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Outline

1. Biological Networks

• Definitions, problems, applications

2. Current Work

• Analyzing biological networks for conserved molecular interaction

patterns

• Alignment of protein interaction networks based on evolutionary models

• Module identification based on phylogenetic profiles

3. Ongoing and Future Work

• Projecting modules extracted from available networks to other genomes

• Phylogenetic analysis at modular level

• Constructing reference module maps

• Building a fully functional interoperable signaling database



Biological Networks

• Interactions between biomolecules that drive cellular processes

– Genes, proteins, enzymes, chemical compounds

– Chemical transformation & energy generation, information transfer

– Coarser level than sequences in life’s complexity pyramid

• Experimental/inferred data in various forms

– Protein-protein interaction (PPI) networks

– Gene regulatory networks

– Metabolic & signaling pathways

• What do we gain from analysis of cellular networks?

– Modular analysis of cellular processes

– Understanding evolutionary relationships at a higher level

– Assigning functions to proteins through interaction information

– Intelligent drug design: block protein, preserve pathway



Protein-Protein Interaction (PPI) Networks

• Interacting proteins can be discovered experimentally

– Two-hybrid

– Mass spectrometry

– Tandem affinity purification (TAP)

Protein

Interaction
S. Cerevisiae protein interaction network

Source: Jeong et al. Nature 411: 41-42, 2001.



Gene Regulatory Networks

• Genes regulate each others’ expression

– A simple model: Boolean networks

– Can be derived from gene expression data

Gene

Down-regulation

Up-regulation

Genetic network that controls
flowering time in A. Thaliania

Source: Blazquez et al. EMBO Reports 2: 1078-1082, 2001



Metabolic Pathways

• Chains of reactions that perform a particular metabolic
function

– Reactions are linked to each other through substrate-product relationships

– Directed hypergraph/ graph models

Enzyme

Substrate

Product

Compound

Glycolysis pathway in S. Cerevisiae
Source: Hynne et al. Biophysical Chemistry, 94, 121-163, 2001.



Analysis of Biological Networks

• Evolution thinks in a modular fashion

– Selective pressure on preserving interactions

– Functional modules, protein complexes are highly conserved

• Computational methods for discovery and analysis of modules
and complexes

– Graph clustering: Functionally related entities are densely connected

– Graph analysis: Common topological motifs, conserved interaction

patterns reveal modularity

– Graph alignment: Conservation/divergence of modules and pathways

– Module maps: Canonical pathways across species

– Phylogenetic analysis: Genes/proteins that belong to a common module

are likely to have co-evolved



How do we detect conserved subgraphs?

[Koyutürk, Grama, Szpankowski, ISMB04, Bioinformatics04]

• Given a collection of biological networks that belong to several
organisms, discover sets of related interactions that frequently
occur together

– Protein interaction networks: Common interactions between orthologous

proteins, possibly a conserved functional module

– Metabolic pathways: Sub-pathways common to a group of organisms,

may reveal functional conservation/divergence

• Earlier work focused on identifying common topological motifs

– We can discover orthologous subgraphs by taking into account the

identity of molecules

– Contract orthologous proteins to relate networks between species

– Contracting orthologs simplifies the computational problem as well



Graph Analysis: An Example

While mining PPI networks, orthologous proteins
are modeled by identically colored nodes

Graph database

Subgraphs with frequency 3



Extending Frequent Itemset Mining to Graph Analysis

• Given a set of transactions, find sets of items that are frequent
in these transactions

• Extensively studied in data mining literature

• Algorithms exploit downward closure property

– A set is frequent only if all of its subsets are frequent

– Generate itemsets from small to large, pruning supersets of infrequent

sets

• Can be generalized to mining graphs

– transaction → graph

– item → node, edge

– itemset → subgraph

• However, the graph analysis problem is considerably more
difficult!



