
Theme A: Watermarking for Provenance

Goal

• To design and develop novel computational methods based on genomic
watermarking for robust and high resolution provenance for produce.

Technical Challenges

• Using intrinsic genomic variability, combined with combinatorial pooling for
watermarking
• Designing extrinsic barcodes for robust and accurate watermarking
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Computational Challenges

Extrinsic Barcodes

• Designing optimal barcodes that allow for rapid and inexpensive detection,
traceback, and audit of food sources
• Minimizing barcode cost by minimizing perturbations to non-coding regions

of DNA
• Robust coding through to distribution of codes over disparate parts of the

DNA
• Inexpensive detection through shallow reads and mapping, which in turn

relates to the repeat complexity of selected regions of the genome
• Accurate traceback using barcodes that are maximally distant from each

other
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Computational Challenges

Intrinsic Barcodes

• Use of intrinsic genomic features (the most prominent being simple
sequence repeats (SSRs)) for unique signatures.
• Combining SSRs with combinatorial pooling to achieve desired level of

specificity.
• Significant additional challenges in modeling, deconvolution, and

sampling.
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Technical Approach

Extrinsic Barcode Requirements

• Induce silent mutations, i.e., no changes to the phenotype
• Minimize change to DNA, so that the scheme is practical and cost-effective
• Chance of a random occurrence of the watermark is low
• Minimize the impact of recombination and/or cross-pollination
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Uniqueness Properties of Watermarks
• The uniqueness property of a sequence watermark implies that if the

watermark is embedded as a subsequence in a particular genomic region,
the probability of observing this watermark by chance is very low.
• The watermarkW occurs as a subsequence in text T if

Ti1 = w1, Ti2 = w2, ... , Tim = wm.

with additional distance constraints that ij+1 − ij ≤ dj .
• The I = (i1, ... , im)-tuple is called a position and D = (d1, ... , dm) constitutes

the constraints.
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Uniqueness Properties: Existing Results
Let On(W) be the number of occurrences of watermarkW in T .

Mean and Variance (IID)

E[On(W)] = nP(W)
∏m

i=1 di + O(1),

Var[On(W)] = nσ2(W) + O(1) where σ2(W) can be computed explicitly.

Central Limit Theorem (IID)

Pr
{

On−E[On(W)]
σ(W)

√
n ≤ x

}
∼ 1√

2π

∫ x
−∞ e−t2/2dt

Large Deviations (IID)
We have a local large deviation Pr{On(W) = aE[On]} ∼ 1

σa
√

2πn
e−nI(a)+θa where

I(a) can be explicitly computed, and θa is a known constant.
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Uniqueness: Unresolved Questions
• DNA sequences are commonly modeled as Markovian sources.

Extensions of our results to Markovian (and more general) sources pose
interesting questions with wide applicability.
• Existing results consider distance constrained subsequences. The

constraints in our applications correspond to synonymous substitution
and/or to specific regions of the DNA sequence. Modeling these
constraints and deriving associated results is unresolved.
• The subsequences (watermark characters) in our application are

constrained (synonymour substitutions). Analyses for this constrained
class of watermarks is an open question.
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Finding Thresholds for Watermarks
• If false identification of watermarks is to be avoided, the problem is one of

finding a threshold: α0 = α0(W; n,β) such that (say) P(On(W) > αth) ≤ β(=
10−5).
• In the context of our previous result(s), it follows that

αth = nP(W) + x0(β)σ(W)
√

n, β =
1√
2π

∫ ∞
x0

e−t2/2dt ∼ 1
x0

e−x2
0/2.

• We will derive results for Markov models, with real-world constraints for
reliable thresholds.
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Constructing Minimal Watermarks
• To construct a minimal watermark, for a given β, we find αth such that

P(On(W) > αth) ≤ β, where αth = nP(W)
∏

i

di + x0σ(W)
√

n

where αth and x0 are defined on the previous slide.
• To answer this, we need to solve the following problem

arg min
m,di

P(On(W) > αth)→ 0.

• This problem is hard in the general case. We will use a formulation based
on a De Bruijn graph abstraction for solving this problem.
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Intrinsic Watermarks Using SSRs
• In the short sequence repeat problem, we ask: what is the minimal set of

short sequence repeats (e.g., if you have a sequence ”ATA” repeating 10
times), that this is highly likely to be unique.
• We can solve this problem using the same machinery as above, in

particular, the de Bruijn graph.
• We can also generalize the subsequence problem to sets of

subsequences. In this case we have a set of words, sayW = {w1, ... , wN},
and we ask how many times their occur as subsequences.
• This analytical machinery provides us with the tools for characterizing the

use of SSRs as watermarks.
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Robustness of Watermarks
• In the robustness problem, we seek a solution to the following interesting

problem: given a watermark, what is the number of characters one would
have to flip to erase the watermark.
• This is formulated as a deletion channel problem or as the trace

reconstruction problem.
• A deletion channel with parameter κ, a deletion vector, takes a sequence

x := xn
1 = x1 · · · xn where xi ∈ A = {A, T , C, G} as input and deletes each

symbol in the sequence independently with probability determined by κ.
• The trace reconstruction problem is related to the deletion problem. We

ask, how many copies Nn of the output deletion channel we need to see,
until we can reconstruct the input sequence with high probability.
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Robustness of Watermarks
• We will develop practical solutions to the robustness question in the context

of DNA sequences.
• Consider w1 as a watermark that is unique. That is,

P(On(w1) > α1
th)→ 0.

• We will seek a word w2 as an output of a deletion channel such that

P(On(w2) > α1
th) > β > 0.

• We will derive techniques for characterizing this probability for Markov
sources, for random, as well as adversarial perturbations, as well as
modeling biological processes such as recombinations, inversions, and
point mutations.
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