
Parallel and Distributed Systems Lab - Research Overview 3/02

Parallel and Distributed Systems Lab.

Department of Computer Sciences
Purdue University.

Jie Chi, Ronaldo Ferreira, Ananth Grama, Tzvetan Horozov,
Ioannis Ioannidis, Mehmet Koyuturk, Shan Lei, Robert Light,

Ramakrishna Muralikrishna, Paul Ruth, Amit Shirsat

http://www.cs.purdue.edu/homes/ayg/lab.html
ayg@cs.purdue.edu

____________________________________________________________

Acknowledgements: National Science Foundation, Department of Energy (Krell Fellowship),
Department of Education (GAANN Fellowship).



Parallel and Distributed Systems Lab - Research Overview 3/02

Areas of Research:

• High Performance Computing Applications

• Large-Scale Data Handling, Compression, and Data Mining

• System Support for Parallel and Distributed Computing

• Parallel and Distributed Algorithms
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High Performance Computing Applications:

• Fast Multipole Methods

• Particle Dynamics (Molecular Dynamics, Materials Simulations)

• Fast Solvers and Preconditioners for Integral Equation Formulations

• Error Control

• Preconditioning Sparse Linear Systems

• Discrete Optimization

• Visualization
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Large-Scale Data Handling, Compression, and Mining:

• Bounded Distortion Compression of Particle Data

• Highly Asymmetric Compression of Multimedia Data

• Data Classification and Clustering Using Semi-Discrete

Matrix Decompositions.
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System Support for Parallel and Distributed Computing:

• MOBY: A Wireless Peer-to-peer Network

• Scalable Resource Location in Service Networks

• Scheduling in Clustered Environments



Parallel and Distributed Systems Lab - Research Overview 3/02

Parallel and Distributed Algorithms:

• Scalable Load Balancing Techniques

• Metrics and Analysis Frameworms (Isoefficiency, Architec-

ture Abstractions for Portability)
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Introduction to Multipole Methods.

• Many systems can be modeled as a set of interacting
entities such that each entity impacts every other entity.

Examples: Bodies in space, Charged particles, Electrons and holes in semiconduc-

tors, Vortex blobs in fluids.

• Influence of an entity diminishes with distance (either in
an oscillatory or non-oscillatory manner).

• Aggregate impact of several particles into a single
expression (a multipole series).

• Hierarchical methods provide systematic methods of
aggregation while controlling error.
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Introduction to Multipole Methods.

• Represent the domain hierarchically using a spatial tree.

Set of particles Can they be approximated If not, divide domain and
impacting x. by their center of mass? recursively apply the same

criteria to sub-domains.

• Accurate formulation requires O(n2) force computations.
• Hierarchical methods reduce this complexity to O(n) or

O(n log n).
• Since particle distributions can be very irregular, the tree

can be highly unbalanced.

x x x
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Introduction to Multipole Methods.

Fast Multipole Method (FMM)
construct hierarchical representation of domain
/* top down pass */
for each box in tree {

construct well separated box list

for each box in well separated list
translate multipole expansion of box and add

}
for each leaf node

translate series to particle position and apply

Well separatedness criteria:

r r
3 x r
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Introduction to Multipole Methods.

• Each of the three phases, tree construction, series com-
putation, and potential estimation are linear in number of
particles n for uniform distributions.

• For non-uniform distributions, the complexity can be
unbounded!

• Using box collapsing and fair-split trees, we can make the
complexity distribution independent.
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Introduction to Multipole Methods.

Solving Boundary Element Problems:

Boundary element methods result in a dense linear
system:

• E(X) is the known physical quantity (boundary value),
• Eo(X) is the unknown (Both are defined over the

domain ).
• f(a,b) is a function of points a and b and is a decaying
function of the distance r between a and b.

E χ( ) Eo χ( ) γ Eo χ( ) f χ X,( ) Xd

Φ
∫+=

φ
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Introduction to Multipole Methods.

