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Outline

e Why is comparative interactomics computationally challenging?
e SOome results in conservation, alignment, and modularity.
e Stafistical significance as an optimization metric for algorithms.

e Some open problems in computational interactomics.
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Challenges in Computational Analysis

e [somorphism Hurfs!

- Given two networks (unlabeled or labeled with potentially
repeating node labels), are they identical? (complexity
unknown)

- Given two networks (unlabeled or labeled with potentially
repeating node labels), what is the largest common
component (NP Hard!).

e Must rely on nature of model and nefwork - emphasizes
analysis!

e Analytical modeling of specific network structures is in relative
infancy. (e.g., what is the expected size of a cligue in a scale-
free graph?)

e Quanfification of significance (e.g., p-values) is hard!
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Challenges in Computational Analysis: Thesis

e Use a mix of modeling and measures to render problems easier.

e Use nafure of underlying networks to develop effective
algorithms.

e Use analysis to support claims of algorithmic effectiveness and
efficiency.
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Conservation in Interaction Networks

e Evolution thinks modular” (Vespignani, Nature Gen., 2003)

e Cooperative tasks require all participating units

- Selective pressure on preserving interactions & interacting proteins
- Interacting proteins follow similar evolutionary trajectories (Pellegrini et al.,
PNAS, 1999)

e Orthologs of intferacting proteins are likely to interact (wagner,
Mol. Bio. Evol., 2001)

- Conservation of interactions may provide clues relating to conservation
of function

e Modular conservation and alignment hold the key to crifical
stfructural, functional, and evolufionary concepts in systems
piology
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Conserved Interaction Patterns

e Given a collection of interaction networks (belonging to
different species), find sub-networks that are common fo an
interesting subset of these networks.

- A sub-network is a group of inferactions inducing a single network
(connected)

- Frequency: The number of networks that contain a sub-network, is a
codarse measure of statistical significance

e Computational challenges

- How to relate molecules in different contexts/ organisms?

- Requires solution of the infractable subgraph isomorphism problem
- Must be scalable to potentially large number of networks

- Networks are large (in the range of 10K edges)
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Relating Proteins in Different Species

e Ortholog Databases

- PPl networks: COG, Homologene, Pflam, ADDA

- Metabolic pathways: Enzyme nomenclature

- Reliable, but conservative

- Domain families rely on domain information, but the underlying domains
for most interactions are unknown = Multiple node labels

e Sequence Clustering
- Cluster protein sequences and label proteins according to this clustering
- Flexible, but expensive and noisy

e Labels may span a large range of functional relationships, from
protein families to ortholog groups

- Without loss of generality, we call identically labeled proteins as orthologs
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Problem Statement

e Given a set of proteins V, a set of interactions £, and a many-
fo-many mapping from V to a set of ortholog groups £ =
{l1,1s, ..., 1, }, the corresponding interaction network is a labeled

graph G = (V, E, L).

- v € V(G) is associated with a set of ortholog groups L(v) C L.
- uwv € E(G) represents an inferaction between u and v.

e S is a sub-network of G, iie., S C G if there is an injective
mapping ¢ : V(S) — V(G) such that for all v € V(S), L(v) C
L(¢(v)) and for all uwv € E(S), ¢(u)p(v) € E(G).
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Computational Problem

e Conserved sub-network discovery

- Instance: A set of interaction networks G = {G; = (Vi, E1, L), Gy =
(Va, Eo, L), ..., Gy = (Vin, Em, £)}, each belonging to a different
organism, and a frequency threshold o*.

- Problem: Let H(S) = {G; : S C G,;} be the occurrence set of graph
S. Find all connected subgraphs S such that |H(S)| > o*, i.e., Sisa
frequent subgraph in G and for all S 1 S, H(S) # H(S'), ie., Sis
maximal,
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Algorithmic Insight: Ortholog Contraction

e Contract orthologous nodes info a single node

e NO subgraph isomorphism

- Graphs are uniquely identified by their edge sets

e Key observation: Frequent sub-networks are preserved = No
information 1oss

- Sub-networks that are frequent in general graphs are also frequent in
their ortholog-contracted representation
- Ortholog conftraction is a powerful pruning heuristic

e Discovered frequent sub-networks are still biologically interpretablel

- Interaction between proteins becomes interaction between ortholog
groups
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Ortholog Contraction in Metabolic Pathways

e Directed hypergraph — uniquely-labeled directed graph

— Nodes represent enzymes

- Global labeling by enzyme nomenclature (EC numbers)

