Erasure Coded Computations

New Models for Fault Tolerance

Xuejiao Kang, David Gielch, Ahmed

Ph.D. Candidggs Sameh, Ananth Grama

Advisor

PURDUE Department of

UNIVERSITY Computer Science November 1, 2022

Background
and Motivation

Faults in Parallel and Distributed Systems

O As parallel and distributed systems scale to millions of cores, faults become one of
the most critical challenges.

O As data centers scale to hundreds of thousands of nodes, faults are a prime
consideration for distributed computations.

O As networks scale from data center to wide area, network faults and partitions
constitute a major consideration for wide area distributed computations.

PURDUE ° o e o o Background and Motivation | 1/ 74

| Estimated Chip Counts in Exascale Systems

-

.E+ 08 L
BDRAM Chp Count ExaScak

#Socket Count

.E+07 —
28
CA\G“: 1.
E+06 o o
L]
ExaScak
/ :

-

-

1.E+ 05 rert
A cAG““'n
1.E+04 ASCIW hie “SC'Qv ® Ranger
ASQIRed I Y Colmbi Red Stom
ASCTIRed T Eaxth Sinubtor
1.E+03

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Source: DARPA Exascale Technology Study [Kogge et al.]

RIIIVERI?]TE\; c 6 e o e Background and Motivation I 2/ 74

| BlueGene Failure In Time (FIT) budget

Component FIT per comp t Comp ts per 64Ki FITs per system Failure rate per week
compute node partition (K)

Control-FPGA complex 160 3,024 484 0.08

DRAM 5 608,256 3.041 0.51
Compute + I/O ASIC 20 66,560 1,331 0.22

Link ASIC 25 3,072 77 0.012

Clock chip 6.5 ~1,200 8 0.0013
Nonredundant power supply 500 384 384 0.064

Total (65,536 compute nodes) 5,315 0.89

T = 60°C, ¥ = Nominal, 40K POH. FIT = Failures in ppm/KPOH. One FIT = 0.168 X 16° fails per week if the machine runs 24 hours a day.

Source: P. COTEUS ET AL., IBM J. RES. & DEV. VOL. 49 NO. 2/3

RIIJ‘ERIIJT]% a a e o e Background and Motivation I 3/ 74

| Fault and Failure Models

Types of Fault

(i) Permanent; (i) Transient; (iii) Intermittent.

Failure Model
Failure model is an abstraction of system behavior in the presence of a fault.

O Byzantine: a component can exhibit arbitrary and malicious behavior, perhaps
involving collusion with other faulty components.

O Fail-stop: a component changes to a state that permits other components to
detect the failure and then stops.

PURDUE ° Q e ° e Background and Motivation | 4/ 74

Fault Tolerance

Algorithm-based methods and System-supported methods.

O Algorithmic methods alter the algorithm to make it robust to faults.

O System-supported methods include checkpoint-restart, active replicas and
deterministic replay.

® Checkpoint-restart schemes involve the overhead of consistent checkpointing and

1/0.
® Active replicas execute multiple replicas of each task.

@ Tasks in deterministic replay are scheduled at different execution units and
monitored for successful completion. They are rescheduled at other execution units
if failures are detected.

R[IJVPELR[IJTE: ° e o o o Background and Motivation | 5/ 74

Error Correcting Codes

Error Correcting Codes are commonly used in communication systems. Messages are
coded (augmented) with error correction (redundant) bits, which can help detect and
correct transmission errors.

A
(o

Parity check equations:

GGG G=0
CGoGoaGaeCG=0
GoGaGoG =0

Parity check matrix:

1110100
1011010
1101001

UI?«[IJVBRIIJTEY: ° o e o o Background and Motivation | 6/ 74

Erasure Coded Storage

Erasure codes are derived from the Error Correcting Codes and are typically used in
storage systems to deal with known data erasures or loss.

RCICICICICICICIEIR

Jistribution (Coding) Matrix

X

Data Vector

Coded Data Vector

CINCINCINCIN
(=] [m] @] [m]]

Distribution (Coding) Matrix

%

Data Vector

Coded Data V

R[IJVBR[IJTEY: ° Q e ° e Background and Motivation

ector

|7/74

| Fault Tolerant Storage--Replication v.s. Erasure Coding

O Replication based schemes maintain as many copies of data as are needed to
guarantee required tolerance.

O Erasure coding schemes transform the data so that the original data can be
reconstructed from (a subset of) the available coded data.

RIIJ‘ERIIJT]% a a e o e Background and Motivation I 8/ 74

| Erasure Coded Computation Basic Kernels

We show the idea for erasure coded computations using a simple example of a sparse
matrix-vector product.

v jml][] g »
2 [[mjm] [[[m] | g
s (m] J@] [[w] [] 0 »
o [[m] [[@] [] O »
s [[[[m] [m] [m] g
s ([[[[m] [m]m] O
7 [[[[[m]m]] =
s [[[[[[m/m]m] O =~
(a) Original Matrix (b) Graph of Original Matrix

RIIJVERIIJT]% a a e o e Background and Motivation I 9/ 74

| Erasure Coded Computation Basic Kernels

We multiply the distribution matrix with the given sparse matrix. This results in an
augmented matrix.

