
Scaling Linear Solvers to Petascale Systems



Analytical Modeling – Basics

• A number of performance measures are intuitive.

• Wall clock time – the time from the start of the first processor to
the stopping time of the last processor in a parallel ensemble.
But how does this scale when the number of processors or
problem instance is changed, or the program is ported to
another machine?

• How much faster is the parallel version? This begs the obvious
followup question – what is the baseline serial version with
which we compare? Can we use a suboptimal serial program
to make our parallel program look

• Raw FLOP count – What good are FLOP counts when they dont
solve a problem?



Scaling Characteristics of Parallel Programs

• The efficiency E of a parallel program can be written in terms
of speedup S, serial time TS and parallel time TP as:

E =
S

p
=

TS

pTP

or

E =
1

1 + To
TS

. (1)

• The total overhead function To here is defined as To = pTP −TS.

• The total overhead function To is an increasing function of p.



Scaling Characteristics of Parallel Programs

• For a given problem size (i.e., the value of TS remains
constant), as we increase the number of processing elements,
To increases.

• The overall efficiency of the parallel program goes down. This is
the case for all parallel programs.



Scaling Characteristics of Parallel Programs

• Total overhead function To is a function of both problem size TS

and the number of processing elements p.

• In many cases, To grows sublinearly with respect to TS.

• In such cases, the efficiency increases if the problem size
is increased keeping the number of processing elements
constant.

• For such systems, we can simultaneously increase the problem
size and number of processors to keep efficiency constant.

• Such systems are called scalable parallel systems.



Scaling Characteristics of Parallel Programs

• Recall that cost-optimal parallel systems have an efficiency of
Θ(1).

• Scalability and cost-optimality are therefore related.

• A scalable parallel system can always be made cost-optimal
if the number of processing elements and the size of the
computation are chosen appropriately.



Isoefficiency Metric of Scalability

• For a given problem size, as we increase the number of
processing elements, the overall efficiency of the parallel
system goes down for all systems.

• For some systems, the efficiency of a parallel system increases
if the problem size is increased while keeping the number of
processing elements constant.



Isoefficiency Metric of Scalability
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Variation of efficiency: (a) as the number of processing
elements is in creased for a given problem size; and (b) as
the problem size is increased for a given number of processing
elements. The phenomenon illustrated in graph (b) is not
common to all parallel systems.



Isoefficiency Metric of Scalability

• What is the rate at which the problem size must increase with
respect to the number of processing elements to keep the
efficiency fixed?

• This rate determines the scalability of the system. The slower this
rate, the better.



Isoefficiency Metric of Scalability

• We can write parallel runtime as:

TP =
W + To(W,p)

p
(2)

Here, W is the problem size, i.e., the number of basic steps in
the algorithm.

• The resulting expression for speedup is

S =
W

TP
=

Wp

W + To(W,p)
.

• Finally, we write the expression for efficiency as

E =
S

p
=

W

W + To(W,p)
=

1

1 + To(W, p)/W
. (3)



Isoefficiency Metric of Scalability

• For scalable parallel systems, efficiency can be maintained at
a fixed value (between 0 and 1) if the ratio To/W is maintained
at a constant value.

• For a desired value E of efficiency,

E =
1

1 + To(W,p)/W
,

To(W,p)

W
=

1 − E

E
,

W =
E

1 − E
To(W,p). (4)

• If K = E/(1 − E) is a constant depending on the efficiency to
be maintained, since To is a function of W and p, we have

W = KTo(W, p). (5)



Isoefficiency Metric of Scalability

• The problem size W can usually be obtained as a function of p
by algebraic manipulations to keep efficiency constant.

• This function is called the isoefficiency function.

• This function determines the ease with which a parallel
system can maintain a constant efficiency and hence achieve
speedups increasing in proportion to the number of processing
elements.



Pseudo-Analytical Approach to Performance

Prediction

• Analytical approaches provide precise asymptotic estimates
of scalability. They can be applied to algorithms and provide
gross guidance to architecture design.

• Empirical approaches work on performance extrapolation.
They are often inaccurate and work on realizations of
programs. They provide little guidance to algorithm and
architecture designers.

• Simulation-based approaches combine static analysis, dynamic
profiling, and a discrete-event based simulation. They are often
slow, and are only as accurate as the simulation.

• We adopt an analytical approach to performance modeling,
but parametrize models using experimental data.



Pseudo-Analytical Approach to Performance

Prediction

• Approach based on factoring out program behavior and
machine characteristics.

• Characterize program behavior (computation requirements,
communication overheads) using experimental data fitted on
asymptotic estimates.

• Characterize platform using experimental data for communication
overheads for underlying permutations.

• Match program and platform characterizations for accurate
performance modeling.