- A directed edge from one enzyme to the other implies that the second
consumes a product of the first

2.7.1.1
2.7.1.2

51.3.3 —
2.7.1.1 '

2.7.1.63 5.1.3.3 2.7.1.63
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Ortholog Contraction in PPl Networks

e Interaction between proteins — Interaction between ortholog
groups or protein families

KOG3013 KOG 1068 KOG3013 KOG 1068

/
KOG3409

KOG 1068 KOG3409

Rrp43
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Results: Analyzing PPl Networks

e PPl networks for @ eukaryotic organisms derived from BIND and
DIP

- A. thaliania, O. sativa, S. cerevisiae, C. elegans, D. melanogaster, H.
sapiens, B. faurus, M. musculus, R. norvegicus

- # of proteins ranges from 288 (Arabidopsis) to 8577 (fruit fly)

- # of interactions ranges from 340 (rice) to 28829 (fruit fly)

e Ortholog contraction

- Group proteins according to existing COG ortholog clusters

- Merge Homologene groups into COG clusters

- Cluster remaining proteins via BLASTCLUST

- Ortholog-contracted fruit fly network contains 11088 inferactions
between 2849 ortholog groups

e MULE is available at
http://ww. cs. purdue. edu/ pdsl /


http://www.cs.purdue.edu/pdsl/
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Conserved Protein Interaction Patterns
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) KOG3448 CG10418 T10G3.6 Lsm2
[

) KOG3482 DebB ZK652.1 Q Smx3

C
C
() koG3459 CG1249 cs2e4.3 () smdz
C
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Pattern D. melanogaster C. elegans S. cerevisiae

Small nuclear ribonucleoprotein complex (p < 2¢ — 43)
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Conserved Protein Interaction Patterns

KOGO0677 Arp2 Arp2 Arp2
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Conserved Protein Interaction Patterns

KOG3229 Vps24 CG9779
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Pattern S. cerevisiae D. melanogaster  H. sapiens

Endosomal sorting (p < 1e — 78)

Chania, 2008
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Discussion

e Ortholog contraction is fast & scalable

- Graph cartesian product based methods (Sharan et al., PNAS, 2004),
(Koyuturk et al., RECOMB, 2005) create m" product nodes for an ortholog
group that has m proteins in each of n organisms

- Ortholog contraction represents the same group with only » contracted
nodes

- Isomorphism-based graph analysis algorithms do not scale to large
networks

e Ortholog contraction implicitly accounts for noise by eliminating
false positives by thresholding frequency, and false negatives
by contraction

e Key Open Problems: (i) Frequency is not significance (ii) How
do we compute optimal ortholog groups?
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Alignment of PPl Networks

e Given two PPl networks that belong to two different organisms,
identify subb-networks that are similar fo each other

- Biological implications
- Mathematical modeling

e EXisting algorithms

- PathBLAST aligns pathways (linear chains) to simplify the problem while
maintaining biological meaning (Kelley et al., PNAS, 2004)
— NetworkBLAST compares conserved complex model with null model to

identify significantly conserved subnets (Sharan et al., J. Comp. Biol.,
2005)

e Our approach:

- Guided by models of evolution
- Scores evolutionary events

- ldentifies sefs of proteins that induce high-scoring sub-network pairs
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Match, Mismatch, and Duplication

e Evolufionary events as graph-theoretic concepts

- A match € M corresponds to Two pairs of homolog proteins from each
organism such that both pairs interact in both PPIs. A match is associated
with score p.

- A mismatch € N corresponds to two pairs of homolog proteins from
each organism such that only one pair is interacting. A mismatch is
associated with penalty v.