X[= T[]

(mC LT L B8]
[(mTTTTT] (@[[T &] o [[m[m] T T [m] ol .«
[T m [TTT] (@] [m[[T=&] T] s/ [T @[] O -
L] [=] (& &] o [[m] [m] [m al
(LT mT] ([[[=] =] =] s) L1 @] = m] g -
L[w1 L[] [m] [m]m] o L1 1 [[m] [m[m] 0| -
[T ([[[=] [=&@]] 71 & @@] B «
(TTTTT (e [T [mm[m] s (LT T [[mm/a] 0 »
NCICICICICICICICIN Original Matrix o [m[m[m[m[m[m[m]m] | H | s
Distribution (Coding) Matrix Augmented Matrix

(d) Graph of augmented mat
(c) Augmentation Process: Multiplication by a distribution/ coding matrix.
Augmented matrix is tolerant to one node (row) failure.

RIIJVERIIJT]% c e e o e Background and Motivation I 10 / 74

Erasure Coded Computation Basic Kernels

Example of an alternative distribution matrix, which allows us to control the fill in the
augmentation rows. We also show the augmentation block distribution across
processors.

ETTTTTT] @] I w0
CRTTTTT lalal 1 a] 3] R
(T TITTT] N CIITTTTT =
— Pl
[] —m] [m [] . E
[ITT e 1] ~
" [
EEEERRCIN] ’ E P E
CLTTTTT[al
(@] [m] Ta] =] — P I [[m] [m[m] | . E
BORCEONC T EEE
Distribution (Coding) Matrix Controlling density of d blocks by combini A ion block is now distributed across processors.
blocks (first row at each processor is combined into This addresses problem of load imbalance. Note higher
first row of the augmented block). Note the reduced fill. communication cost of this scheme. This can be amortized
Matvec is still tolerant to one process failure. through coarse—grained processor partitions.

PURDUE c 6 e ° e Background and Motivation I 11/ 74

| Goals and Challenges

Goal

O Code the result of a computation in a fault tolerant manner (in storage or
communication, the computation is an identity operator).

O Data is not a linear bit string or a block — but rather it is a sparse matrix.

O Recovery of result of computation must be easy.

Challenges

O Design suitable coding matrices.

O Reformulate traditional linear algebraic methods in the erasure coding framework.
O Design efficient recovery algorithms.

O Analyze parallel performance.

O Validate tolerance to different models of fault arrivals and rates.

PURDUE ° e o o o Background and Motivation | 12 / 74

Fault Oblivious Computation

The concept of fault oblivious parallel execution, based on Erasure Coded
Computations, is as follows:

O Augment the input to a parallel program.

O Execute on the augmented input in a faulty environment, oblivious to faults, and
generate an augmented output.

O Compute the true output based on the augmented output from the faulty
execution.

UI?«[IJVBR[IJTEY: ° Q e o ° Background and Motivation | 13/ 74

Distributed Fault Tolerant
Linear System Solver

Erasure Coded Linear System Solver

Given a linear system Ax = b (A,x, is SPD), with true solution X*, and coding matrix
E .k, we construct the augmented system AX = b.

B f%] e

A X

X = [x*;0] is a solution to the augmented system.

PURDUE W Distributed Fault Tolerant Linear | 14 / 74
UNIVERSITY c ° e o System Solver /

Erasure Coded Linear System Solver
Properties of A:
O If Ais SPD, then A is SPSD;
O The null space basis of A is {_‘H;

O Any solution of the augmented system can be written as

2 -0 L)

Based on the properties of A, we can recover the true solution as follows:

-2 [5)

PURDUE ‘_w_‘ Distributed Fault Tolerant Linear | 1 74
UNIvERSITY a ° e o System_Solver >/

Erasure Coded Linear System Solver

A Ap Z;

When faults happen, we can compress the augmented system to a purified system.
A’ Ay Z;
z,” z,” ETAE

AR

3 (2o

Theorem

If [c; r] is a solution for the purified system, then X = [c; f; r] is a solution to the
augmented system.

PURDUE ‘_w_‘ Distributed Fault Tolerant Linear | 1 74
UNIvERSITY a ° e o System_Solver e/

| Coding Matrix

O There is always a solution to the augmented system for faults happening on any
rows, as long as total number of faults < k.

O Given any solution computed with faulty components, we can extract and recover
a solution for the original system.

Desiderata of E:

O Satisfy properties of Kruskal rank, which means every subset of k rows of matrix
E is linearly independent.

O Be as sparse as possible to minimize the fill in the augmented matrix.

PURDUE (DH(2)—(DH()——(5) Distributed Fauit Tolerant Linear | S
UNIVERSITY a ° e o System Solver /

| Coding Matrix

Proposed Coding Matrix £

An n x k matrix E satisfies the 0
recovery-at-random property if a
random subset of k rows (selected
uniformly with replacement) is
rank k with probability
approaching 1.

e 06 O OO e
e OO O e o
OO O e o o
OO e e o O
S e e 0 OO
e ¢ ¢ O O

PURDUE ‘_w_‘ Distributed Fault Tolerant Linear | 1 74
UNIvERSITY a ° e o System_Solver &/

| Coding Matrix

Let p be the number of nonzeros per row in E and Let E’ be a submatrix of E formed
by selecting any p rows of matrix E. The matrix E’T has rank p.

