4.233
64 0.207 4.915 0.253 3.576

Java implementation, MPJ for message passing, csparsej for sparse matvec’s

2 heterogeneous clusters (40 + 24 cores)

1 component, 20 iters, α = 0.8 (times in secs)

Approximate Graph Operations on Parallel Platforms

The alignment graph

Build the alignment graph

Nodes are pairs of matching nodes (bi/aj)
from the original networks GB , GA

(bi/aj) is connected to (bp/aq) iff bi , bp

and aj , aq are neighbors in GB , GA

Topological quality of computed matchings?

Number of edges in the alignment
graph (conserved edges)

Size of the connected subgraphs in the
alignment graph

Each conserved edge implies matching the corresponding edges connecting the elements of the matching
pairs at its endpoints in the input networks.
These subgraphs are essentially matchings of substructures in the input networks (CCS, Common
Connected Subgraphs).

CCS for the alignment graph based on H (sequence similarity) and X (MAT3

computed) for a PPI network pair (dmela-scere)

Approximate Graph Operations on Parallel Platforms

CCS and H approximation

NSD on the dominant s = 5 and s = 10 components of H as computed by
NMF (upper row) and s = 500 and s = 1000 components as computed by SVD
(lower row). 20 iters, α = 0.8 (dmela-scere)

More components offer more opportunities for CCS development and thus more
conserved edges; smaller CCS are favored over very large ones

Approximate Graph Operations on Parallel Platforms

Parallel NSD: Matching GA, GB network nodes in parallel

Parallel NSD similarity matrix construction and parallel
auction combined

1: {� = root process, no labels = all processes r}
2: � load adjacency matrices A, B and component vectors wi , zi ;
3: � compute Ã, B̃;
4: broadcast Ã, wi , zi ;
5: distribute B̃ by row blocks {each process r gets its B̃r part};
6: {for all components i and steps k (z

(0)
i = zi , w

(0)
i = wi)}

7: compute vector iterates z
(k)
i ← Ãz

(k−1)
i

8: compute vector iterates w
(k)
i,r ← B̃rw

(k−1)
i ,gather w

(k)
i (// matvec);

9: compute row-wise the local similarity matrix Xr (embarrassingly //)
10: {NSD-based, sparsify if needed (sort row entries, keep largest ones)};
11: compute weighted matchings by // auction
12: {matching permutation lands on root};
13: � compute number of conserved edges;

Approximate Graph Operations on Parallel Platforms

Auction algorithm and experimental setup

Auction algorithm (implemented in parallel)

1: M = ∅; {current matching}
2: I = {i : 1 ≤ i ≤ m}; {set of unassigned

persons}
3: pj ← 0 for j = 1, . . . , n; {prices for the

objects}
4: while I 6= ∅ do
5: {find object j with best and second best

profit};
6: ji ← arg maxj{xij − pj};
7: vi ← maxj{xiji − pj i};
8: wi ← maxj 6=ji {xiji − pj i};
9: {update price with the bid vi − wi + ε}

10: pj i ← pj i + vi − wi + ε;
11: {assign person to the desired object};
12: M ← M ∪ {i , ji}, I ← I \ {i};
13: {free previous owner k if available}
14: M ← M \ {k, ji}, I ← I ∪ {k};
15: end while

Based on the metaphor of buyers
and objects

Favors 1D distribution of row block
in the parallel setting

Actually a special adaptive parallel
auction variant is implemented
providing faster convergence

Setup

constant nonzero entries/X row:
strong scaling for auction

constant nonzero entries/core: weak
scaling for auction

strong scaling for similarity score
computations

Up to 3, 072 cores (CRAY XE6,
consists of 2-hexacore processors)

Hybrid programming model
(C/MPI/OpenMP)

Approximate Graph Operations on Parallel Platforms

Summary of base timing results (1/2)

Pair Graph #Vertices #Edges Total time (s) #Cores

protein-protein
yeast 5, 499 31, 898

75 1
fruitfly 7, 518 25, 830

net/pfinan
net4-1 88, 343 1, 265, 035

796 48
pfinan512 74, 752 335, 872

snapA
soc-slashdot090221 82, 144 549, 202

2, 688 48
soc-slashdot090216 81, 871 545, 671

snapB
soc-slashdot0902 82, 168 948, 464

1, 497 48
soc-slashdot0811 77, 360 905, 468

usroads
usroads 129, 164 165, 435

281 384
usroads-48 126, 146 161, 950

dnvs
halfb 224, 617 6, 306, 219

880 384
fullb 199, 187 5, 953, 632

b3
m133-b3 200, 200 800, 800

1, 593 384
shar te2-b3 200, 200 800, 800

coAuthors
coAuthorsDBLP 299, 067 977, 676

659 768
coAuthorsCiteseer 227, 320 814, 134

notreDame
NotreDame www 325, 729 929, 849

764 768
web-NotreDame 325, 729 1, 497, 134

stanford
Stanford 281, 903 2, 312, 497

615 768
web-Stanford 281, 903 2, 312, 497

Approximate Graph Operations on Parallel Platforms

Summary of base timing results (2/2)