- A duplication € D corresponds to a pair of homolog proteins that are in
the same organism. A duplication is associated with score 9.
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Scoring Matches, Mismatches and Duplications

e Quantifying similarity between two proteins

- Confidence in two proteins being orthologous
- BLAST E-value: S(u, v) = logig p(u,v)

Prandom

- Ortholog clustering: S(u, v) = c(u)c(v)

e Match score

- p(uu',vv") = gmin{S(u,v), S(u',v")}

e Mismatch penalty

- v(uu', vv") = vmin{S(u,v), S(u',v")}

e Duplication score

- §(u,u’) = 6(8 — S(u,u'))
- ¢ specifies threshold for sequence similarity to be considered functionally
conserved
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Pairwise Alignment of PPls as an Optimization Problem

e Alignment score:
o(A(P)) = 2 prepm M) = 2 onen V(N) + 2 pep 0(D)

- Matches are rewarded for conservation of interactions
- Duplications are rewarded/penalized for functional conservation/differentiation

affter split
- Mismatches are penalized for functional divergence (what about

experimental error?)

e Scores are functions of similarity between associated proteins

e Problem: Find all protein subset pairs with significant alignment
score

- High scoring protein subsets are likely to correspond to conserved
modules

e A graph equivalent to BLAST
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Weighted Alignment Graph

e G(V,E) : V consists of all pairs of homolog proteins v = {u €
UveV}

e Anedge vv' = {uwv}{uv'} in Eis @

- match edge ifuu’ € E and vy’ € V, with weight w(vv') = p(uv, u'v’

- mismatch edge if uu’ € E and vv' ¢ V or vice versa, with weight
w(vv') = —v(uv, u'v’

- duplication edge if S(u,u") > 0 or S(v,v") > 0, with weight w(vv') =
5(u,u) orw(vv') = §(v,v")

{ug, va}

{u,v1} @

{U2, ’01}

{ua, va}
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Maximum Weight Induced Subgraph Problem

e Definition: (IMAWISH)

- Given graph G(V,€&) and a constant ¢, find V € V such that

Zv,ueff w(vu) > e,
- NP-complete by reduction from Maximum-Clique

e Theorem: (MAWISH = Pairwise alignment)
- If V is a solution for the MAWISH problem on G(V, £), then P = {U,V'}
induces an alignment A(P) with o(A) > e ,where YV = U x V.
e Solution: Local graph expansion

- Greedy graph growing + iterative refinement
- Linear-fime heuristic

e Source code available at
http://ww. cs. purdue. edu/ pdsl /


http://www.cs.purdue.edu/pdsl/
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Alignment of Yeast and Fruit Fly PPl Networks

Rank Score  z-score #Proteins # Mafches # Mismatches  # Dups.

| 15.97 6.6 18 (16, 5) 28 6 (4, 0)
protein amino acid phosphorylation (69%)
JAK-STAT cascade (40%)

2 13.93 3.7 13 (8, 7) 25 / @G, 1
endocytosis (60%) / calcium-mediated signaling (50%)
5 8.22 13.5 @ (5. 3) 19 11 (1,0)

invasive growth (sensu Saccharomyces) (100%)
oxygen and reactive oxygen species metabolism (33%)

6 8.05 7.6 8 (5, 3) 12 2 O, D
ubiquitin-dependent protein catabolism (100%)
mitosis (67%)

21 4.36 6.2 @ (5. 4) 18 13 0, 5
cytokinesis (100%, 50%)

30 3.76 39.6 6 (3.5) 5 1 O, 6)

DNA replication initiation (100%, 80%)
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Subnets Conserved in Yeast and Fruit Fly

Proteosome regulatory parficle subnet

S.Cerevisiae D.Melanogaster

‘

CG12010-PA & CG12010-F

Calcium-dependent stress-activated signaling pathway

S.Cerevisiae D.Melanogaster

O Myo2 m Myo5 ODldum

O Cmd1 CK )And Q CG3195¢
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Discussion

e Comparison to other approaches: NetworkBlast (Sharan et al.,
PNAS, 2005), NUKE (Novak et al., Genome Informatics, 2005)

- Faster than NetworkBLAST, but provides less coverage
- Comparable to NUKE depending on speed vs coverage trade-off

e Scores evolutionary events

- Flexible, allows incorporation of different evolutionary models, experimental
bases, target structures

- Somewhat ad-hoc, what is a good weighting of scores?
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Analytical Assessment of Statistical Significance

e What is the significance of a dense component in a network?

e What is the significance of a conserved component in mulfiple
networks?

e Existing fechniques

- Mostly computational (e.g., Monte-Carlo simulations)

- Compute probability that the pattern exists rather than a pattern with
the property (e.g., size, density) exists

- Overestimation of significance
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Random Graph Models

e Inferaction networks generally exhibit power-law property (or
exponential, geometric, etc.)

