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Background
and Motivation




Faults in Parallel and Distributed Systems

O As parallel and distributed systems scale to millions of cores, faults become one of
the most critical challenges.

O As data centers scale to hundreds of thousands of nodes, faults are a prime
consideration for distributed computations.

O As networks scale from data center to wide area, network faults and partitions
constitute a major consideration for wide area distributed computations.
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| Estimated Chip Counts in Exascale Systems
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| BlueGene Failure In Time (FIT) budget

Component FIT per comp t Comp ts per 64Ki FITs per system Failure rate per week
compute node partition (K)

Control-FPGA complex 160 3,024 484 0.08

DRAM 5 608,256 3.041 0.51
Compute + I/O ASIC 20 66,560 1,331 0.22

Link ASIC 25 3,072 77 0.012

Clock chip 6.5 ~1,200 8 0.0013
Nonredundant power supply 500 384 384 0.064

Total (65,536 compute nodes) 5,315 0.89

T = 60°C, ¥ = Nominal, 40K POH. FIT = Failures in ppm/KPOH. One FIT = 0.168 X 16° fails per week if the machine runs 24 hours a day.

Source: P. COTEUS ET AL., IBM J. RES. & DEV. VOL. 49 NO. 2/3
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| Fault and Failure Models

Types of Fault

(i) Permanent; (i) Transient; (iii) Intermittent.

Failure Model
Failure model is an abstraction of system behavior in the presence of a fault.

O Byzantine: a component can exhibit arbitrary and malicious behavior, perhaps
involving collusion with other faulty components.

O Fail-stop: a component changes to a state that permits other components to
detect the failure and then stops.
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Fault Tolerance

Algorithm-based methods and System-supported methods.

O Algorithmic methods alter the algorithm to make it robust to faults.

O System-supported methods include checkpoint-restart, active replicas and
deterministic replay.

® Checkpoint-restart schemes involve the overhead of consistent checkpointing and

1/0.
® Active replicas execute multiple replicas of each task.

@ Tasks in deterministic replay are scheduled at different execution units and
monitored for successful completion. They are rescheduled at other execution units
if failures are detected.
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Error Correcting Codes

Error Correcting Codes are commonly used in communication systems. Messages are
coded (augmented) with error correction (redundant) bits, which can help detect and
correct transmission errors.

A
(o

Parity check equations:

GGG G=0
CGoGoaGaeCG=0
GoGaGoG =0

Parity check matrix:

1110100
1011010
1101001
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Erasure Coded Storage

Erasure codes are derived from the Error Correcting Codes and are typically used in
storage systems to deal with known data erasures or loss.
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| Fault Tolerant Storage--Replication v.s. Erasure Coding

O Replication based schemes maintain as many copies of data as are needed to
guarantee required tolerance.

O Erasure coding schemes transform the data so that the original data can be
reconstructed from (a subset of) the available coded data.

RIIJ‘ERIIJT]% a a e o e Background and Motivation I 8/ 74




| Erasure Coded Computation Basic Kernels

We show the idea for erasure coded computations using a simple example of a sparse
matrix-vector product.

v jml ][] g »
2 [ [mjm] [ [ [m] | g
s (m] J@] [ [w] [] 0 »
o [[m] [ [@] [ ] O »
s [ [ [ [m] [m] [m] g
s ([ [ [ [m] [m]m] O
7 [ [ [ [ [m]m] ] =
s [ [ [ [ [ [m/m]m] O =~
(a) Original Matrix (b) Graph of Original Matrix
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| Erasure Coded Computation Basic Kernels

We multiply the distribution matrix with the given sparse matrix. This results in an
augmented matrix.

X[ = T[]
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Distribution (Coding) Matrix Augmented Matrix

(d) Graph of augmented mat
(c) Augmentation Process: Multiplication by a distribution/ coding matrix.
Augmented matrix is tolerant to one node (row) failure.
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Erasure Coded Computation Basic Kernels

Example of an alternative distribution matrix, which allows us to control the fill in the
augmentation rows. We also show the augmentation block distribution across
processors.