Analyzing Graphs: Challenges

• Subgraph Isomorphism

– For counting frequencies, it is necessary to check whether a given graph

is a subgraph of another one

– NP-complete

• Canonical labeling

– To avoid redundancy while generating subgraphs, canonical labeling of

graphs is necessary

– Equivalent to subgraph isomorphism

• Connectivity

– Patterns of interest are generally connected, so it is necessary to

generate only connected subgraphs

• Existing algorithms mainly focus on minimizing redundancy and
mining & extending simple substructures

– AGM, FSG, gSpan, SPIM, CLOSEGRAPH



Contracting Orthologous Nodes

• Contract orthologous nodes (proteins, enzymes) into a single
node

• No subgraph isomorphism

– Graphs are uniquely identified by their edge sets

• Frequent subgraphs are preserved ⇒ No information loss

– Subgraphs that are frequent in general graphs are also frequent in their

ortholog-contracted representation

• Discovered frequent subgraphs are still biologically interpretable!

– Interaction between proteins becomes interaction between protein

families



Node Contraction in Metabolic Pathways

• Enzyme-contracted directed graph model

– Nodes represent enzymes

– Global labeling by enzyme nomenclature (EC numbers)

– A directed edge from one enzyme to the other implies that the second

consumes a product of the first
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Node Contraction in Protein Interaction Networks

• Relating proteins in different organisms

– Clustering: Orthologous proteins show sequence similarities

– Phlyogenetic analysis: Allows multi-resolution analysis among distant

species

– Literature, ortholog databases

• Contraction

– Interaction between proteins → interaction between protein families

– Must avoid distant paralogs

KAPA

KAPB

KAPC

YPT7

YPT53

cAMP GTP-binding



Preservation of Subgraphs

Theorem: Let G̃ be the ortholog-contracted graph obtained
by contracting the orthologous nodes of graph G. Then, if S is a
subgraph of G, S̃ is a subgraph of G̃.

Corollary: The ortholog-contracted representation of any
frequent subgraph is frequent in the set of ortholog-contracted
graphs.

G G̃



Simplifying the Graph Analysis Problem

Labeling: Assign a unique label to each ortholog group.
Observation: Since each label is unique in an ortholog-
contracted graph, it is uniquely determined by the set of its
edges.

Maximal Frequent Subgraph Mining Problem

Given a set of labeled graphs {G1, G2, ..., Gm}, find all
connected graphs S such that S is a subgraph of at least σm of
the graphs (is frequent) and no supergraph of S is frequent (is
maximal).

Maximal Frequent Edgeset Mining Problem

Given a set of edge (interaction) sets {E1, E2, ..., Em}, find all
connected edge sets F such that F is a subset of at least σm of
the edge sets (is frequent) and no superset of F is frequent (is
maximal).



From Graphs to Edgesets

a

a a

ab

b b

b

c

c c

c

d

d d

de

e e

e

G1 G2

G3 G4

F1= {ab, ac, de}

F2= {ab, ac, bc, de, ea}

F3= {ab, ac, bc, ea}

F4= {ab, ce, de, ea}

We can construct the graphs on the left
if we know the sets on the right



MULE: Mining Uniquely Labeled Graphs

Depth-first enumeration of frequent subgraphs
using downward closure property

E = ∅

H = {1, 2, 3, 4}

D = {ab}

E = {ab}

C = {ac, ea}

H = {1, 2, 3, 4}

D = {ab, ac}

E = {ac}

C = {ea}

H = {1, 2, 3}

D = {ab, ac, de}

E = {de}

C = {ea}

H = {1, 2, 4}

D = {ab, ac, de, ea}

E = {ea}

C = ∅

H = {2, 3, 4}

D = {ab, ac}

E = {ab, ac}

C = {ea}

H = {1, 2, 3}

D = {ab, ac, ea}

E = {ab, ea}

C = {de}

H = {2, 3, 4}

E: frequent subgraph, H: graphs that contain E,

D: already explored edges, C: edges to be added to E



Frequent Sub-Pathways in KEGG

Glutamate metabolism (155 organisms)

gltX

glnA

glmS

guaA

nadE

purF

45 (29%) organisms

30 (19%) organisms

22 (14%) organisms



Frequent Interaction Patterns in DIP

• Protein interaction networks for 7 organisms

– Ecoli, Hpylo, Scere, Celeg, Dmela, Mmusc, Hsapi

– 44070 interactions between 16783 proteins

• Clustering with TribeMCL & node contraction

– 30247 interactions between 6714 protein families
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Prion-like Q/N rich domain