All rows have distinct All rows have same Some rows from casel
non-zero structure. non-zero structure. and Some from case2.
e o o e ¢ ¢ 0 0O e ¢ ¢ 0 0 O

o o o e ¢ ¢ 0 0 O 0O ¢ ¢ ¢ 0 O

° e 0 0 O 0O ¢ ¢ ¢ 0 O

PURDUE (DH(2)}—(DH()——(5) Distributed Fauit Tolerant Linear | -
UNIVERSITY a ° e o System Solver /

| Coding Matrix

Theorem

The probability that a randomly chosen set of k rows from the matrix E are linearly

e \PT!
dependent is less than (—) .
p+1

Proof: A sufficient condition for k rows to be linearly dependent is that some selection
of p + 1 rows from these k rows have the same non-zero structure. There are k
distinct non-zeros structures for the matrix E.

Li) () =Gr)

As p increases, this probability rapidly approaches 0, which means that the matrix E is
recovery-at-random.

PURDUE ‘_k“_‘ Distributed Fault Tolerant Linear | 20 / 74
UNIvERSITY a ° e o System_Solver 0/

| Coding Matrix

To keep the coding matrix and the associated augmented matrix sparse, p should as
small as possible.

The expected number of rows from among k randomly selected rows of matrix E that

. In k
have same nonzero structure is O W .
nin

Define a random variable M to be the number of rows that have the same non-zero
structure when we select k rows uniformly at random from the matrix E.

K\ (kY [1\" 1\ ! e\t
= = — -_ - < -
== (1) (5) (5) (1-%) =+
Distributed Fault Tolerant Linear
%RUE a ° e o System_Solver | 21774

Coding Matrix

The expected number of rows E(M) is given by:

k
E(M)=> t-Pr(M=t)

In k

Chnk k
=Y t:-Pr(M=t)+ > t-Pr(M=t)
t=1 t=fnk
clnk 2)
ik 0k k (
< -Pr(M =t k-Pr(M=t
<D g M=+ > k- Pr(M=1)
t=1 t=pk
< clnk n 1
~Inlnk ke/2-1
In k
n (Inlnk)

PURDUE ‘_w_‘ Distributed Fault Tolerant Linear | 22 / 74
UNIvERSITY c ° e o System_Solver /

Parallel Implementation

Since A is SPD and A is SPSD, we can apply CG to AX = b.

Algorithm Fault Oblivious CG with a Two-term Recurrence

1: Let xp be the initial guess and rp = b — Axg, Bo = 0.

2: for t =0,1,... until convergence do
2
r,
3: if Fault detected then 5; = 0 else 3; = ”” t|||2|2
re—1|js
Pt = re + Bipr—1
q: = Ap:)
r
o ol
<qtapt>
7 Xt41 = Xt + Qe Pt
8: Fep1 = e — Qe Qe

PURDUE W Distributed Fault Tolerant Linear | 2 74
% c 0 e o System_Solver 3/

Parallel Implementation

Assume that each viable process can detect the breakdown of its neighbor processes.

O Inner products (r;, r:) and (q:, ps).

(e te) = <(rt)[n+k]\Ft7 (rt)[n+k]\Ft> (3)
<qt7 pt> = <(qt)[n+k]\Fu (pt)[n+k]\Ft>

O Matrix-vector multiplication q, = Ap,.
A;Pe = Ap ok \F (P n K\ F (4)
O When observing a fault, we truncate the update p, = r; + 3:p,_; to be
P:=T: (5)

This corresponds to a reset of the Krylov process.

Distributed Fault Tolerant Linear
PURDUE (D-(—(OH(D—() Jbued o | 27

Reordering and Partitioning

PURDUE

UNIVERSITY

\

4000 8000 11948
nz = 149090

(a) original matrix

4000 8000 11952
nz = 244690

(¢) augmented matrix

4000[

8000

4000

8000

11952

4000 8000
nz = 149090

(b) original reordered matrix

el

nz = 244690

(d) augment reordered matrix

Distributed Fault Tolerant Linear

System_Solver

11948

4000 8000 11952

25/ 74

Experimental Data

We select matrices from the University of Florida Matrix Collection for our tests.

bcsstk18 11,948 149,090
consph 83,334 6,010, 480
inline_1 503,712 36,816,170

ldoor 952,203 42 493,817

PURDUE ‘_w_‘ Distributed Fault Tolerant Linear | 26 / 74
UNIvERSITY c ° e o System_Solver e/

Experiment Setup

O The right-hand-side vector b is first normalized (which means ||b]| = 1). The

Ax—b
relative error rtol = W equals the residual norm ||r||2 = ||Ax — b||2.
2

O The termination condition isset to ||r|l2 < 107° for all matrices, and the maximum
number of iterations for CG is set to 10000.

O For the instantaneous fault arrival model, faults arrive at the 1000-th iteration.

O For the exponential fault arrival model, the fault rate is set as 10~3, which implies
the average number of steps between two consecutive faults is 1000.

Distributed Fault Tolerant Linear
PURDUE (D-(—(OH(OD—() Jbued o | 27 /7

Convergence--Fault-Free Mode

1 bcsstk18 10 consph
0
— k=0 — k=0
107} —_—k=a| 107} k=g |
— K=8 — K=8
10~ {1 w04 8
: \
w0~ 10~
g
51074 1074
[}
€107 10"
1079 | 10~

» i
1076—2000 4000 6000 8000 100000 2000 4000 6000 8000 10000

1 inline_1 10 Idoor
of
— k=0 — K=0
10~ —_—k=4| 107} — k=4 |
— k=8 — K=8
10~ {1 w03 1
2
&10-3 10~
g
310’4 " | 1074
[
€107 10~
1079 10~
107¢ 000 ¢ 00
Iterations Iterations