ETTTTTT] @] I w0
CRTTTTT lalal 1 a ] 3 ] R
(T TITTT] N CIITTTTT =
— Pl
[] —m] [m [] . E
[ITT e 1] ~
" [
EEEERRCIN ] ’ E P E
CLTTTTT[al
(@] [m] Ta] =] — P I [ [m] [m[m] | . E
BORCEONC T EEE
Distribution (Coding) Matrix Controlling density of d blocks by combini A ion block is now distributed across processors.
blocks (first row at each processor is combined into This addresses problem of load imbalance. Note higher
first row of the augmented block). Note the reduced fill. communication cost of this scheme. This can be amortized
Matvec is still tolerant to one process failure. through coarse—grained processor partitions.
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| Goals and Challenges

Goal

O Code the result of a computation in a fault tolerant manner (in storage or
communication, the computation is an identity operator).

O Data is not a linear bit string or a block — but rather it is a sparse matrix.

O Recovery of result of computation must be easy.

Challenges

O Design suitable coding matrices.

O Reformulate traditional linear algebraic methods in the erasure coding framework.
O Design efficient recovery algorithms.

O Analyze parallel performance.

O Validate tolerance to different models of fault arrivals and rates.
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Fault Oblivious Computation

The concept of fault oblivious parallel execution, based on Erasure Coded
Computations, is as follows:

O Augment the input to a parallel program.

O Execute on the augmented input in a faulty environment, oblivious to faults, and
generate an augmented output.

O Compute the true output based on the augmented output from the faulty
execution.
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Distributed Fault Tolerant
Linear System Solver




Erasure Coded Linear System Solver

Given a linear system Ax = b (A,x, is SPD), with true solution X*, and coding matrix
E .k, we construct the augmented system AX = b.

B f%] e

A X

X = [x*;0] is a solution to the augmented system.
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Erasure Coded Linear System Solver
Properties of A:
O If Ais SPD, then A is SPSD;
O The null space basis of A is {_‘H;

O Any solution of the augmented system can be written as

2 -0 L)

Based on the properties of A, we can recover the true solution as follows:

-2 [5)
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Erasure Coded Linear System Solver

A Ap Z;

When faults happen, we can compress the augmented system to a purified system.
A’ Ay Z;
z,” z,” ETAE

AR

3 (2o

Theorem

If [c; r] is a solution for the purified system, then X = [c; f; r] is a solution to the
augmented system.
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| Coding Matrix

O There is always a solution to the augmented system for faults happening on any
rows, as long as total number of faults < k.

O Given any solution computed with faulty components, we can extract and recover
a solution for the original system.

Desiderata of E:

O Satisfy properties of Kruskal rank, which means every subset of k rows of matrix
E is linearly independent.

O Be as sparse as possible to minimize the fill in the augmented matrix.

PURDUE (DH(2)—(DH()——(5) Distributed Fauit Tolerant Linear | S
UNIVERSITY a ° e o System Solver /




| Coding Matrix

Proposed Coding Matrix £

An n x k matrix E satisfies the 0
recovery-at-random property if a
random subset of k rows (selected
uniformly with replacement) is
rank k with probability
approaching 1.

e 06 O OO e
e OO O e o
OO O e o o
OO e e o O
S e e 0 OO
e ¢ ¢ O O
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| Coding Matrix

Let p be the number of nonzeros per row in E and Let E’ be a submatrix of E formed
by selecting any p rows of matrix E. The matrix E’T has rank p.