Pair Graph #Vertices #Edges Total time (s) #Cores

amazon
amazon0505 410, 236 3, 356, 824

558 3, 072
amazon0601 403, 394 3, 387, 388

delaunay
delaunay n19 524, 288 1, 572, 823

938 3, 072
delaunay n18 262, 144 786, 396

authorsSelf
coAuthorsCiteseer 227, 320 814, 134

226 3, 072
coAuthorsCiteseer 227, 320 814, 134

coPapers
coPapersDBLP 540, 486 15, 245, 729

2, 167 3, 072
coPapersCiteseer 434, 102 16, 036, 720

papersSelf
coPapersCiteseer 434, 102 16, 036, 720

1, 630 3, 072
coPapersCiteseer 434, 102 16, 036, 720

dbpedia1
dbpedia-3.0 300k 300, 000 1, 320, 138

17, 382 128
dbpedia-3.5.1 500k 500, 000 10, 546, 881

eu/in
eu-2005 300k 300, 000 10, 835, 193

18, 122 128
in-2004 500k 500, 000 8, 506, 508

dbpedia2
dbpedia-3.0 500k 500, 000 2, 680, 807

16, 838 256
dbpedia-3.5.1 1500k 1, 500, 000 26, 794, 451

euSelf
eu-2005 862, 664 19, 235, 140

10, 939 256
eu-2005 862, 664 19, 235, 140

Approximate Graph Operations on Parallel Platforms

Summary of speed improvements (1/2)

Absolute values for the time ratio nominator part correspond to
base timings

x-axis is the number of cores

Speed improvements for both the two basic phases of the parallel
similarity pipeline (similarity scores matrix construction followed by
matching by auction) and the total procedure are depicted

1

2

4

8

16

32

64

2 4 8 16 32 64

S
p
e
e
d
 I

m
p
ro

v
e
m

e
n
t

(T
1
 c

o
re

 /
 T

p
a
ra

ll
e
l)

Protein-Protein Interaction

Size 10k

t-total t-similarityMatrix t-parallelAuction

1

2

4

8

16

32

96 192 384 768 1536 96 192 384 768 1536 96 192 384 768 1536 S
p
e
e
d
 I

m
p
ro

v
e
m

e
n
t

(T
4
8
 c

o
re

s
/
 T

p
a
ra

ll
e
l)

snapA

Size 100k

t-total t-similarityMatrix t-parallelAuction

net/pfinan snapB

Approximate Graph Operations on Parallel Platforms

Summary of speed improvements (2/2)

1

2

4

8

768 1536 3072 768 1536 3072 768 1536 3072 S
p
e
e
d
 I

m
p
ro

v
e
m

e
n
t

(T
3
8
4
 c

o
re

s
/
 T

p
a
ra

ll
e
l)

dnvs

Size 200k

t-total t-similarityMatrix t-parallelAuction

usroads b3

1

2

4

8

1536 3072 1536 3072 1536 3072 S
p
e
e
d
 I

m
p
ro

v
e
m

e
n
t

(T
7
6
8
 c

o
re

s
/
 T

p
a
ra

ll
e
l)

notreDame

Size 300k

t-total t-similarityMatrix t-parallelAuction

coAuthors stanford

Pair amazon delaunay coPapers papersSelf authorsSelf

t similarityMatrix 481.73 935.04 2, 156.20 1, 620.30 222.56

t parallelAuction 76.18 2.61 10.37 9.47 3.01

t total 557.91 937.65 2, 166.57 1, 629.77 225.57

Approximate Graph Operations on Parallel Platforms

Quality measurement indices

Conserved Edges (CE)