PURDUE ‘H_‘ Distributed Fault Tolerant Linear | 28 / 74
UNIvERSITY a o o o System_Solver 8/

Convergence--Faulty Mode

1 bcsstk18 10 consph
0
— K=0 — k=0
107} —_—k=a| 107} k=g |
— k=8 — k=8
5107 1 10’2\ 1
&i10- 10
g
€103 10~
\ N
1079 H 10-

7|

- i
1076—2000 4000 6000 8000 100000 2000 4000 6000 8000 10000

1 inline_1 10 Idoor
0
— k=0 — k=0
10- —_—=a]| W0} ks
— k=8 — k=8
10" 1 1073 1
1073 10
2
5107 | 107
Q
€107 10~
10- 10-
-7]
10 000 2000 4000 6000 8000 10000
Iterations Iterations

PURDUE ‘H_‘ Distributed Fault Tolerant Linear | 29 / 74
UNIvERSITY a o o o System_Solver o/

Speedup

PURDUE

UNIVERSITY

—— original system
bcsstk18

—— augment system

consph

.

a4
E
3
]
& b /
z T) Z 3 B 16
inline_1 Idoor
l / l /
=
3
& 4
& /

d

16

2 4 8
Number of Processors

16

2 4 8
Number of Processors

Distributed Fault Tolerant Linear

System_Solver

|30/74

| Time Overhead

bcsstk18 consph
2. 2.
2. 2.
52. 2.0 e
G175 1.75
€
&1.5 15
g S s
Sl .
. / 1.0
= 1.0 /E(X
0. ~— o.
0. ™ O T
inline_1 Idoor
2. 2.
2.25 2.25
§2.0 2.0
81 1
S15 15
s
1.25 1.25
@ -
Eio — 1.0 _—
e
0.75 0.75
0. 0.

T .
Number of Faults(K) Number of Faults(K)

PURDUE .H_‘ Distributed Fault Tolerant Linear I 17/ 74
UNIVERSITY a o o o System Solver 7

Convergence under Different Fault Rates (K = 8)

bcsstk18 consph
10! 10
—— original —— original

107! —— step=100 | 107 —— step=100 |

1o — step=200 |) ~ step=200 |
510 —— step=500 0 —— step=500
S10- —— step=1000 | —— step=1000 |
2
-1
=
]

R
[
o o o
SRS
‘(
I

- i
1076—2000 4000 6000 8000 100000 2000 4000 6000 8000 10000

1 inline_1 10 Idoor
0
— original —— original
10- —— step=100 | 1074 —— step=100 |
. ~—— step=200) e step=200
§10 —— step=500 | 10 —— step=500 |
5103 —— step=1000 | ;-3 —— step=1000 |
o
2z
=107
3 ——
1079
10~
) -1
10 000 2000 4000 6000 8000 10000

Iterations Iterations

PURDUE ‘H_‘ Distributed Fault Tolerant Linear 2774
UNIvERSITY a o o o System_Solver 32/

Different Fault Models

The exponential distribution is the most commonly used random fault arrival model. It
assumes the time to failure to be exponentially distributed.

The probability distribution function (PDF) of the time (7) to failure is given by:
P(t<t)=1—e€"""

Here r. is the failure rate.

PURDUE ‘_w_‘ Distributed Fault Tolerant Linear | 74
UNIvERSITY c ° e o System_Solver 3/

Convergence under Different Fault Arrival Models (K = 8)

1 bcsstk18 10 consph
0
~—— instant ~—— instant
107 —— uniform | 107} uniform |
1o — random | —— random |
: \
&i10- 10
g
8107 1074
7}
107 & 10~
1079 10~

» i
1076—2000 4000 6000 8000 100000 2000 4000 6000 8000 10000

inline_1 Idoor
10 = 10
~—— instant ~—— instant

107 —— uniform | 107} uniform |

10- — random | —— random
: \
1073 10
o
2z
81074 1074
5 —|
10~ 10~

10~ 10"

1]
10 2000 40006000 8000 100000 2000 4000 6000 8000 10000

Iterations Iterations

PURDUE ‘H_‘ Distributed Fault Tolerant Linear | 4774
UNIvERSITY a o o o System_Solver 3/

Conclusions

We show how to take recently proposed erasure coding schemes and apply them
efficiently on parallel/ distributed platforms.

O Creating a new encoding matrix that satisfies recovery requirements for almost all
sets of failing components;

O Partitioning these matrices and demonstrating their suitability w.r.t. parallel
execution (low fill, low added communication);

O Demonstrate good parallel performance and low time overhead;
O Robustness to different fault arrival models and arrival rates.

Our proposed erasure coded computation scheme is general, and can be applied to a
number of other problems.

RDUE W Distributed Fault Tolerant Linear 74
% ° ° o o System_Solver 3/

Adaptive Fault Tolerant
Linear System Solver

Adaptive Fault Tolerant Linear System Solver

The Distributed Fault Tolerant Linear System Solver runs the augmented system from
the beginning and can tolerate as many faults as the size of augmentation block during
the execution.

O System size is augmented (n — n + k).
O System property changes (SPD — SPSD).

O Computational overhead paid at each iteration.

Adaptive Fault Tolerant Linear
%RUE a ° e o e Svsti,m Solver | 36/ 74

Adaptive Fault Tolerant Linear System Solver

Adaptive Fault Tolerant Linear System Solver runs on the original system until a fault
occurs. The erased blocks are compensated for by the addition of an identical number
of rows (and columns) selected from the pre-computed coding blocks [E” A, ET AE].