All rows have distinct All rows have same Some rows from casel
non-zero structure. non-zero structure. and Some from case2.
e o o e ¢ ¢ 0 0O e ¢ ¢ 0 0 O

o o o e ¢ ¢ 0 0 O 0O ¢ ¢ ¢ 0 O

° e 0 0 O 0O ¢ ¢ ¢ 0 O
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| Coding Matrix

Theorem

The probability that a randomly chosen set of k rows from the matrix E are linearly

e \PT!
dependent is less than (—) .
p+1

Proof: A sufficient condition for k rows to be linearly dependent is that some selection
of p + 1 rows from these k rows have the same non-zero structure. There are k
distinct non-zeros structures for the matrix E.

Li) () =Gr)

As p increases, this probability rapidly approaches 0, which means that the matrix E is
recovery-at-random.
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| Coding Matrix

To keep the coding matrix and the associated augmented matrix sparse, p should as
small as possible.

The expected number of rows from among k randomly selected rows of matrix E that

. In k
have same nonzero structure is O W .
nin

Define a random variable M to be the number of rows that have the same non-zero
structure when we select k rows uniformly at random from the matrix E.

K\ (kY [1\" 1\ ! e\t
= = — -_ - < -
== (1) (5) (5) (1-%) =+
Distributed Fault Tolerant Linear
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Coding Matrix

The expected number of rows E(M) is given by:

k
E(M)=> t-Pr(M=t)

In k

Chnk k
=Y t:-Pr(M=t)+ > t-Pr(M=t)
t=1 t=fnk
clnk 2)
ik 0k k (
< -Pr(M =t k-Pr(M=t
<D g M=+ > k- Pr(M=1)
t=1 t=pk
< clnk n 1
~Inlnk ke/2-1
In k
n (Inlnk)
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Parallel Implementation

Since A is SPD and A is SPSD, we can apply CG to AX = b.

Algorithm Fault Oblivious CG with a Two-term Recurrence

1: Let xp be the initial guess and rp = b — Axg, Bo = 0.

2: for t =0,1,... until convergence do
2
r,
3: if Fault detected then 5; = 0 else 3; = ”” t|||2|2
re—1|js
Pt = re + Bipr—1
q: = Ap: )
r
o ol
<qtapt>
7 Xt41 = Xt + Qe Pt
8: Fep1 = e — Qe Qe
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Parallel Implementation

Assume that each viable process can detect the breakdown of its neighbor processes.

O Inner products (r;, r:) and (q:, ps).

(e te) = <(rt)[n+k]\Ft7 (rt)[n+k]\Ft> (3)
<qt7 pt> = <(qt)[n+k]\Fu (pt)[n+k]\Ft>

O Matrix-vector multiplication q, = Ap,.
A;Pe = Ap ok \F (P n K\ F (4)
O When observing a fault, we truncate the update p, = r; + 3:p,_; to be
P:=T: (5)

This corresponds to a reset of the Krylov process.

Distributed Fault Tolerant Linear
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Reordering and Partitioning
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(¢) augmented matrix
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el
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(d) augment reordered matrix

Distributed Fault Tolerant Linear

System_Solver
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Experimental Data

We select matrices from the University of Florida Matrix Collection for our tests.

bcsstk18 11,948 149,090
consph 83,334 6,010, 480
inline_1 503,712 36,816,170

ldoor 952,203 42 493,817
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Experiment Setup

O The right-hand-side vector b is first normalized (which means ||b]| = 1). The

Ax—b
relative error rtol = W equals the residual norm ||r||2 = ||Ax — b||2.
2

O The termination condition isset to ||r|l2 < 107° for all matrices, and the maximum
number of iterations for CG is set to 10000.

O For the instantaneous fault arrival model, faults arrive at the 1000-th iteration.

O For the exponential fault arrival model, the fault rate is set as 10~3, which implies
the average number of steps between two consecutive faults is 1000.

Distributed Fault Tolerant Linear
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Convergence--Fault-Free Mode
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Convergence--Faulty Mode
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Speedup
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| Time Overhead
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Convergence under Different Fault Rates (K = 8)
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Different Fault Models

The exponential distribution is the most commonly used random fault arrival model. It
assumes the time to failure to be exponentially distributed.