Rate: Ratio of conserved edges over the minimum of the
edges in the two networks

Pair #CE Rate

protein-protein 745 0.03

net/pfinan 74, 778 0.22

snapA 14, 296 0.02

snapB 77, 617 0.09

usroads 2, 666 0.02

dnvs 1, 750, 799 0.29

b3 29, 217 0.15

coAuthors 85, 437 0.11

notreDame 113, 992 0.12

stanford 107, 968 0.05

Pair #CE Rate

amazon 46, 278 0.01

delaunay 112, 152 0.14

authorsSelf 814, 134 1.00

coPapers 3, 520, 545 0.23

papersSelf 16, 036, 720 1.00

dbpedia1 1, 100 0.004

eu/in 80, 884 0.04

dbpedia2 2, 082 0.007

euSelf 219, 759 0.26

Approximate Graph Operations on Parallel Platforms

Strong scaling experiments with (the small) PPI networks

dmela and scere
Cores 1 2 4 8 16 32 64

t similarityMatrix 11.73 6.10 2.94 1.46 0.73 0.36 0.18
t parallelAuction 62.68 34.02 17.61 9.49 5.07 3.47 2.80
t totalSimilarityProcess 74.52 40.23 20.65 11.05 5.90 3.94 3.10

Conserved edges 625 691 688 737 745 668 658

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64

Sp
p

e
d

 Im
p

ro
ve

m
e

n
t

(T
se

q
/

Tp
ar

)

Number of Compute Cores

Strong Scaling: Protein-Protein Interaction

t_total t_similarity t_auction

roughly 3 secs for getting
matching pairs (a = 0.8, 20
iterations, 1 component, 64
cores); cf. over an hour (4905
secs) for the inherently
sequential IsoRank

nice scaling properties for the
critical parallel auction phase

Approximate Graph Operations on Parallel Platforms

Strong scaling experiments

eu-2005 300k and in-2004 500k
Cores 128 256 512 1024

t generateIterates 5.07 5.04 5.33 6.13
t generateRow 16,450.88 8,152.49 4,030.19 1,224.77
t sort 1,577.80 788.39 394.80 197.03
t similarityMatrix 18,045.54 8,949.46 4,429.16 1,423.65
t parallelAuction 55.16 28.82 16.32 11.90
t totalSimilarityProcess 18,121.54 8,998.95 4,466.56 1,457.53

Conserved edges 80,884 80,884 80,884 80,884

dbpedia-3.0 300k and dbpedia-3.5.1 500k

Cores 128 256 512 1024

t generateIterates 11.00 11.19 11.53 12.36
t generateRow 15,703.82 7,475.45 3,254.46 1,228.59
t sort 1,606.47 802.44 400.97 200.69
t similarityMatrix 17,327.27 8,286.56 3,659.58 1,431.17
t parallelAuction 31.97 19.78 14.37 14.93
t totalSimilarityProcess 17,382.15 8,329.41 3,697.45 1,470.62

Conserved edges 1,010/1,100 1,018/1,097 1,014/1,088 1,014/1,088

Timings for various phases, number of conserved edges
a = 0.8, 20 iterations, 10 random components for all large
scale experiments

Approximate Graph Operations on Parallel Platforms

Weak scaling experiments (for auction)

dbpedia-3.0 500k,
dbpedia-3.5.1 1500k

0

2

4

6

8

10

12

256 512 1024 2048

Sp
ee

d
 Im

p
ro

ve
m

en
t

T
2

5
6

 p
ro

c
/

Tp
ar

Number of Compute Cores

Strong + Weak Scaling: Large Wikipedia Graphs

t_total t_auction

Self-similarity for eu-2005 300k

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

256 512 1024 2048

Sp
ee

d
 Im

p
ro

ve
m

e
n

t
T

2
5

6
 p

ro
c

/
Tp

ar

Number of Compute Cores

Strong + Weak Scaling: Self-Similarity Web Graph

t_total t_auction

The expected almost ideal scaling properties of parallel matrix
construction phase compensates for deviations from optimality
of the auction phase in the total time speedup.

Approximate Graph Operations on Parallel Platforms

Conclusions

Graph similarity computations can be decomposed with
respect to

the identical link patterns occuring in the graphs
the rank-one terms building up the initial condition
Interpretation insight

Graph similarity computations can be uncoupled
Each graph is processed independently, sparse matrix-vector
kernel
Merging through outer products only at the end
Speedup

Highlights of NSD

Massive performance gains from Parallel NSD-based similarity
matrix construction, no scale up limit (embarrassingly //).

Parallel NSD is an integrated, performant approach for
processing very large networks

Approximate Graph Operations on Parallel Platforms

Future work

Evaluate the effect of more components on the quality of the
similarity scores for various application domains

Develop and implement heuristics for parallel matching,
suitable for different application domains

Weighted matching algorithm for matrices represented as sum of
outers products of vectors?

Approximate Graph Operations on Parallel Platforms

