
Scaling Linear Solvers to Petascale Systems

Analytical Modeling – Basics

• A number of performance measures are intuitive.

• Wall clock time – the time from the start of the first processor to
the stopping time of the last processor in a parallel ensemble.
But how does this scale when the number of processors or
problem instance is changed, or the program is ported to
another machine?

• How much faster is the parallel version? This begs the obvious
followup question – what is the baseline serial version with
which we compare? Can we use a suboptimal serial program
to make our parallel program look

• Raw FLOP count – What good are FLOP counts when they dont
solve a problem?

Scaling Characteristics of Parallel Programs

• The efficiency E of a parallel program can be written in terms
of speedup S, serial time TS and parallel time TP as:

E =
S

p
=

TS

pTP

or

E =
1

1 + To
TS

. (1)

• The total overhead function To here is defined as To = pTP −TS.

• The total overhead function To is an increasing function of p.

Scaling Characteristics of Parallel Programs

• For a given problem size (i.e., the value of TS remains
constant), as we increase the number of processing elements,
To increases.

• The overall efficiency of the parallel program goes down. This is
the case for all parallel programs.

Scaling Characteristics of Parallel Programs

• Total overhead function To is a function of both problem size TS

and the number of processing elements p.

• In many cases, To grows sublinearly with respect to TS.

• In such cases, the efficiency increases if the problem size
is increased keeping the number of processing elements
constant.

• For such systems, we can simultaneously increase the problem
size and number of processors to keep efficiency constant.

• Such systems are called scalable parallel systems.

Scaling Characteristics of Parallel Programs

• Recall that cost-optimal parallel systems have an efficiency of
Θ(1).

• Scalability and cost-optimality are therefore related.

• A scalable parallel system can always be made cost-optimal
if the number of processing elements and the size of the
computation are chosen appropriately.

Isoefficiency Metric of Scalability

• For a given problem size, as we increase the number of
processing elements, the overall efficiency of the parallel
system goes down for all systems.

• For some systems, the efficiency of a parallel system increases
if the problem size is increased while keeping the number of
processing elements constant.

Isoefficiency Metric of Scalability

(a) (b)

E

W

Fixed number of processors (p)Fixed problem size (W)

p

E

Variation of efficiency: (a) as the number of processing
elements is in creased for a given problem size; and (b) as
the problem size is increased for a given number of processing
elements. The phenomenon illustrated in graph (b) is not
common to all parallel systems.

Isoefficiency Metric of Scalability

• What is the rate at which the problem size must increase with
respect to the number of processing elements to keep the
efficiency fixed?

• This rate determines the scalability of the system. The slower this
rate, the better.

Isoefficiency Metric of Scalability

• We can write parallel runtime as:

TP =
W + To(W,p)

p
(2)

Here, W is the problem size, i.e., the number of basic steps in
the algorithm.

• The resulting expression for speedup is

S =
W

TP
=

Wp

W + To(W,p)
.

• Finally, we write the expression for efficiency as

E =
S

p
=

W

W + To(W,p)
=

1

1 + To(W, p)/W
. (3)

Isoefficiency Metric of Scalability

• For scalable parallel systems, efficiency can be maintained at
a fixed value (between 0 and 1) if the ratio To/W is maintained
at a constant value.

• For a desired value E of efficiency,

E =
1

1 + To(W,p)/W
,

To(W,p)

W
=

1 − E

E
,

W =
E

1 − E
To(W,p). (4)

• If K = E/(1 − E) is a constant depending on the efficiency to
be maintained, since To is a function of W and p, we have

W = KTo(W, p). (5)

Isoefficiency Metric of Scalability

• The problem size W can usually be obtained as a function of p
by algebraic manipulations to keep efficiency constant.

• This function is called the isoefficiency function.

• This function determines the ease with which a parallel
system can maintain a constant efficiency and hence achieve
speedups increasing in proportion to the number of processing
elements.

Pseudo-Analytical Approach to Performance

Prediction

• Analytical approaches provide precise asymptotic estimates
of scalability. They can be applied to algorithms and provide
gross guidance to architecture design.

• Empirical approaches work on performance extrapolation.
They are often inaccurate and work on realizations of
programs. They provide little guidance to algorithm and
architecture designers.

• Simulation-based approaches combine static analysis, dynamic
profiling, and a discrete-event based simulation. They are often
slow, and are only as accurate as the simulation.

• We adopt an analytical approach to performance modeling,
but parametrize models using experimental data.

Pseudo-Analytical Approach to Performance

Prediction

• Approach based on factoring out program behavior and
machine characteristics.

• Characterize program behavior (computation requirements,
communication overheads) using experimental data fitted on
asymptotic estimates.

• Characterize platform using experimental data for communication
overheads for underlying permutations.

• Match program and platform characterizations for accurate
performance modeling.

Scalability Case Study: Spike Solver Performance

Table 1: Spike TA0 Algorithm Steps

Number Description Cost

1 Factorize the Diagonal Blocks O(n × k2)
2 Compute Tips of Spikes O(k3)
3 Communicate Tips of Spikes O(k2)
4 Factorize The Reduced System O(k3)
5 Modify the Right Hand Side O(n × k)
6 Communicate Tips of MRHS O(k)
7 Solve the Reduced System O(k2)
8 Communicate Soln. of Reduced System O(k)
9 Matrix Vector Multiplication O(k2)
10 Retrieve the Solution O(n × k)

Scalability Case Study: Spike Solver Performance

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

2p 4p 8p 16p 32p 64p 128p Factorize1

Comp. Spike Tips

Comm. Spike Tips

Fact. Red. System

Modify RHS

Comm. RHS tips

Solve Red. System

Comm. Red Sys.
Soln.