The probability distribution function (PDF) of the time (7) to failure is given by:
P(t<t)=1—e€"""

Here r. is the failure rate.
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Convergence under Different Fault Arrival Models (K = 8)
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Conclusions

We show how to take recently proposed erasure coding schemes and apply them
efficiently on parallel/ distributed platforms.

O Creating a new encoding matrix that satisfies recovery requirements for almost all
sets of failing components;

O Partitioning these matrices and demonstrating their suitability w.r.t. parallel
execution (low fill, low added communication);

O Demonstrate good parallel performance and low time overhead;
O Robustness to different fault arrival models and arrival rates.

Our proposed erasure coded computation scheme is general, and can be applied to a
number of other problems.
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Adaptive Fault Tolerant
Linear System Solver



Adaptive Fault Tolerant Linear System Solver

The Distributed Fault Tolerant Linear System Solver runs the augmented system from
the beginning and can tolerate as many faults as the size of augmentation block during
the execution.

O System size is augmented (n — n + k).
O System property changes (SPD — SPSD).

O Computational overhead paid at each iteration.

Adaptive Fault Tolerant Linear
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Adaptive Fault Tolerant Linear System Solver

Adaptive Fault Tolerant Linear System Solver runs on the original system until a fault
occurs. The erased blocks are compensated for by the addition of an identical number
of rows (and columns) selected from the pre-computed coding blocks [E” A, ET AE].

O System size is the same (always n).
O System property is maintained (always SPD).

O Computational Overhead is negligible.

Adaptive Fault Tolerant Linear
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Adaptive Fault Tolerant Linear System Solver

The initial solution of the original system can be written as:

Al = k] (6)

The augmented system can now be written as:

A Ap Z, Xc b.
AL’ Ay Z Xc|=| br (M)
z," z," ETAE | |x ETb
After erasures, we solve the new system:
A1l Z Xc| bc A
{le ETAE ] [x,}_[ETb HESR ®)
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Adaptive Fault Tolerant Linear System Solver

Algorithm Adaptive Fault Oblivious CG

2
1: (Reliably) Compute and save the entries q3. o = lIre—1ll2
Zy,Z,,ETAE, ETb for matrix E £ (a,,py)
2: Alew) — A 14:  Xe =Xe—1 + P,
3: b(cur) =b 15: et =Ti—1 — o, q,
4: Xg = the initial guess 16: if Faults detected then~
5: 1o = b() — Alxg 17: Al = (A 21
6: Bo=0 Z, E AE
7: for t = 1,... until convergence do b. — AoX
8:  if Fault detected then 18: ple) — | 5 P2
9: P, =r 1 E b—22 Xr
10: else . _ Xc]
19: X; =
11: p,=r + M -p ‘ [O
: t t—1 ||rt—2H§ t—1 20: r = b(cur) _ A(cur)xt

122 g, =Alwp,

Adaptive Fault Tolerant Linear
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| Reordering and Partition
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Experimental Data

We select matrices from the University of Florida Matrix Collection for our tests —
cbuckle and gyro_m are used to validate the convergence of adaptive fault tolerant
linear solver; consph and 1door are used to validate parallel scalability and robustness
to different fault arrival models.

cbuckle 13,681 676,515
gyro_m 17,361 340,431
consph 83,334 6,010,480
ldoor 952,203 42 493,817

Adaptive Fault Tolerant Linear
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Experiment Setup

O The right hand side b is normalized (||b||2 = 1). The relative residual
rtol = 1 HbeIb(equals to ||r]|2 = ||Ax — b||2) is calculated.

O ||r||2 is monitored at each iteration and the termination condition is set as

|[F|l2 < 107® and the maximum number of iterations of CG is set to 10000 for all
matrices.

O For parallel performance, the matrices are first reordered using Metis.

O For exponential fault arrival model, different fault rates(r) ranging from ——1—
orig_iter
3

——=—— are tested.
orig_iter

to

O In our tests, we set the first fault to happen at %.