O System size is the same (always n).
O System property is maintained (always SPD).

O Computational Overhead is negligible.

Adaptive Fault Tolerant Linear
% c ° e o ° Svsti,m Solver | 37174

Adaptive Fault Tolerant Linear System Solver

The initial solution of the original system can be written as:

Al = k] (6)

The augmented system can now be written as:

A Ap Z, Xc b.
AL’ Ay Z Xc|=| br (M)
z," z," ETAE | |x ETb
After erasures, we solve the new system:
A1l Z Xc| bc A
{le ETAE] [x,}_[ETb HESR ®)

Adaptive Fault Tolerant Linear
% c ° e o ° Svsti,m Solver | 38174

Adaptive Fault Tolerant Linear System Solver

Algorithm Adaptive Fault Oblivious CG

2
1: (Reliably) Compute and save the entries q3. o = lIre—1ll2
Zy,Z,,ETAE, ETb for matrix E £ (a,,py)
2: Alew) — A 14: Xe =Xe—1 + P,
3: b(cur) =b 15: et =Ti—1 — o, q,
4: Xg = the initial guess 16: if Faults detected then~
5: 1o = b() — Alxg 17: Al = (A 21
6: Bo=0 Z, E AE
7: for t = 1,... until convergence do b. — AoX
8: if Fault detected then 18: ple) — | 5 P2
9: P, =r 1 E b—22 Xr
10: else . _ Xc]
19: X; =
11: p,=r + M -p ‘ [O
: t t—1 ||rt—2H§ t—1 20: r = b(cur) _ A(cur)xt

122 g, =Alwp,

Adaptive Fault Tolerant Linear
PURDUE (D-(D—(O(D—() &me Faut | 207

| Reordering and Partition

0 O
‘ 20]

20 2
40

40| 40
60]
% o 80
80 80 100
100kl mo 120

20 40 60 80 100 01020 0 20 40 60 80 100 120
nz =594 nz =500 nz =4158

() Input matrix A (left) and Coding matrix B (b) Augmented System (Input matrix with cod-

(right) ing blocks)

0 20 40 60 80 100
nz =3244

(¢) Compensation of erasures in input matrix (d) Compensated matrix (of same size) after era-

from coding blocks sures

Adaptive Fault
M a o 9 o e System_Solver

UNIVERSITY.

Tolerant Linear

40 / 74

Experimental Data

We select matrices from the University of Florida Matrix Collection for our tests —
cbuckle and gyro_m are used to validate the convergence of adaptive fault tolerant
linear solver; consph and 1door are used to validate parallel scalability and robustness
to different fault arrival models.

cbuckle 13,681 676,515
gyro_m 17,361 340,431
consph 83,334 6,010,480
ldoor 952,203 42 493,817

Adaptive Fault Tolerant Linear
% ° o e o ° Svstizm Solver 41774

Experiment Setup

O The right hand side b is normalized (||b||2 = 1). The relative residual
rtol = 1 HbeIb(equals to ||r]|2 = ||Ax — b||2) is calculated.

O ||r||2 is monitored at each iteration and the termination condition is set as

|[F|l2 < 107® and the maximum number of iterations of CG is set to 10000 for all
matrices.

O For parallel performance, the matrices are first reordered using Metis.

O For exponential fault arrival model, different fault rates(r) ranging from ——1—
orig_iter
3

——=—— are tested.
orig_iter

to

O In our tests, we set the first fault to happen at %.

Adaptive Fault Tolerant Linear
UI?«[IJ\BPS[IJT]EY: ° ° e o o Svstlz:m Solver 42 /74

Convergence

100 cbuckle 10 gyro_m
no faults == no faults
rate=1/orig_iter | 107 = rate=1/orig_iter
rate=2/orig_iter 2 rate=2/orig_iter
rate=3/orig_iter 10 = rate=3/orig_iter
1073
1079
1079
109
00 1000 2000 3000 4000
Iterations Iterations
10 consph 10 Idoor
= no faults = no faults
107} —— rate=1/orig_iter | 107} —— rate=1/orig_iter
I rate=2/orig_iter rate=2/orig_iter
3| !) |
glo = rate=3/orig_iter 10 = rate=3/orig_iter
w
1073
1074
1079
1079
00 O 2000 4000 6000 8000 10000
Iterations Iterations

Adaptive Fault Tolerant Linear
%RUE a ° o o e Svst?am Solver 43174

Speedup

First, we show the parallel performance of adaptive linear solver under exponential fault
arrival model.

consph Idoor
64 o 64 o
32 K=1 37 — K=1
K=2 K=2
ol6l — K=4 16 — K=4
g
3 8 8|
o
(%]
4 4
2 2
N—27 738 16 32 64 Y 2 4 B8 16 32 6
Number of Processors Number of Processors

Adaptive Fault Tolerant Linear
%RUE c ° e o ° Svsti,m Solver | a4 s

Speedup

We all show the parallel performance of adaptive linear solver under instantaneous fault
arrival model.

consph Idoor
64 o 64 o
32 K=1 37 — K=1
K=2 K=2
ol6l — K=4 16 — K=4
g
3 8 8|
o
(%]
4 4
2 2
N—27 738 16 32 64 Y 2 4 B8 16 32 6
Number of Processors Number of Processors

Adaptive Fault Tolerant Linear
%RUE c ° e o ° Svsti,m Solver | 45 /74

Overhead

The time overhead of adaptive linear solver is:

Instantaneous model) Exponential model
—— consph . —— consph

1.8 —— Idoor 1.8 —— Idoor

©

1.6 1.6

<

21.4 1.4

3 .

