
Theme B: Optimization Techniques for Food Systems 

• Develop mathematical programming models to:
– optimize supply chain architecture;

– determine location of tracking devices and instrumentation; and 

– determine optimal responses to contamination events.

• Major challenge: the mathematical programming models might only be able to 
represent a “partial, distorted view” of the system.
– for instance, constraints/variables might be missing; and

– the objective function might be difficult or impossible to formulate.

• Our approach, from a CS perspective, will focus on understanding  whether 
approximately optimal solutions can still be reached.
– Theme C explores the design and analysis of mechanisms to incentivize the actors of 

the supply chain to reveal additional information about the system.



Problem setup:

• Input: network models (graphs). 

– Nodes correspond to producers, distributors, and retailers.

– Edges correspond to costs, capacities, and flows.

• Output: supply chain designs. 

– Must support accurate traceback.

– Must include sensor localization to optimize data collection.

– Must be able to identify contamination and its spread.



Formulation
• Existing mathematical programming formulations of such 

supply chain problems result in optimization problems that:
– Take as input the supply chain network structure; its capacity and 

other costs; a range of contamination scenarios; and network 
constraints.

– Return as output the location and nature of tracking devices and the 
traceback flow under each contamination scenario.

• The above modelling process results in massive optimization 
problems, often convex.

• The “wastage” problem also has mathematical programming 
formulations, modelling total waste, cost of waste, and cost of 
supply chain.



Technical Challenge: Partial System View

• The constraint set is partially specified:

– various actors might not reveal their constraints at all, or

– they might reveal “sanitized” constraints, to preserve their privacy.

• The objective function might be hard to formulate explicitly: 

– costs in the supply chain might interact in complicated ways; and

– privacy considerations could result in an incomplete objective 

function.



Technical Approach

• The Computer Science perspective: sensitivity theory for optimization.
– Understand how noise/missing/partial constraints and/or an approximate objective 

function affect the quality of the solution.

• Our approach: look at the “dual” perspective, e.g., analyze sampling 
approaches to solve optimization problems. 
– Starting point: assume that the underlying optimization problem is simple, e.g., a Linear 

Program (LP: linear objective function and linear constraints).

– We will seek to understand the effect of sub-sampling or adding noise to the variable 
and/or the constraint space to the set of feasible solutions.

– We will seek to characterize settings where approximately optimal solutions can be 
identified.

– Moving from LPs to convex programming and addressing similar questions is a major 
open problem.

• Our work will go well beyond classical sensitivity theory, which typically deals with 
small noise in the input.



Technical Approach
To make this more concrete, consider the following simple LP (packing) setting:

𝐴𝑥 ≤ 𝑏, 0 ≤ 𝑥 ≤ 1

Here 𝐴 is an 𝑚 × 𝑛 matrix and 𝑥 (and 𝑏) are vectors in 𝑅𝑛 (and 𝑅𝑚).

• Assume that the above LP is feasible, e.g., has a solution vector 𝑥 that satisfies all the 

constraints.

• Assume that some constraints are perturbed, e.g., for some or all 𝑖 = 1…𝑚, A𝑥 𝑖 is 

replaced by ෪𝐴𝑥
𝑖
. 

– This could be the result of missing variables, noise, privacy preservation, etc.

• Can we guarantee that the perturbed system still has a feasible solution? We would 

like the answer to depend on the structure of 𝐴; we are willing to relax 𝑏𝑖 to 𝑏𝑖 + 𝛿𝑏i.

– We would like to minimize 𝛿𝑏𝑖 depending on the structure of 𝐴. 

Even this very simple setting is non-trivial to formally investigate (some prior work exists). 



Technical Approach
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Thoroughly understanding such questions for convex programming is an 

important objective of the proposed research. 
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Technical Approach

• Complementary aspect: Each actor solves an optimization problem on his 

constraints and variables and optimization function, but the actor is unwilling 

to reveal his local optimization problem (at least to its entirety) to the other 

actors in order to solve the global optimization problem.

• Simplified model: Let the underlying optimization problem 𝐺 be broken up 

into smaller problems 𝐺1, 𝐺2, … , 𝐺𝑝 (one problem for each of the 𝑝 actors).  

• The Computer Science perspective: assuming that each actor can solve 

its respective optimization problem 𝐺1, 𝐺2, … , 𝐺𝑝, what is the minimal amount 

of information that each actor should exchange with other actors in order to 

(at least approximately) solve the overall problem?

– That could include partially revealing the local optimization problem 𝐺𝑖, a 

sketch of 𝐺𝑖 , the local optimal solution, etc.  

• Connections with distributed LP solvers; little is known for convex opt



Novelty of Proposed Approach

• Sensitivity analysis of LPs: fundamental research area.

• Many important questions are still open: 

– Impact of missing variables/constraints on feasibility.

– Impact of missing variables/constraints on optimal solution.

– Early stopping for iterative algorithms in the presence of noise: overfitting to noisy inputs 

wastes computational time and leads to poor generalization performance.

• Our approach: we will use Randomized Linear Algebra to understand the 

behavior of the optimization problems in the presence of noise.