Runtime Characteristics

Comparison with isomorphism-based algorithms
FSG MULE

Minimum Runtime Largest Number of Runtime Largest Number of

Dataset Support (%) (secs.) pattern patterns (secs.) pattern patterns

20 0.2 9 12 0.01 9 12

16 0.7 10 14 0.01 10 14

Glutamate 12 5.1 13 39 0.10 13 39

10 22.7 16 34 0.29 15 34

8 138.9 16 56 0.99 15 56

24 0.1 8 11 0.01 8 11

20 1.5 11 15 0.02 11 15

Alanine 16 4.0 12 21 0.06 12 21

12 112.7 17 25 1.06 16 25

10 215.1 17 34 1.72 16 34

Extraction of contracted patters
Glutamate metabolism, σ = 8% Alanine metabolism, σ = 10%

Size of Extraction time Size of Size of Extraction time Size of

contracted (secs.) extracted contracted (secs.) extracted

pattern FSG gSpan pattern pattern FSG gSpan pattern

15 10.8 1.12 16 16 54.1 10.13 17

14 12.8 2.42 16 16 24.1 3.92 16

13 1.7 0.31 13 12 0.9 0.27 12

12 0.9 0.30 12 11 0.4 0.13 11

11 0.5 0.08 11 8 0.1 0.01 8

Total number of patterns: 56 Total number of patterns: 34

Total runtime of FSG alone: 138.9 secs. Total runtime of FSG alone :215.1 secs.

Total runtime of MULE+FSG: 0.99+100.5 secs. Total runtime of MULE+FSG: 1.72+160.6 secs.

Total runtime of MULE+gSpan: 0.99+16.8 secs. Total runtime of MULE+gSpan: 1.72+31.0 secs.



Aligning Protein Interaction Networks

[Koyutürk, Grama, Szpankowski, RECOMB05]

• Defining graph alignment is difficult in general

– Biological significance

– Mathematical modeling

• Existing algorithms are based on simplified formulations

– PathBLAST aligns pathways (linear chains) to render problem computationally

tractable

– Motif search algorithms look for small topological motifs, do not take into

account conservation of proteins

• Our approach

– Aligns subsets of proteins based on the observation that modules and

complexes are conserved

– Guided by models of evolution: Detailed understanding of conservation/

divergence



Evolution of Protein Interaction Networks

• Duplication/divergence models for the evolution of protein
interaction networks

– Interactions of duplicated proteins are also duplicated

– Duplicated proteins rapidly lose interactions through mutations

• This provides us with a simplified basis for solving a very hard
problem

u1u1u1u1 u′
1u′

1u′
1

u2u2u2u2 u3u3u3u3

Duplication Deletion Insertion



Aligning Protein Interaction Networks: Input

• PPI networks G(U,E) and H(V, F )

• Sparse similarity function S(u, v) for all u, v ∈ U ∪ V

– If S(u, v) > 0, u and v are potentially orthologous

u1 u2

u3 u4

v1 v2

v3 v4

G H

Identical color ⇒ S > 0



Local Alignment Induced by Subsets of Proteins

• Alignment induced by protein subset pair P = {Ũ ∈ U, Ṽ ∈ V }:
A(P) = {M,N ,D}

– A match ∈ M corresponds to two pairs of homolog proteins from each

protein subset such that both pairs interact in both PPI networks. A match

is associated with score µ.

– A mismatch ∈ N corresponds to two pairs of homolog proteins from

each PPI network such that only one pair is interacting. A mismatch is

associated with penalty ν.