Adaptive Fault Tolerant Linear
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Convergence
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Speedup

First, we show the parallel performance of adaptive linear solver under exponential fault
arrival model.
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Speedup

We all show the parallel performance of adaptive linear solver under instantaneous fault
arrival model.
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Overhead

The time overhead of adaptive linear solver is:

Instantaneous model ) Exponential model
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Number of Faults Number of Faults
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Conclusion

We have developed an Adaptive Fault Tolerant Linear System Solver capable of scaling
to large numbers of processors and associated faults.

O Coding blocks are only added when faults are detected;
O Convergence properties of adaptive system closely follow those of original system;
O The solver is robust to a wide range of fault characteristics.

O Speedup is near linear and time overhead is small;
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I Reformalization

Given an eigenvalue problem

Ax* = N*x*, (9)
where A € R"*". We construct a generalized eigenvalue problem:
A AE X / E X
e enael [ =2 e e 1) 0)
ﬁ—/ %:—/
A X B X

where E € Rk is a coding matrix, then x* = x + Er and \* = \.
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We can write the generalized eigenvalue system as:

Au A 4 |c Bii B @i |c
AL, Awn Z| |f| =A|BL Bn Qf |f (11)
zl zT R||r QF Qf s||r
where
Z A A Q1 Bii B
= E = E d
2l e [8)-1 afe
R =ETAE, S=ETBE.

PURDUE (D-()—(-(0—0©)
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Equivalence of Eigensystems

The generalized eigenvalue system will become the following purified n x n system
when faults happen:

Au i || _y |Bu M| e _ [AB —Ap| .
z7 Rl || =M YT s| |l T YT -z

If [c; r] is the solution of the purified system, then [c; f; r] is the solution of the
generalized eigenvalue system.
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The purified system gives us

A11C + er — )\Bllc — )\er = )\5121: — )\Alzf (12)
ZTc+ Rr —AQ] —\Sr=\QJf - \Z]f (13)

Equation (13) —E; x Equation (12) yields
EJ Aiac + E] Zor — AE) Bioc — AE] Qor = EJ (ABay — A)f (14)
Premultiplying Equation (14) by E{T gives
Arac+ Apaf + Zor = ABiac + AByf + AQar

which is the second equation in the Equation (11).
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As A and B are SPSD, the potential eigenvectors may fall into their null space. We
add perturbation to the augmented systems to avoid the problem.

) E

- A AE B _
PP |ET e, +EE

A= |EA el + ETAE
The perturbation is added to the lower-right k x k block (¢ = 107 used here).
A, and B, are and TraceMin can be used to solve the generalized

eigenvalue problem.

Purification ( ) will be done once the trace is small enough.
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For the system A,X = AB,X, we obtain the approx (i, u)(approximate true eigenpairs
Av = \v ) after TraceMin iterations. Hence, we have:

A(u+0u) = (p+ dp)(u + du) (15)
Also,
u'su=0 (16)
Combining Equation (15) and Equation (16), we will get the linear system:
A—pul, —u||ou] [—(Au— pu)
A I a7

Based on du and du, we can update the approximation of the eigenpairs and continue
the TraceMin procedure.
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Algorithm Fault Oblivious Trace Minimization

1: Choose an n X s random matrix V; of full rank such that VlTép Vi = I(s = 2p).

2: for t = 0,1,... until convergence do
3: Compute Wi = AN,, V; and the interaction matrix Hy = V7 W,
4: Compute the eigenpairs of (Y, ©¢) for H.
5: Do the purification if the purification condition is satisfied.
6: Sort the eigenvalue in ascending order and rearrange eigenvectors.
7 Compute the corresponding Ritz Vectors X; = V;Y:.
8: Compute the residue R; = A,,Xt BpXt@t
9: Test for Convergence.
10: Solve the following linear system approximately via the CG to get A;.
A,, BoXe| [Af] _ [ApX:
X:" B, 0 [L:] - [ 0 }
11: gp—orthonormalize Xt — A¢ into Viyg.