Scalability Case Study: Spike Solver Performance

Table 1: Spike TA0 Algorithm Steps

Number Description Cost

1 Factorize the Diagonal Blocks O(n × k2)
2 Compute Tips of Spikes O(k3)
3 Communicate Tips of Spikes O(k2)
4 Factorize The Reduced System O(k3)
5 Modify the Right Hand Side O(n × k)
6 Communicate Tips of MRHS O(k)
7 Solve the Reduced System O(k2)
8 Communicate Soln. of Reduced System O(k)
9 Matrix Vector Multiplication O(k2)
10 Retrieve the Solution O(n × k)



Scalability Case Study: Spike Solver Performance
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Scalability Case Study: Spike Solver Performance
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Scalability Case Study: Spike Solver Performance

• Isoefficiency of the Spike solver is close to linear (O(p)).

• This implies that strong scaling should yield close to linear
speedups.



Scalability Case Study: Spike Solver Performance
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Scalability Case Study: Spike Solver Performance
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Scalability Case Study: Spike Solver Performance

Shared address space nodes, though complicate life!
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Scalability Analysis: Conclusions

• Proposed and demonstrated a novel pseudoanalytical
approach for scalability analysis.

• Technique factors application and architecture abstractions to
enable portability studies.

• Application to Spike solver shows high degree of predictive
accuracy.

• Demonstrated projected scaling of Spike to petascale.



Scalability Analysis: Conclusions

• Complete study by analysing a broader class of platforms.

• Characterize other test-cases to fully validate scalability
analysis methodology.
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Other Scalability Metrics

• A number of other metrics have been proposed, dictated by
specific needs of applications.

• For real-time applications, the objective is to scale up a system
to accomplish a task in a specified time bound.

• In memory constrained environments, metrics operate at the
limit of memory and estimate performance under this problem
growth rate.



Other Scalability Metrics: Scaled Speedup

• Speedup obtained when the problem size is increased linearly
with the number of processing elements.

• If scaled speedup is close to linear, the system is considered
scalable.

• If the isoefficiency is near linear, scaled speedup curve is close
to linear as well.

• If the aggregate memory grows linearly in p, scaled speedup
increases problem size to fill memory.

• Alternately, the size of the problem is increased subject to an
upper-bound on parallel execution time.



Scaled Speedup: Example

• The serial runtime of multiplying a matrix of dimension n×n with
a vector is tcn

2.

• For a given parallel algorithm,

S =
tcn

2

tc
n2

p + ts log p + twn
(6)

• Total memory requirement of this algorithm is Θ(n2).



Scaled Speedup: Example (continued)

Consider the case of memory-constrained scaling.

• We have m = Θ(n2) = Θ(p).

• Memory constrained scaled speedup is given by

S′ =
tcc × p

tc
c×p

p + ts log p + tw
√

c × p

or S′ = O(
√

p).

• This is not a particularly scalable system.



Scaled Speedup: Example (continued)

Consider the case of time-constrained scaling.

• We have TP = O(n2/p).

• Since this is constrained to be constant, n2 = O(p).

• Note that in this case, time-constrained speedup is identical to
memory constrained speedup.

• This is not surprising, since the memory and time complexity of
the operation are identical.



Scaled Speedup: Example

• The serial runtime of multiplying two matrices of dimension n×n
is tcn

3.

• The parallel runtime of a given algorithm is:

TP = tc
n3

p
+ ts log p + 2tw

n2

√
p

• The speedup S is given by:

S =
tcn

3

tc
n3

p + ts log p + 2tw
n2
√

p

(7)



Scaled Speedup: Example (continued)

Consider memory-constrained scaled speedup.

• We have memory complexity m = Θ(n2) = Θ(p), or n2 = c × p.

• At this growth rate, scaled speedup S′ is given by:

S′ =
tc(c × p)1.5

tc
(c×p)1.5

p + ts log p + 2tw
c×p√

p

= O(p)

• Note that this is scalable.



Scaled Speedup: Example (continued)

Consider time–constrained scaled speedup.

• We have TP = O(1) = O(n3/p), or n3 = c × p.

• Time-constrained speedup S′′ is given by:

S′′ =
tcc × p

tc
c×p

p + ts log p + 2tw
(c×p)2/3

√
p

= O(p5/6)

• Memory constrained scaling yields better performance.



Serial Fraction f

• If the serial runtime of a computation can be divided into a
totally parallel and a totally serial component, we have:

W = Tser + Tpar.

• From this, we have,

TP = Tser +
Tpar

p
.

TP = Tser +
W − Tser

p
(8)



Serial Fraction f

• The serial fraction f of a parallel program is defined as:

f =
Tser

W
.

Therefore, we have:

TP = f × W +
W − f × W

p

TP

W
= f +

1 − f

p



Serial Fraction

• Since S = W/TP , we have

1

S
= f +

1 − f

p
.

• From this, we have:

f =
1/S − 1/p

1 − 1/p
. (9)

• If f increases with the number of processors, this is an indicator
of rising overhead, and thus an indicator of poor scalability.



Serial Fraction: Example

Consider the problem of extimating the serial component of
the matrix-vector product.

We have:

f =

tc
n2

p +ts log p+twn

tcn2

1 − 1/p
(10)

or

f =
tsp log p + twnp

tcn2
×

1

p − 1

f ≈
ts log p + twn

tcn2

Here, the denominator is the serial runtime and the numerator
is the overhead.