e Analysis simplified through independence assumption (itzkovitz
et al., Physical Review, 2003)

e Independence assumption may cause problems for networks with arbitrary
degree distribution

e P(uv € E) = d,d,/|E|. where d, is expected degree of u, but generally
d? > |E| for PPl networks

max

e Analytical techniques based on simplified models (Koyuturk, Grama,
Szpankowski, RECOMB, 2006)

- Rigorous analysis on G(n, p) model
- Extension to piecewise G(n, p) to capture network characteristics more
accurately
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Significance of Dense Subgraphs

e A subnet of r proteins is said to be p-dense if F(r) > pr?, where
F(r) is the number of inferactions between these r proteins

e What is the expected size of the largest p-dense subgraph in a
random graph?

- Any p-dense subgraph with larger size is statistically significant!

e GG(n,p) model

- n proteins, each interaction occurs with probability p

- Simple enough to facilitate rigorous analysis

- If we let p = dnax/n. largest p-dense subgraph in G(n, p) stochastically
dominates that in a graph with arbitrary degree distribution

e Piecewise G(n,p) model

- Few proteins with many interacting partners, many proteins with few
interacting partners

- Captures the basic characteristics of PPl networks

- Analysis of G(n, p) model immediately generalized o this model



Comparative Analysis of Networks Chania, 2008

Largest Dense Subgraph

e Theorem: If G is a random graph with n nodes, where every
edge exists with probability p, then

R 1
lim —2 = ), (1
n—oologn  Kk(p,p) (pr)
where |
p —p
k(p,p) = plog=—+ (1 —p)lo . 2)
(p,p) =p 2 (1—p) BT,
More precisely,
logn
P(Ey =2 10) <O (nl/ﬂ(p,p)> ’ (3)

where
~ logn —loglogn + log k(p, p)

— 4
10 k(p, p) @

for large n.
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Piecewise GG(n,p) model

e The size of largest dense subgraph is sfill proportional to logn/k
with a constant factor depending on number of hulbs

e Model:

pn ifu,veV,
Pluv e E(G)) =< p Ifu,veV
pp fueVy,veV,orueV,veV,

e Result:

Lot my, = |Val. If my, = O(1). then P(R,(p) > ) < O (A2n ).
where

~ logn —loglogn + 2nylog B + log k(pr, p) — loge + 1

1
’f(plap)

OﬂdB:p]l;—?l—l—qb,Whereqb:1—pb0ﬂdql:1—pl.
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Algorithms Based on Statistical Significance

e |dentification of fopological modules

e Use staftistical significance as a stopping criterion for graph
clustering heuristics

e HCS Algorithm (Hartuv & Shamir, Inf. Proc. Let., 2000)

- Find a minimum-cut bipartitioning of the network
- If any of the partsis dense enough, record it as a dense cluster of proteins
— Else, further partition them recursively

e SIDES: Use statistical significance to determine whether a
subgrapnh is sufficiently dense

- For given number of proteins and interactions between them, we can
determine whether those proteins induce a significantly dense subnet
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SIDES Algorithm

p <<l

>

B3 O<E0

p<<l1 p<<l1

SIDES is available at htt p: / / www. cs. pur due. edu/ pdsl


http://www.cs.purdue.edu/pdsl
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Performance of SIDES

e Biological relevance of identified clusters is assessed with
respect to Gene Ontology (GO)

- Estimate the statistical significance of the enrichment of each GO term
in the cluster

e Quality of the clusters with respect to GO annotations

- Assume cluster C' containing no genes is associated with ferm T' that is
affached to n genes and nqer of genes in C' are attached to T

- specificity = 100 X nor/ne

- sensitivity = 100 X nor/nr

SIDES MCODE
Min.  Max. Avg. Min.  Max. Avg.
specificity (%) 43.0 100.0 91.2 0.0 1000 77.8
sensitfivity (%) 20 100.0 558 0.0 100.0 47.6

Comparison of SIDES with MCODE (Bader & Hogue, BMC Bioinformatics, 2003)
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Performance of SIDES
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Comparative Analysis of Networks Chania, 2008
Performance of SIDES
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Statistical Significance as an Optimization Criteria

e Most algorithms satisfy queries and quantify the significance of
the answer.

e Can we pose this as an opfimization problem on fthe
signficance - give me the most significant result for the query?