[

E1.2 1.2

~ J
loﬁ 10/ hd \d
0.8 T 2 7 0§ T 2 7

Number of Faults Number of Faults

PURDUE ‘_‘_“_‘ Adaptive Fault Tolerant Linear
% a o e o System_Solver 46/ 74

Conclusion

We have developed an Adaptive Fault Tolerant Linear System Solver capable of scaling
to large numbers of processors and associated faults.

O Coding blocks are only added when faults are detected;
O Convergence properties of adaptive system closely follow those of original system;
O The solver is robust to a wide range of fault characteristics.

O Speedup is near linear and time overhead is small;

Adaptive Fault Tolerant Linear
PURDUE (D-(D)—(O(D—() Lme maut | 77

Background
and Motivation

Adaptive Fault Tolerant
Linear System Solver

Plan of Research

Distributed Fault Tolerant
Linear System Solver

Erasure Coded
Eigensolver

I Reformalization

Given an eigenvalue problem

Ax* = N*x*, (9)
where A € R"*". We construct a generalized eigenvalue problem:
A AE X / E X
e enael [=2 e e 1) 0)
ﬁ—/ %:—/
A X B X

where E € Rk is a coding matrix, then x* = x + Er and * = \.

RI{I}}RI?ITEE G ° o o o Erasure Coded Eigensolver 48 / 74

We can write the generalized eigenvalue system as:

Au A 4 |c Bii B @i |c
AL, Awn Z| |f| =A|BL Bn Qf |f (11)
zl zT R||r QF Qf s||r
where
Z A A Q1 Bii B
= E = E d
2l e [8)-1 afe
R =ETAE, S=ETBE.

PURDUE (D-()—(-(0—0©)

49 / 74

Equivalence of Eigensystems

The generalized eigenvalue system will become the following purified n x n system
when faults happen:

Au i || _y |Bu M| e _ [AB —Ap| .
z7 Rl || =M YT s| |l T YT -z

If [c; r] is the solution of the purified system, then [c; f; r] is the solution of the
generalized eigenvalue system.

PIIJVI}R[IITEE G 0 o o e Erasure Coded Eigensolver 50 / 74

The purified system gives us

A11C + er —)\Bllc —)\er =)\5121: —)\Alzf (12)
ZTc+ Rr —AQ] —\Sr=\QJf - \Z]f (13)

Equation (13) —E; x Equation (12) yields
EJ Aiac + E] Zor — AE) Bioc — AE] Qor = EJ (ABay — A)f (14)
Premultiplying Equation (14) by E{T gives
Arac+ Apaf + Zor = ABiac + AByf + AQar

which is the second equation in the Equation (11).

PURDUE D-OD—(O-0—0) 1178

As A and B are SPSD, the potential eigenvectors may fall into their null space. We
add perturbation to the augmented systems to avoid the problem.

) E

- A AE B _
PP |ET e, +EE

A= |EA el + ETAE
The perturbation is added to the lower-right k x k block (¢ = 107 used here).
A, and B, are and TraceMin can be used to solve the generalized

eigenvalue problem.

Purification () will be done once the trace is small enough.

PURDUE (D-O—O-0—0) 27

For the system A,X = AB,X, we obtain the approx (i, u)(approximate true eigenpairs
Av = \v) after TraceMin iterations. Hence, we have:

A(u+0u) = (p+ dp)(u + du) (15)
Also,
u'su=0 (16)
Combining Equation (15) and Equation (16), we will get the linear system:
A—pul, —u||ou] [—(Au— pu)
A I a7

Based on du and du, we can update the approximation of the eigenpairs and continue
the TraceMin procedure.

PURDUE ()-OD—(O-0—0) 2,7

Algorithm Fault Oblivious Trace Minimization

1: Choose an n X s random matrix V; of full rank such that VlTép Vi = I(s = 2p).

2: for t = 0,1,... until convergence do
3: Compute Wi = AN,, V; and the interaction matrix Hy = V7 W,
4: Compute the eigenpairs of (Y, ©¢) for H.
5: Do the purification if the purification condition is satisfied.
6: Sort the eigenvalue in ascending order and rearrange eigenvectors.
7 Compute the corresponding Ritz Vectors X; = V;Y:.
8: Compute the residue R; = A,,Xt BpXt@t
9: Test for Convergence.
10: Solve the following linear system approximately via the CG to get A;.
A,, BoXe| [Af] _ [ApX:
X:" B, 0 [L:] - [0 }
11: gp—orthonormalize Xt — A¢ into Viyg.

12: return ©.

PURDUE (D)-()—(-(0—0©)

54 / 74

The operations affected by faults in a distributed environment are the aggregation
operations — the matrix-matrix and matrix-vector multiplication.

The Matrix-Matrix Operation:

(Bp, Vo) = ((Ap)ine o (VO)inia)
By, %) = ((Bp)nesris (Vs
By, X¢) = ((Bp)nr\Fir (X))

The Matrix-Vector Operation in Step 10:

(B,) = (Aol inres (B

PURDUE (D-O—O-0—0) 5571

Experimental Data

We select two matrices from the University of Florida Matrix Collection.

minsurfo 40, 806 203,622 Optimization Problem
s3dkq4m2 90, 449 4,427,725 Structural Problem

RII.]}}RUTEE G ° e o o Erasure Coded Eigensolver 56 / 74

For validation of convergence, we monitor linllz 1H2 .The stopping criteria is set as
10798 for all the matrices.

au, —orl, . .
% and construct t = [ty, tp, - - , t1p]. Then final relative error

Define t; =
rtol = ||t||2.