Boundary Element Method for Integral Equations:

Solution of the integral form of Laplace equation:
• E(X): specified boundary conditions,
• Eo(X): vector of unknowns,

• The function f is the Green’s function of Laplace’s
equation.

f(r) = -log (r) (in two-dimensions)
f(r) = 1/r  (in three-dimensions)
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Introduction to Multipole Methods.

• Boundary integral forms are particularly suited to prob-
lems where boundary conditions cannot be easily speci-
fied.

• For example, while solving the field integral equations

(EFIE/MFIE/CFIE), the associated Green’s function (eikr/

r) implicitly satisfies boundary conditions at infinity. This
obviates the need for absorbing boundary conditions.

• Surface integral equations are, however, infeasible for
non-homogeneous media, consequently, a mixed finite
element / boundary element approach is often used.
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Experimental Results:

Sample charge distribution.
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Experimental Results:

Force vectors at charges.
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Experimental Results.

Timing / Efficiency results of the force computation routine
on a Cray T3D.

_________________________________________________________________
Problem Alpha Interactions P = 64 P = 256

Time Eff Time Eff
_________________________________________________________________
g_28060 0.7 9058880 1.81 0.744

1.0 6477568 1.18 0.823

p_41776 0.7 11990208 2.27 0.787 0.61 0.729
1.0 8223552 1.49 0.822 0.40 0.761

p_120062 0.7 36079624 6.53 0.827 1.75 0.766
1.0 25670656 4.40 0.869 1.18 0.813

g_650691 0.7 105038751 4.94 0.793
1.0 73010765 3.29 0.828

_________________________________________________________________
(all times in seconds)
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Performance of the SGI Origin Implementation.

Problem                  Serial                      Parallel
Classical Accelerated Classical Accelerated

uniform40K 195.46 155.41 6.68  (29.26) 5.07 (30.65)
ip46K 360.93 295.68 11.67 (30.92) 9.40 (31.46)

Parallel Performance: Serial (single thread) and parallel times of the algorithms
along with their speedups (in parenthesis) on a 32 processor Origin 2000 (alpha =
0.91, beta = 2.0, degree = 6).
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Multipole-based Boundary Element Solvers.
(3-D Laplace Equation)

Convergence and runtime of the GMRES solver.

Log10 of Relative Error Norm.

Iteration Accur. a = 0.5 a = 0.667
deg. = 4 deg. = 7 deg. = 4 deg. = 7

0 0.000000 0.000000 0.000000 0.000000 0.000000
5 -2.735160 -2.735311 -2.735206 -2.735661 -2.735310
10 -3.688762 -3.688920 -3.688817 -3.689228 -3.689304
15 -4.518760 -4.518874 -4.518805 -4.519302 -4.518911
20 -5.240810 -5.260901 -5.260881 -5.278029 -5.261029
25 -5.467409 -5.521396 -5.510483 -5.589781 -5.531516
30 -5.627895 -5.626917 -5.663971 -5.627989

Time 124.46 156.19 92.16 112.02

All times in seconds. Timings taken on a 64 processor Cray T3D (24192 unknowns).
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Multipole-based Boundary Element Solver.
(3-D Laplace Equation)

Convergence of the GMRES solver (only accurate and fastest
approximation with degree = 4 and a = 0.667 shown).
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Multipole-based Boundary Element Solver.
(3-D Laplace Equation)

Preconditioning the GMRES solver

❏ Inner Outer Scheme:

This scheme uses an inner iteration solve based on a low
accuracy (lower degree, lower a) hierarchical method.

❏ Block Diagonal Preconditioner:

Nodes are aggregated in groups of n nearest neighbors.
The corresponding (truncated) system is factorized a-priori.
This factorized matrix is used for approximate solves in the
preconditioner.



