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Outline

• Why is comparative interactomics computationally challenging?

• Some results in conservation, alignment, and modularity.

• Statistical significance as an optimization metric for algorithms.

• Some open problems in computational interactomics.
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Challenges in Computational Analysis

• Isomorphism Hurts!

– Given two networks (unlabeled or labeled with potentially
repeating node labels), are they identical? (complexity
unknown)

– Given two networks (unlabeled or labeled with potentially
repeating node labels), what is the largest common
component (NP Hard!).

• Must rely on nature of model and network – emphasizes
analysis!

• Analytical modeling of specific network structures is in relative
infancy. (e.g., what is the expected size of a clique in a scale-
free graph?)

• Quantification of significance (e.g., p-values) is hard!
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Challenges in Computational Analysis: Thesis

• Use a mix of modeling and measures to render problems easier.

• Use nature of underlying networks to develop effective
algorithms.

• Use analysis to support claims of algorithmic effectiveness and
efficiency.



Comparative Analysis of Networks Chania, 2008

Conservation in Interaction Networks

• “Evolution thinks modular”[Vespignani, Nature Gen., 2003]

• Cooperative tasks require all participating units

– Selective pressure on preserving interactions & interacting proteins

– Interacting proteins follow similar evolutionary trajectories [Pellegrini et al.,

PNAS, 1999]

• Orthologs of interacting proteins are likely to interact [Wagner,

Mol. Bio. Evol., 2001]

– Conservation of interactions may provide clues relating to conservation

of function

• Modular conservation and alignment hold the key to critical
structural, functional, and evolutionary concepts in systems
biology
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Conserved Interaction Patterns

• Given a collection of interaction networks (belonging to
different species), find sub-networks that are common to an
interesting subset of these networks.

– A sub-network is a group of interactions inducing a single network

(connected)

– Frequency: The number of networks that contain a sub-network, is a

coarse measure of statistical significance

• Computational challenges

– How to relate molecules in different contexts/ organisms?

– Requires solution of the intractable subgraph isomorphism problem

– Must be scalable to potentially large number of networks

– Networks are large [in the range of 10K edges]
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Relating Proteins in Different Species

• Ortholog Databases

– PPI networks: COG, Homologene, Pfam, ADDA

– Metabolic pathways: Enzyme nomenclature

– Reliable, but conservative

– Domain families rely on domain information, but the underlying domains

for most interactions are unknown ⇒ Multiple node labels

• Sequence Clustering

– Cluster protein sequences and label proteins according to this clustering

– Flexible, but expensive and noisy

• Labels may span a large range of functional relationships, from
protein families to ortholog groups

– Without loss of generality, we call identically labeled proteins as orthologs
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Problem Statement

• Given a set of proteins V , a set of interactions E, and a many-
to-many mapping from V to a set of ortholog groups L =
{l1, l2, ..., ln}, the corresponding interaction network is a labeled
graph G = (V,E,L).

– v ∈ V (G) is associated with a set of ortholog groups L(v) ⊆ L.

– uv ∈ E(G) represents an interaction between u and v.

• S is a sub-network of G, i.e., S ⊑ G if there is an injective
mapping φ : V (S) → V (G) such that for all v ∈ V (S), L(v) ⊆
L(φ(v)) and for all uv ∈ E(S), φ(u)φ(v) ∈ E(G).
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Computational Problem

• Conserved sub-network discovery

– Instance: A set of interaction networks G = {G1 = (V1, E1,L), G2 =

(V2, E2,L), ..., Gm = (Vm, Em,L)}, each belonging to a different

organism, and a frequency threshold σ∗.

– Problem: Let H(S) = {Gi : S ⊑ Gi} be the occurrence set of graph

S. Find all connected subgraphs S such that |H(S)| ≥ σ∗, i.e., S is a

frequent subgraph in G and for all S′
= S, H(S) 6= H(S′), i.e., S is

maximal.
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Algorithmic Insight: Ortholog Contraction

• Contract orthologous nodes into a single node

• No subgraph isomorphism

– Graphs are uniquely identified by their edge sets

• Key observation: Frequent sub-networks are preserved ⇒ No
information loss

– Sub-networks that are frequent in general graphs are also frequent in

their ortholog-contracted representation

– Ortholog contraction is a powerful pruning heuristic

• Discovered frequent sub-networks are still biologically interpretable!