– A duplication ∈ D corresponds to a pair of homolog proteins that are in

the same protein subset. A duplication is associated with penalty δ.

u1

u2

u3

u4

v1 v2

v3

G:

H:

Alignment induced by protein subset pair

{{u1, u2, u3, u4}, {v1, v2, v3}}



Pairwise Local Alignment of PPI networks

• Alignment score:
σ(A(P )) =

∑
M∈M µ(M) −

∑
N∈N ν(N) −

∑
D∈D δ(D)

– Matches are rewarded for conservation of interactions

– Duplications are penalized for differentiation after split

– Mismatches are penalized for divergence and experimental error

• All scores and penalties are functions of similarity between
associated proteins

• Problem: Find all protein subset pairs with statistically significant
alignment score.

– High scoring protein subsets are likely to correspond to conserved

modules or complexes

• A graph equivalent to BLAST



Weighted Alignment Graph G(V,E)

• V consists all pairs of ortholog proteins v = {u ∈ U, v ∈ V }

• An edge vv
′ = {uv}{u′v′} in E is a

– match edge if uu′ ∈ E and vv′ ∈ V , with weight w(vv
′) = µ(uv, u′v′)

– mismatch edge if uu′ ∈ E and vv′ /∈ V or vice versa, with weight

w(vv
′) = −ν(uv, u′v′)

– duplication edge if S(u, u′) > 0 or S(v, v′) > 0, with weight w(vv
′) =

−δ(u, u′) or w(vv
′) = −δ(v, v′)

{u1, v1}

{u2, v1}

{u3, v3}

{u4, v2}

{u4, v4}

µ

µ

µ

µ

-ν

-ν

-ν

-ν

-δ -δ



Maximum Weight Induced Subgraph Problem

• Definition: (MAWISH)

– Given graph G(V, E) and a constant ǫ, find Ṽ ∈ V such that
P

v,u∈Ṽ
w(vu) ≥ ǫ.

– NP-complete

• Theorem: (MAWISH ≡ Pairwise alignment)

– If Ṽ is a solution for the MAWISH problem on G(V, E), then P = {Ũ , Ṽ }
induces an alignment A(P ) with σ(A) ≥ ǫ , where Ṽ = Ũ × Ṽ .

{u1, v1}

{u2, v1}

{u3, v3}

{u4, v2}

µ

µ

-ν

-ν

-ν

-δ



A Greedy Algorithm for MAWISH

• Greedy graph growing

– Start with a heavily connected node, put it in Ṽ

– Choose v that is most heavily connected to Ṽ and put it in Ṽ until no v is

positively connected to Ṽ.

– If total weight of the subgraph induced by Ṽ is statistically significant,

return Ṽ

– Works in linear time.

• As modules and complexes are densely connected within the
module and loosely connected to the rest of the network, this
algorithm is expected to be effective.

• For all local alignments, remove discovered subgraph and run
the greedy algorithm again.

• If the number of homologs for each protein is constant,
construction of alignment graph and solution of the MAWISH

takes O(|E| + |F |) time.



Scoring Matches, Mismatches and Duplications

• Quantizing similarity between two proteins

– Confidence in two proteins being orthologous (paralogous)

– BLAST E-value: S(u, v) = log10
p(u,v)

prandom
, where p(u, v) is the probability of

true homology between u and v, given BLAST E-value

– Ortholog clustering: S(u, v) = c(u)c(v), where 0 ≤ c(u) ≤ 1

is the confidence of the INPARANOID algorithm in assigning u to its

corresponding cluster

• Match score

– Two interactions are orthologous only if both interacting partners are

orthologous

– µ(uu′, vv′) = µ̄ min{S(u, v), S(u′, v′)}

• Mismatch penalty

– ν(uu′, vv′) = ν̄ min{S(u, v), S(u′, v′)}

• Duplication penalty

– δ(u, u′) = δ̄(d − S(u, u′))