Parallel and Distributed Systems Lab - Research Overview 3/02

Multipole-based Boundary Solvers.
(3-D Laplace Equation)

Preconditioning the GMRES solver

Log10 of Relative Error Norm.

Iteration a = 0.5
deg. = 7 Inner-outer scheme Block diagonal

0 0.000000 0.000000 0.000000
5 -2.735206 -3.109289 -2.833611
10 -3.688817 -5.750103 -4.593091
15 -4.518805 -5.441140
20 -5.260881 -5.703691
25 -5.510483
30 -5.663971

Time 156.19 125.40 103.61

All times in seconds. Timings taken on a 64 processor Cray T3D.
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Using Multipole Methods for Preconditioning
Sparse Iterative Solvers.

Problem Formulation

❏ Arises in simulation of time-dependent Navier-Stokes
equations for incompressible fluid flow

❏ One of the most time consuming steps

❏ Large scale 3D domains

❏ Multiprocessing is indispensable

❏ Robust, parallel preconditioners required
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Nature of the System and Preconditioning.

 Linear System

     where

,  in which  and

 M : Mass matrix; T : Laplace operator
 B : Gradient operator (n x k)

Properties of the Linear System

 Symmetric indefinite (n +ve and k -ve eigenvalues)

 Typically   (2D)  or   (3D)

A B
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Uzawa-type Methods

 Solve  using iterative method

 Accelerate by CG

 Assumption : div-stability  is well-conditioned1 (steady state)

 Single-level iterative schemes with suitable preconditioning

Key Issues

 Two-level nested iteratitve schemes

 Expensive iterations due to inner iterative solver

1. Condition number independent of mesh discretization

BT A
1–
Bp BT A

1–
f=

B⇒ TA
1–
B
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Adapting Dense Methods to the Preconditioning
Problem

Use a dense solver to compute the preconditioner for
the matrix A.

The dominant behavior of matrix A is .

The Green’s function of this operator is .

Issue: Implementing boundary conditions?

∇∇ k
2

–( )

e
kr–

r
------------
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Implementing Boundary Conditions for Dense
Preconditioner

Analogous problem in potential theory: Compute the potential over a domain
resulting from a set of given charges provided the boundary potential is pre-
specified.

Solution strategy:

Assume (unknown) charges residing on the boundary.

The result of the boundary and internal charges result in the boundary condi-
tions. Use this to compute the values of the unknown boundary charges.

Finally, use these boundary charges along with given internal charges to
compute the potential in the interior.

Computational steps: a dense boundary element solve of an n x n system (for
n boundary nodes) followed by a dense mat-vec with an n x n system.
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Preconditioning Effect of Dense Solvers:

  Preconditioning of Hierarchical Approximate Techniques

Incomplete
Factorization

Hierarchical
Approximation

297 14 9

653 20 14

1213 25 14

2573 35 16

4953 45 18

ni
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Performance and Errors in Hierarchical Methods :

Theorem 1 . In Barnes-Hut method, the ratio for particle-cluster interactions is bounded as fol-

lows:

where   and   are constants.

Proof :   Since a particle p interacts with a box b, but not with its parent box B,

where   and .  Use triangle inequality   to show that

r s r⁄

α' r s r⁄ α≤ ≤

α α'

r r 0≥ R R0≤

r0 r s α⁄= R0 2r s α⁄= R rs 2⁄+ r≥

2
α
--- 1

2
-------+ 

  1–
r s r⁄ α≤ ≤



Parallel and Distributed Systems Lab - Research Overview 3/02

Interactions in Hierarchical Methods :

B

b

p
r

R

rs rs Radius R0

Radius r0
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Theorem 2. In Barnes-Hut method, a particle interacts with a bounded number
of boxes of fixed size.