Matvec

Retrieve

Parametrizations of various steps for an IBM JS21.

Scalability Case Study: Spike Solver Performance

Processors

Speedups

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140

Observed
Linear

Predicted

Observed and predicted speedups on the IBM JS21.

Scalability Case Study: Spike Solver Performance

• Isoefficiency of the Spike solver is close to linear (O(p)).

• This implies that strong scaling should yield close to linear
speedups.

Scalability Case Study: Spike Solver Performance

Processors

Speedup

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140

Predicted Scaled Speedup

Observed Scaled Speedups
Linear

Observed and predicted scaled speedups on the IBM JS21.

Scalability Case Study: Spike Solver Performance

Processors

Speedup

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 20000 40000 60000 80000 100000 120000 140000

Linear
Predicted Spike Scaling (N=550K)

Predicted Spike Scaling to petaFLOPS onn the IBM JS21.

Scalability Case Study: Spike Solver Performance

Shared address space nodes, though complicate life!

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

2p 4p 8p 16p 32p 64p
Factorize1

Comp. Spike Tips

Comm. Spike Tips

Fact. Red. System

Modify RHS

Comm. RHS tips

Solve Red. System

Comm. Red Sys.
Soln.

Matvec

Retrieve

Parametrizations of various steps for an SGI Altix.

Scalability Analysis: Conclusions

• Proposed and demonstrated a novel pseudoanalytical
approach for scalability analysis.

• Technique factors application and architecture abstractions to
enable portability studies.

• Application to Spike solver shows high degree of predictive
accuracy.

• Demonstrated projected scaling of Spike to petascale.

Scalability Analysis: Conclusions

• Complete study by analysing a broader class of platforms.

• Characterize other test-cases to fully validate scalability
analysis methodology.

Reference Slides

Other Scalability Metrics

• A number of other metrics have been proposed, dictated by
specific needs of applications.

• For real-time applications, the objective is to scale up a system
to accomplish a task in a specified time bound.

• In memory constrained environments, metrics operate at the
limit of memory and estimate performance under this problem
growth rate.

Other Scalability Metrics: Scaled Speedup

• Speedup obtained when the problem size is increased linearly
with the number of processing elements.

• If scaled speedup is close to linear, the system is considered
scalable.

• If the isoefficiency is near linear, scaled speedup curve is close
to linear as well.

• If the aggregate memory grows linearly in p, scaled speedup
increases problem size to fill memory.

• Alternately, the size of the problem is increased subject to an
upper-bound on parallel execution time.

Scaled Speedup: Example

• The serial runtime of multiplying a matrix of dimension n×n with
a vector is tcn

2.

• For a given parallel algorithm,

S =
tcn

2

tc
n2

p + ts log p + twn
(6)

• Total memory requirement of this algorithm is Θ(n2).

Scaled Speedup: Example (continued)

Consider the case of memory-constrained scaling.

• We have m = Θ(n2) = Θ(p).

• Memory constrained scaled speedup is given by

S′ =
tcc × p

tc
c×p

p + ts log p + tw
√

c × p

or S′ = O(
√

p).

• This is not a particularly scalable system.

Scaled Speedup: Example (continued)

Consider the case of time-constrained scaling.

• We have TP = O(n2/p).

• Since this is constrained to be constant, n2 = O(p).

• Note that in this case, time-constrained speedup is identical to
memory constrained speedup.

• This is not surprising, since the memory and time complexity of
the operation are identical.

Scaled Speedup: Example

• The serial runtime of multiplying two matrices of dimension n×n
is tcn

3.

• The parallel runtime of a given algorithm is:

TP = tc
n3

p
+ ts log p + 2tw

n2

√
p

• The speedup S is given by:

S =
tcn

3

tc
n3

p + ts log p + 2tw
n2
√

p

(7)

Scaled Speedup: Example (continued)

Consider memory-constrained scaled speedup.

• We have memory complexity m = Θ(n2) = Θ(p), or n2 = c × p.

• At this growth rate, scaled speedup S′ is given by:

S′ =
tc(c × p)1.5

tc
(c×p)1.5

p + ts log p + 2tw
c×p√

p

= O(p)

• Note that this is scalable.

Scaled Speedup: Example (continued)

Consider time–constrained scaled speedup.

• We have TP = O(1) = O(n3/p), or n3 = c × p.

• Time-constrained speedup S′′ is given by:

S′′ =
tcc × p

tc
c×p

p + ts log p + 2tw
(c×p)2/3

√
p

= O(p5/6)

• Memory constrained scaling yields better performance.

Serial Fraction f

• If the serial runtime of a computation can be divided into a
totally parallel and a totally serial component, we have:

W = Tser + Tpar.

• From this, we have,

TP = Tser +
Tpar

p
.

TP = Tser +
W − Tser

p
(8)

Serial Fraction f

• The serial fraction f of a parallel program is defined as:

f =
Tser

W
.

Therefore, we have:

TP = f × W +
W − f × W

p

TP

W
= f +

1 − f

p

Serial Fraction

• Since S = W/TP , we have

1

S
= f +

1 − f

p
.

• From this, we have:

f =
1/S − 1/p

1 − 1/p
. (9)

• If f increases with the number of processors, this is an indicator
of rising overhead, and thus an indicator of poor scalability.

Serial Fraction: Example

Consider the problem of extimating the serial component of
the matrix-vector product.

We have:

f =

tc
n2

p +ts log p+twn

tcn2

1 − 1/p
(10)

or

f =
tsp log p + twnp

tcn2
×

1

p − 1

f ≈
ts log p + twn

tcn2

Here, the denominator is the serial runtime and the numerator
is the overhead.