Alignment of Human and Mouse PPI Networks

Homo Sapiens

BMRB AVR2ALK3BMP4 BMRA BMP6 AVR1 AVRB BMP7 GDF5

Mus Musculus

BMRB AVR2ALK3BMP4 BMRA BMP6 AVR1 AVRB BMP7 GDF5

A conserved subnet that is part of
transforming growth factor beta receptor signaling pathway



Alignment of Yeast and Fly PPI Networks

Saccharomyces Cerevisiae

HS82

HS83

STI1CNS1

Drosophila Melanogaster

HS83 CG2720-PACG5393-PB

A conserved subnet that is part of
response to stress

Penalties need to be relaxed while analyzing distant species



Ongoing Work on PPI Network Alignment

• Assessing statistical significance

– Constructing a refence model based on models of evolution

• BLAST-like search queries for network alignment

– Given a query graph, find all high-scoring local alignments in a database

of PPI networks

• Multiple Graph Alignment (CLUSTAL, BLASTCLUST)

– How to combine graph mining and pairwise alignment



Inferring Functional Modules from Phylogenetic

Information

[Kim, Koyutürk, Topkara, Grama, Subramaniam,
ECCB05 (submitted)]

• Functionally related proteins are likely to have co-evolved

– Construct phylogenetic profile for each genome: Vector of E-values

signifying existence of an orthologous protein in each organism

– Identify pairwise functional associations based on mutual information

between phylogenetic profiles [Pellegrini et al. (1999)]

– Mutual information:

I(X, Y ) = H(X) − H(X|Y ) =
P

x

P

y p(x, y) log(p(x, y)/p(x)p(y))

– Shown to identify functionally associated protein pairs at a coarser level

than high-throughput methods

• However, domains, not proteins, co-evolve

– How can we incorporate domain information to enhance performance

of phylogeny-based interaction prediction?



Identification of Co-evolved Domains

• While sequence information is widely available, domain
information is not generally comprehensive

• Approximating domains between fixed-size segments [Kim &
Subramaniam (2004)]

– Chop proteins into overlapping (e.g., 30 residues) fixed-size (e.g., 120

residues) segments

– Construct phylogenetic profile for each segment, find maximum-mutual-

information segment pair for each protein pair

– Improves single-profile based approach

– However, there is no fixed domain size

• Can we identify domains from phylogenetic information as
well?

– Residue phylogenetic profiles!



Residue-Level Phylogenetic Analysis

• Residue phylogenetic profile

– For each residue rij on protein Pi, the existence of rij in genome Gk is

signified by the minimum e-value of alignments between Pi and Gk that

contain rij

• Mutual information matrix

– Matrix of mutual information between any pair of residues each from one

protein

– M(Pi, Pj) = [mkl],

where mkl = I(profile(rik), profile(rjl))

• A sufficiently large contiguous submatrix of the mutual
information matrix that contains consistently high entries may
correspond to a pair of co-evolved domains.



Mutual Information Matrix
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Mutual information matrix for proteins CheA and CheB in E-coli.
Darker pixels indicate higher mutual information.

Co-evolved domains identified by dark submatrices!



Clustering Residue Phylogenetic Profiles

• Cluster residues to identify co-evolved domains

• For each protein pair

– Downsample residues of each protein (for computational efficiency)

– Construct residue phylogenetic profiles

– Compute mutual information matrix

– Identify sufficiently large contiguous submatrices of mutual information

matrix with consistently high mutual-information scores

– Set phylogenetic association score of the two proteins to the maximum

of mutual information of such matrices

• Can be used for domain identification as well!



Comparison of Domain-Profile and Single-Profile

Methods
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Accuracy: Fraction of true-positives among

all predicted functional associations
Coverage: Number of functionally associated

protein pairs that are identified by the algorithm



Phylogenetic Analysis of Computationally Identified

Functional Modules

• “Comprehensive” PPI network for Saccharomyces Cerevisiae is
available

• We can identify functional modules in this network based on
density of interactions

– Proteins in a functional module are expected to densely interact with

each other

• Whole genome sequences for many other species are
available

– 12 yeast species: S. Bayanus, S. Kluyveri, S. Kudriavzevii, S. Paradoxus, S.