Augmented blocks with different sizes are added to the original system. K =0
corresponds to the original system; K = d corresponds to an augmented block
size of d, and d faults happen during the execution (d = 1,8, 16).

PURDUE ()-)—CG)H)—C) 57 / 74

Leverage score is used to sample a large matrix and can measure the importance
of each row of A. For A= UXV (SVD decomposition), the leverage score for
each row is calculated as follows:

1) =3 UGi.J)

Two different fault arrival models, instantaneous and exponential, were tested.
4

to
orig_iter orig_iter

For exponential fault model, failure rates ranging from

were tested.

PURDUE ()H)—CG)H)—(6) 58 / 74

Convergence for Random Case (minsurfo)

— K=0 —— K=1 —— K=8 —— K=16
start points=orig_iter/2 N start points=orig_iter/3
0
10~ 10~
510° \ 10~ \
&10- 10-
AN
21074 10|
E &
10~ N 10~
10 N\ o \
1076—T000 2000 3000 4000 5000 10”0 T000 2000 3000 4000 5000
1 start points=orig_iter/4 N start points=orig_iter/5
0 0
10- 10-
510' \ 10~ \\
@10~ 10-
2
51074 10~
2
10~ 10~
N
10~ \ 10~
1077 \ 10-
0 T000 2000 3000 4000 5000
Iterations, Iterations

RI{I}}RI?]TEE G ° o o e Erasure Coded Eigensolver 59 /74

Convergence for Random Case (s3dkq4m2)

— K=0 — K=1 — K=8 — K=16
1 start points=orig_iter/2 N start points=orig_iter/3
107 107
51077 1077
51073 10
2
£1079 1074
K]
1075 107
o \ o \
1076—T000 2000 3000 4000 5000 1070~ T000 2000 3000 4000 5000
1 start points=orig_iter/4 N start points=orig_iter/5
0 0
10 107
51077 1079
51073 10
2
£104 1074
g
1079 1079
1079 ‘ 1079 \
- -
10 T000 04000 5000 10 T000 20003000 4000 5000
Iterations Iterations

RI{I}}RI?]TEE G ° o o o Erasure Coded Eigensolver 60 / 74

Convergence for Worst Case (minsurfo)

— K=0 — K=1 —— k=8 —— K=16
start points=orig_iter/2 N start points=orig_iter/3
0

10 10
10~ 10~

10~ \ 10- \)
104 1074 \\
10~ 10"

M N \

N | ™ =

107 —To00—2000~"3000"2300— 5080 10" 5—T000—2000~3000 20005000

Relative Error

1 start points=orig_iter/4 N start points=orig_iter/5
0
10- 10-
5107 10~
51077 1073
2ol N o N
=
€10 \\ 10~ \\ \\
10~ . 10~ "
10"—rmm—m>5ﬁurm 10- -
0 1000 0
Iterations, Iterations

RI{I}}RI?]TEE G ° o o e Erasure Coded Eigensolver 61 / 74

Convergence for Worst Case (s3dkq4m2)

— K=0 — k=1 — k=8 — K=16
1 start points=orig_iter/2 N start points=orig_iter/3
107 107
510” 1077
51073} 1073}
2
&1074| 1074
2 oo \ § \
10" 10"
1079 \X\\ 1079 \\\
—
10 —T000—2000~ 300045005000 107 0020005000
1 start points=orig_iter/4 N start pomts orig_iter/5
0

fory
5}

Relative Error

o
1071 107}
1072 1072
- 1073
1079 1079
107 1079
1079 \\\'M 1079 \
I

1077 0 10”1000 2000
Iterations Iterations

RI{I}}RI?]TEE G ° o o o Erasure Coded Eigensolver 62 / 74

I
i

Coding blocks are periodically updated using estimates of leverage scores from prior
iteration. The coding matrix E is adaptively updated as follows:

E(i,:) = E(i,:) @

Here E(i,:) is the i row of coding matrix E, /(i) is the leverage score of it" row and |
is the average leverage score of all rows.

PURDUE D-OD—O-0—0) 27

Convergence of Updating Method (minsurfo)

— k=0

— K=1

start points=orig_iter/2

— k=8

— K=16

start points=orig_iter/3

107 107
51077 109
51073 10
2
51079 1074
K]
1075 1079
1079 1079 \
_ -
10 TO00 2000 3000 4000 5000 10 03000 4000 5000
1 start points=orig_iter/4 N start points=orig_iter/5
0 0
107 107
5107 109
51073 10
2
Z104 1074
k]
1079 107
1079 \ 1079 \
1077 05000 100 T 7000 5000

0
Iterations

RIIJ}}PSI;]TEE G ° o o o Erasure Coded Eigensolver

20 00
Iterations

64 / 74

Convergence of Updating Method (s3dkq4m2)

— K=0 — K=1 — K=8 — K=16
1 start points=orig_iter/2 N start points=orig_iter/3
107 1077
51077 107
51073} 1073}
2
51079 1074
kol
1075 107
1051000 2000 3000 4000 5000 10°7¢ 0 3000 4000 5000
1 start pmnts orig_iter/4 N start points=orig_iter/5
0 0
10 107
51077 107
51073 10
2
51074 10|
g
1075 1075 \
1079 1079
1076100 3005000 10701000 20 004000 5000
Iteratlons Iterations

RI{I}}RI?]TEE G ° o o o Erasure Coded Eigensolver 65 / 74

Importance Results (minsurfo)

PURDUE

UNIVERSITY.