Proof: Since  , the centers of all boxes of size   lie within annu-

lus defined by

and the boxes lie completely within the annulus defined by

The ratio of the volumes of the annulus and a box gives the following upper
bound on the number of boxes of size   :
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Theorem 3. Suppose that k charges of strengths {  , j=1,...,k} are located

within a sphere of radius .  Then, for Barnes-Hut method with -criterion for

well-separatedness, the error in potential outside the sphere at a distance
from the center of the sphere due to these charges is bounded by

where p is the degree of the truncated multipole expansion such that , and

qj
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r

ε A
r r s–
-------------

r s
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Theorem 4 . Controlling error in B-H

The theorem defines a growth rate for the polynomial degree with the net
charge inside a subdomain such that the total error associated with the subdo-
main remains constant.

For a uniform distribution, this growth rate can also be expressed in terms of the
domain sizes.

pk p
kd

αlog
------------

Alog Aklog–

αlog
---------------------------------+ +=
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Theorem 5 . Error in the piecewise approximate B-H method

This follows naturally from the following results:

- The number of interactions with subdomains at any level are constant.

- The number of subdomain interactions is logarithmic in number of particles
(independent of particle distribution -- sequence of theorems on fair-split
trees omitted).

- The error associated with a single particle-subdomain interaction is con-
stant.

O αp 1+ Alog( )
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Theorem 6 . Computational complexity of the piecewise approximate B-H
method

where l is the levels of the hierarchical decomposition.

For a uniform distribution, l grows as log8n.

For l < p, we can show that the operation count of the new method is within a
fraction 7/3 of the fixed-degree multipole method. For smaller values of l this dif-
ference is smaller.

For typical values of p (6 - 7 degree approximations), this corresponds to
between 256K - 2M node points. Thus, even for very large scale simulations,
the improved method is within a small constant off the fixed-degree method
while yielding significant improvements in error.

O n p l+( )3( )
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Comparison of Errors
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Comparison of Runtimes
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Bounded Error Pointset Compression Results
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Some Other Parallel Applications: Shear-Warp.
shear

project

warp
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Optimizations for volume Rendering:

Early Termination:

Instead of traveling back to front, it is possible to travel
front to back. In this case, it is possible to stop when the
accrued opacity is high enough that additional slices do
not make any difference.

Skipping Empty Spaces:

In typical datasets, a significant part of the volume is empty
(the opacity is 0). These voxels need not be traversed. Using
smart data-structures, it is possible to skip these all-together.
Run-length encode the scanlines.
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Optimizations for Volume Rendering

Compositing volume slices: skip transparent voxels and
saturated intermediate image pixels.

transparent voxel

voxel scanline

saturated pixel

image scanline

computation for
compositing
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Parallel Shear-Warp: Volume Space Partitioning
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Parallel Shear-Warp: Sheared Volume Space Partitioning
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Load Balancing

❏ Due to optimizations such as run-length encoding and
early termination, different scanlines can have widely
varying workloads.

❏ Naively partitioning the sheared volume among processors
leads to significant load imbalance.

❏ It is impossible to determine the load associated with a
scanline accurately a-priori.

❏ Since the viewpoint is not expected to shift very drastically
between frames, we can use load information from one frame
to balance load in the next.

❏ Each processor keeps track of load at each scanline. At the
end of computation, processors exchange this information and
rebalance load. The communication can be integrated with shear.
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Experimental Results (the brain dataset)
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Rendering Time (ms)

p volume
No load balance Load Balanced
Large Small Large Small

1 3193 976 3193 976
2 1627 548 1625 551
4 892 309 910 310
8 620 197 593 196
16 345 127 327 121
32 216 86 204 81
64 142 74 118 70
128 103 85
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Large-Scale Data Handling, Compression, and Mining.

Proximus: a tool for bounded error compression of discrete attrubute sets.
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MOBY: A Wireless P2P Network

Accessing services (software, hardware, data) from your
wireless device, seamlessly!
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Other Research on P2P Networks:

Evolving Topology Based on Access Patterns

Service Mobility

Dynamic Client Mapping.
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