e We address this problem in the simple context of finding
significant pathways.
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Finding Statistically Significant Functional Pathways

e Stack functional annotation of a molecule (gene) from an
ontology on fo the network.

e Generate a null-hypothesis for node functional annotation.

e Find all pathways with p-values lower than a threshold.
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Finding Statistically Significant Functional Pathways

e Statistical significance is not monotonic in pathway space
(cannot build longer pathways from known significant
pathways)

e Statistical significance is not monotonic in ontology space
(cannot build pathways at coarse levels in ontology and refine)

e The above statements are true for a broad class of measures of
statistical significance we refer to as stafistically interpretable.
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Finding Statistically Significant Functional Pathways

- \of transcriptio

@reg ulatf'm? o\ (Fve regulation
transcription, |
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GHIJ]
i|[EFGH
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other other

genes

regulation of - s cillary or
transcription, —> flagellar
DNA-dependent of transcriptio motili

(c)

From interactions between functional aftributes to pathways
of functional affributes: (a) stafistically significant regulatory
interactions between DNA-dependent regulation of franscription,
positive regulation of franscripfion, and cillary and flagellar
motility, (o) the two regulatory inferactions are connected in the
gene network as well, (¢) these separate inferactions may be
combined into a pathway of functional affriobutes.
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Finding Statistically Significant Functional Pathways

(o
perception modification biotin
biosynthetic
modification process
(@)
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N
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~
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Pairwise assessment of interactions between functional attributes
does not necessarily imply indirect paths: (a) regulafion
of protein modification by sensory perception is significantly
overrepresented, as well as the regulation of biofin biosynthefic
process by protfein modification; (b) the two frequent inferactions
never go through the same gene.
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Finding Statistically Significant Regulatory Pathways

Greedy Enumeration to the Rescue!
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Finding Statistically Significant Regulatory Pathways

chemotaxns hosphoenolpyruvate-dependent sugar phosphotransferase syste
posmve regulatlon oftranscnptlon, DNA-dependent phosp Pyr P PR garphosp Vs
protein complex assembly. P ‘ .,
- posltlve regulatlon oftranscrlptlon . ,
ciliary or flagellar motlllty <a. phosphate transport -
LN\ flagellum orgamzatlon and blogenesls ammo acld eT———
e h ) bl molybdate ion transpoi? P
73 “cytochrome complex assem e aci ;
cell motility <.\ vt e J) ‘\y \ - an opeptlde transport,ort L-ascorbic acid metabolism
S WP D re ulatlon of flagellum biogenesis inorganic anion transport 7 * s, .
3 ' 9 9, 9 & S W L, nitrate assrmllatlon nltrate metabolism
protein secretlon VN ,/ ‘ .t £ .z o
__,.5(-“’ ~. K\ |- ’ \ .o - phosphonate transport gz 2 - -
\t . ceII morphogene5|s V/ o L i) 4 Y/ S branched chaln famlly amino aC|d metabolism
ﬂagellum blogeneﬂs,.;\ B ey \ o /. SRR VS protelnltransport .- :‘: e s
N . =7 h|st|d -aspartyl hosphorelay MY/ LT amino acid formation
N\ 7 ,_}.. yl -B‘ c¥r& . ‘/‘ - carbohydrate transport RS o
/M \ \-/\‘AV/ _\—-Slgnal transductlon- -\'\*., B A e . = .
. - \ 3 PRSI \ lecule f : z’,.‘lon transport L
metabollsm " VA a T sl Al / macromolecule ormatlon jpiad .
P e ”"X\translatlon;_’. A A ) formatlo - ,.ATP synthe5|s coupled electron transport
cellular metabollsm -

/\regulatlon of translatl

e %r-’(-"

electron tran

.~/
& /_/1‘ _;"‘ PO hd : ~oxndatlve phosphorylatlon, NADH to ubiquinone

't“-a——“--’

.DNA recombination - === = fgﬁ&sphwatw"