12: return ©.
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The operations affected by faults in a distributed environment are the aggregation
operations — the matrix-matrix and matrix-vector multiplication.

The Matrix-Matrix Operation:

(Bp, Vo) = ((Ap)ine o (VO)inia )
By, %) = ((Bp)nesris (Vs
By, X¢) = ((Bp)nr\Fir (X))

The Matrix-Vector Operation in Step 10:

(B, ) = (Aol inres (B

PURDUE (D-O—O-0—0) 5571



Experimental Data

We select two matrices from the University of Florida Matrix Collection.

minsurfo 40, 806 203,622 Optimization Problem
s3dkq4m2 90, 449 4,427,725 Structural Problem
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For validation of convergence, we monitor linllz 1H2 .The stopping criteria is set as
10798 for all the matrices.

au, —orl, . .
% and construct t = [ty, tp, - - , t1p]. Then final relative error

Define t; =
rtol = ||t||2.

Augmented blocks with different sizes are added to the original system. K =0
corresponds to the original system; K = d corresponds to an augmented block
size of d, and d faults happen during the execution (d = 1,8, 16).
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Leverage score is used to sample a large matrix and can measure the importance
of each row of A. For A= UXV (SVD decomposition), the leverage score for
each row is calculated as follows:

1) =3 UGi.J)

Two different fault arrival models, instantaneous and exponential, were tested.
4

to
orig_iter orig_iter

For exponential fault model, failure rates ranging from

were tested.
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Convergence for Random Case (minsurfo)
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Convergence for Random Case (s3dkq4m2)
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Convergence for Worst Case (minsurfo)
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Convergence for Worst Case (s3dkq4m2)
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Coding blocks are periodically updated using estimates of leverage scores from prior
iteration. The coding matrix E is adaptively updated as follows:

E(i,:) = E(i,:) @

Here E(i,:) is the i row of coding matrix E, /(i) is the leverage score of it" row and |
is the average leverage score of all rows.
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Convergence of Updating Method (minsurfo)
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Convergence of Updating Method (s3dkq4m2)
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Importance Results (minsurfo)

PURDUE

UNIVERSITY.
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I Importance Results (s3dkg4m2)

PURDUE

UNIVERSITY.

—— Basic Method
fault rate=1/orig_iter

~—— Updated Method

fault rate=2/orig_iter

1 10
107 107
51077 109
51073 10
2
£10-4 1074
K]
1075 107
1079 1079
1076—T000 2000 3000 4000 5000 10”0—T000 2000 3000 4000 50
1 fault rate=3/orig_iter 1 fault rate=4/orig_iter
0 0
107 107
5107 109
51073 10
2
2104 1074
k]
1079 107
107 1079
1077 0 1077

a o o o o Erasure Coded Eigensolver

Iterations

Iterations

67 / 74



Comparison of Results (minsurfo)

—— Real Leverage Score  —— Estimated Leverage Score
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| Comparison of Results (s3dkqg4m2)

—— Real Leverage Score  —— Estimated Leverage Score
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Different Fault Arrival Models (minsurfo)

—— original system  —— K=8 —— K=16
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Different Fault Arrival Models (s3dkq4m2)
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We have developed an , Which can compute
real eigenvalues in faulty environments. We show that our methods:

Converge to real eigenvalues in both random and worst cases;
Utilize estimated leverage score to further improve the convergence for worst case;

Are robust to different fault arrival models including instantaneous and
exponential fault model;
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Plan of Research

O Developing sparse coding schemes for matrix computation.
O Developing distributed fault tolerant linear solver.

O Developing adaptive fault tolerant linear solver.

O Developing erasure coded eigensolver.

O Developing a distributed fault tolerant eigensolver.

O Developing erasure coded matrix computations for other linear algebraic methods.
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