Mikatae, S. Castellii, K. Lactis, D. Hansenii, A. Gossypii, C. Glabrata, Y.

Lipolytica, S. Pombe

• Can we analyze the conservation of S. Cerevisiae modules by
projecting them on other yeast species based on sequence
comparison?



Computational Identification of Functional Modules

on S. Cerevisiae PPI Network

A group of densely interacting
proteins involved in RNA processing

as identified by the MCODE algorithm



Module Phylogenetic Matrix

• For each protein in module, find orthologs in other yeast
proteomes

– If BLAST E-value for the best match of protein Pi in organism Gj is Eij, set

the (i, j)th entry of module phylogenetic matrix to 1 − 1/ log(Eij).

SCE SBA SKL SKU SPA SMI SCA KLA DHA AGO CGL YLI SPO

SRB4
MED2
SRB6
YHC1
LSM8
SRB5
NAM8
HAS1
ERB1
SRP1
RRP4
SKI6

RRP45
TIF6

PCF11
SNP1

RRP46
MED7
MED8

RRP43
NOP7
DIS3

MAK21
PRP40

CSL4
SSF2
RPF2
CIC1

GAL11
SRB2

Module phylogenetic matrix for the module in previous slide
Rows: Proteins, Columns: Organisms

Darker box indicates higher significance



Module Conservation
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• Principal component analysis provides a broad idea about
conservation

– MED8, MED7, RRP46, SNP1, PCF11, TIF6, RRP25, SKI6, RRP4, SRP1, ERB1,

and HAS1 are almost perfectly conserved in all genomes, while others

are partially conserved

– S. Bayanus, S. Paradoxus, S. Mikatae, S. Castellii, K. Lactis, A. Gossypii, and

Y. Lipolytica contain orthologs of almost all proteins in the module, while

others contain only some of them

• Which proteins are conserved in which organisms? Why?



An Example for Module Specification

Module Conservation on NCBI Taxonomy

Saccharomycetales

Saccharomycetaceae
C.glabrata

0.97

Y.lipolytica

0.50

Saccharomyces
K.lactis

0.96

D.hansenii

0.61

N.castellii

0.98

E.gossypii

0.97

S.pombe

0.47

Ascomycota

Schizosaccharomycetes

S.cerevisiae

0.99

S.bayanus

0.99

S.kluyveri

0.74

S.kudriavzevii

0.64

S.paradoxus

0.99

S.mikatae

0.99

Saccharomycetales

Saccharomycetaceae
C.glabrata

0.99

Y.lipolytica

0.98

Saccharomyces
K.lactis

0.99

D.hansenii

0.99

N.castellii

0.99

E.gossypii

0.99

S.pombe

0.97

Ascomycota

Schizosaccharomycetes

S.cerevisiae

1.00

S.bayanus

0.99

S.kluyveri

0.75

S.kudriavzevii

0.88

S.paradoxus

1.00

S.mikatae

0.99

Lower sub-module (RNA polymerase II transcription mediator activity)
is completely conserved in Y. Lipolytica, S. Pombe, and D. Hansenii,

while the upper sub-module (3’-5’-exoribonuclease activity)
almost disappears in these organisms



Ongoing Work on Module Phylogenetics

• Which proteins are conserved in which organisms? Why?

– Does partial loss of proteins in a module imply loss of function?

– Are there modules that are divided due to functional divergence?

– Are there modules that are completely lost due to functional

divergence?

– If a module is completely conserved, what does this imply in terms of

functional conservation and evolutionary pressure?

– Are module-specific phylogenetic trees consistent with the whole-

proteome phylogenotic tree?

– How is topology in PPI network related to conservation?

• How do we quantify the conservation of a module in a given
organism?



So many questions, so little time!