> e e . 7
2 -_~ [N :_"‘./‘: N
transport Ve - - s <7, « . -glucose metabolism
AN 7‘3"’ Iy ‘5\/— aromatic compound metabolism - ks
energwathwavsn_-_- - = N o »alcohol metabolism. . lipid metabolism
\ I o e R fatty acid metabolism
\ o /regulatlon of transcrlptlon DNA- dependent SR
\ S \-;:\'g 99.7- PRI RN N 7.P oS! 9
\' 4. - . \‘\ f\//', N \‘;\T\i‘__ o ale S o\, celladhesion
' . / ~: SNTUNNC R R
w./ response to st\lmul\us é/ "/ \? ?\‘\‘\.l\ +  jnitrogen compound metabolism
regulation o;transcmﬁ PfOte?I\\gls . y N {,\\ > \aﬂno acid metabollsm
4 K . ~
\
response to exlternal stimulus”™ DNA metabolism carboxyhc acid metabollsm ace
~ . T/ organic acid metabolism carbohydrate metabolism
DNA re air DNA damage response iy,

L 2 ! branched chain family amino acid formation
DNA replication'-fSOS response
response to stress
r\\ V‘

negative regulation of tr{ns?’iption, DNA-dependent

neqgative requlation of transcription

A global view of E. colifranscriptional network mapped to cellular
processes described by GO.



Comparative Analysis of Networks Chania, 2008

Finding Statistically Significant Regulatory Pathways

flagellum organization and biogenesis

cell morphog:nesm cell motility -

protein complex assembly . _—— % regulation of flagellum biogenesis
i>< » chemotaxis

flagellum biogenesis \\ > cytochrome complex assembly
\\ NN A \\
ciliary or flagellar motility
icati . R
DNA replication —Hresponse to stimulus NS

. \\ B . .’ .
protein secretion _ . peptidyl-histidine phosphorylation  biotin formation

protein modification
v

response to stress

histidyl-aspartyl phosphorelay

DNA repair —Hresponse to external stimulus . -
X’l & \ /> . signal transduction \\\\“\ _
“_,_,_proteolysis carbohydrate formation™ -~ | / \ \«,\\\a\phosphorylatlon
2 \/ | phosphonate transport
Y 4 .

- resWA o polysaccharide form_ation/ \
meLabaliam - \ pl inorganic anion transport
P lipopolysaccharide formation ‘,v‘v..plt'losphate SsRAp - .

7 y/ \ | A
DNA damage response e Y, | \| ion transport

P

/

&

ener athways transport—> electron transport

' . - . R Ay Sy -

nitrate metabolism ATP synthesis cm:gled electron transport
b / -y \ v 1

molybdkate ion transport oxidative phosphorylation, NADH to ubiquinone
7/ SN & ]

protein transport Phosphoenolpyruvate-dependent sugar phosphotransferase system

A
nitrate assimilation
glyoxylate cycle

protocatechuate catabolism

formation — macromolecule formation arginine catabolism
e

amino acid formation

protein folding

cell adhesion

oligopeptide transport 7
¥ ‘a0

amino acid transport L-ascorbic acid metabolism arginine metabolism  sy|fur metabolism 2arginine formation
2
iron ion homeostasis L-ascorbic acid catabolism detection of virus arginine breakdown to glutamate
4

cell wall organization and biogenesis serine family amino acid metabolism

branched chain family amino acid formation
/i

Emyacid metabollsm lipid metabolism pyrimidinejnucleotide formation entry of virus into host cell

protein stabilization  glucose metabolism ubiquinone formation

A global view of E. coli transcriptional network obtained
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Frequency p-value  Pathway

276 SE-94 metabolic process - flagellum biogenesis — transport

136 3.1E-71 regulation of translafion 4 DNA recombination — fransport

38 4.9E-47 response o stimulus - transcription — cell mofility

36 6.6E-35  flagellum biogenesis — ciliary or flagellar motility

56 1.4E-24 regulation of translation 4 transcription — carboxylic acid metabolism
178 8.3E-21 signal transduction — franscription — transport

14 8.6E-20 phosphate transport — franscription — phosphonate transport

16 2E-16 SOS response - regulation of tfranscription - DNA repair

501 1.2E-13 regulation of transcription, DNA-dependent — transport

12 3.6E-10 proteolysis 4 regulation of franscription - response to external stimulus
15 3.8E-7 nitrate assimilation 4 cytochrome complex assembly

10 1.4E-6 cell morphogenesis - protein secretion

178 3.8E-4 franscription — carbohydrate metabolic process

Narada available at:

http://ww. cs. purdue. edu/ hones/ | pandey/ nar ada/


http://www.cs.purdue.edu/homes/jpandey/narada/
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Outstanding Challenges

e Models, measures, algorithms and analysis!
e Data and data quality.

e Discriminative analysis.