—— Basic Method
fault rate=1/orig_iter

~—— Updated Method

fault rate=2/orig_iter

1 10
107 107
51077 109
51073 10
2
2104 1074
1075 1079
1079 1079
1076—T000 2000 3000 4000 5000 10”0—T000 2000 3000 4000 50
1 fault rate=3/orig_iter 1 fault rate=4/orig_iter
0 0
107 107
5107 109
51073 10
2
2104 1074
k]
1079 107
1079 1079
-7} - 7)
10 010

a o o o o Erasure Coded Eigensolver

Iterations

Iterations

66 / 74

I Importance Results (s3dkg4m2)

PURDUE

UNIVERSITY.

—— Basic Method
fault rate=1/orig_iter

~—— Updated Method

fault rate=2/orig_iter

1 10
107 107
51077 109
51073 10
2
£10-4 1074
K]
1075 107
1079 1079
1076—T000 2000 3000 4000 5000 10”0—T000 2000 3000 4000 50
1 fault rate=3/orig_iter 1 fault rate=4/orig_iter
0 0
107 107
5107 109
51073 10
2
2104 1074
k]
1079 107
107 1079
1077 0 1077

a o o o o Erasure Coded Eigensolver

Iterations

Iterations

67 / 74

Comparison of Results (minsurfo)

—— Real Leverage Score —— Estimated Leverage Score
1 fault rate=1/orig_iter N fault rate=2/orig_iter

107 107
51077 107
51073} 1073}
2
1079 1074
kol
1075 1075

1076 1076

1076—T000 2000 3000 4000 5000 10”0~ T000 2000 3000 4000 5000

1 fault rate=3/orig_iter 1 fault rate=4/orig_iter
0 0

107 107
51077 107
51073 1073}
g)
10~ 10~
]
1079 1079

1076 1079

107 0 1077 0

Iterations Iterations

RI{IVI}PSI?]TEE G ° o o o Erasure Coded Eigensolver

68 / 74

| Comparison of Results (s3dkqg4m2)

—— Real Leverage Score —— Estimated Leverage Score
1 fault rate=1/orig_iter N fault rate=2/orig_iter

107 107
5 1077 1077
51073} 1073}
2
51079 1074
)

1075 107
107 107

1076—T000 2000 3000 4000 5000 1001000 03000 4000 5000
1 fault rate=3/orig_iter 1 fault rate=4/orig_iter
0 0

107 107

L1079 109

3

51073 10

]
2

104 \ 10| \

k]

<105 \ 1079 \
1079 1079

N

-)
10 T000 04000 5000 10 T000 2000 3000
Iterations Iterations

RI{I}}RI?]TEE G ° o o o Erasure Coded Eigensolver 69 / 74

2000 5000

Different Fault Arrival Models (minsurfo)

—— original system —— K=8 —— K=16
1 fault rate=1/orig_iter N fault rate=2/orig_iter
107 } 1077
51077 ‘ 107
51073} 1073}
2 |
51079 1074
)
1075 t 107
1076 ‘ 107 !
10- ‘ AN 10- !
500 1500 2500 0 500 1500 2500 0
1 fault rate=3/orig_iter 1 fault rate=4/orig_iter
0 0
107 } 107
51077 ‘ 107
51073 10
2 |
51074 10|
T
10 I 107
1079 ‘ 1079 \-D
- -7) \
1076 T 0 1076500 15002500 0
Iterations Iterations

RII.I}}RI;]TEE G ° o o o Erasure Coded Eigensolver 70 / 74

Different Fault Arrival Models (s3dkq4m2)

—— original system —— K=8 —— K=16
1 fault rate=1/orig_iter N fault rate=2/orig_iter
107 1077
1079 107
g
51073} 1073}
o
2
71079 1074
)
1075 107
1076 1076
107 T000 7000 0 107 T000 7000 0
1 fault rate=3/orig_iter 1 fault rate=4/orig_iter
0 0
107 107
1079 107
g
51073 10
)
2. 4
10 10
]
10 107
1079 1079
107 0 1077 0
Iterations Iterations
PURDUE (1)H(2) (3)H(4) Erasure Coded Eigensolver
UNIVERSITY.

71/ 74

We have developed an , Which can compute
real eigenvalues in faulty environments. We show that our methods:

Converge to real eigenvalues in both random and worst cases;
Utilize estimated leverage score to further improve the convergence for worst case;

Are robust to different fault arrival models including instantaneous and
exponential fault model;

PURDUE ()-)—C) O) 72 /74

Plan of Research

Plan of Research

O Developing sparse coding schemes for matrix computation.
O Developing distributed fault tolerant linear solver.

O Developing adaptive fault tolerant linear solver.

O Developing erasure coded eigensolver.

O Developing a distributed fault tolerant eigensolver.

O Developing erasure coded matrix computations for other linear algebraic methods.

PURDUE c ° e ° Plan of Research | 73 / 74

IIIIIIIIII

Thank You.

	Background and Motivation
	Distributed Fault Tolerant Linear System Solver
	Adaptive Fault Tolerant Linear System Solver
	Erasure Coded Eigensolver
	Plan of Research