– Interaction between proteins becomes interaction between ortholog

groups
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Ortholog Contraction in Metabolic Pathways

• Directed hypergraph → uniquely-labeled directed graph

– Nodes represent enzymes

– Global labeling by enzyme nomenclature (EC numbers)

– A directed edge from one enzyme to the other implies that the second

consumes a product of the first
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Ortholog Contraction in PPI Networks

• Interaction between proteins → Interaction between ortholog
groups or protein families
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Results: Analyzing PPI Networks

• PPI networks for 9 eukaryotic organisms derived from BIND and
DIP

– A. thaliania, O. sativa, S. cerevisiae, C. elegans, D. melanogaster, H.

sapiens, B. taurus, M. musculus, R. norvegicus

– # of proteins ranges from 288 (Arabidopsis) to 8577 (fruit fly)

– # of interactions ranges from 340 (rice) to 28829 (fruit fly)

• Ortholog contraction

– Group proteins according to existing COG ortholog clusters

– Merge Homologene groups into COG clusters

– Cluster remaining proteins via BLASTCLUST

– Ortholog-contracted fruit fly network contains 11088 interactions

between 2849 ortholog groups

• MULE is available at
http://www.cs.purdue.edu/pdsl/

http://www.cs.purdue.edu/pdsl/
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Conserved Protein Interaction Patterns
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Conserved Protein Interaction Patterns
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Conserved Protein Interaction Patterns
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Discussion

• Ortholog contraction is fast & scalable

– Graph cartesian product based methods [Sharan et al., PNAS, 2004],

[Koyutürk et al., RECOMB, 2005] create mn product nodes for an ortholog

group that has m proteins in each of n organisms

– Ortholog contraction represents the same group with only n contracted

nodes

– Isomorphism-based graph analysis algorithms do not scale to large

networks

• Ortholog contraction implicitly accounts for noise by eliminating
false positives by thresholding frequency, and false negatives
by contraction

• Key Open Problems: (i) Frequency is not significance (ii) How
do we compute optimal ortholog groups?
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Alignment of PPI Networks

• Given two PPI networks that belong to two different organisms,
identify sub-networks that are similar to each other

– Biological implications

– Mathematical modeling

• Existing algorithms

– PathBLAST aligns pathways (linear chains) to simplify the problem while

maintaining biological meaning [Kelley et al., PNAS, 2004]

– NetworkBLAST compares conserved complex model with null model to

identify significantly conserved subnets [Sharan et al., J. Comp. Biol.,

2005]

• Our approach:

– Guided by models of evolution

– Scores evolutionary events

– Identifies sets of proteins that induce high-scoring sub-network pairs
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Match, Mismatch, and Duplication

• Evolutionary events as graph-theoretic concepts

– A match ∈ M corresponds to two pairs of homolog proteins from each

organism such that both pairs interact in both PPIs. A match is associated

with score µ.

– A mismatch ∈ N corresponds to two pairs of homolog proteins from

each organism such that only one pair is interacting. A mismatch is

associated with penalty ν.

– A duplication ∈ D corresponds to a pair of homolog proteins that are in

the same organism. A duplication is associated with score δ.
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Scoring Matches, Mismatches and Duplications

• Quantifying similarity between two proteins

– Confidence in two proteins being orthologous

– BLAST E-value: S(u, v) = log10
p(u,v)

prandom
– Ortholog clustering: S(u, v) = c(u)c(v)

• Match score

– µ(uu′, vv′) = µ̄ min{S(u, v), S(u′, v′)}

• Mismatch penalty

– ν(uu′, vv′) = ν̄ min{S(u, v), S(u′, v′)}

• Duplication score

– δ(u, u′) = δ̄(δ̂ − S(u, u′))

– δ̂ specifies threshold for sequence similarity to be considered functionally

conserved
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Pairwise Alignment of PPIs as an Optimization Problem

• Alignment score:
σ(A(P )) =

∑

M∈M µ(M) −
∑

N∈N ν(N) +
∑

D∈D δ(D)

– Matches are rewarded for conservation of interactions

– Duplications are rewarded/penalized for functional conservation/differentiation

after split

– Mismatches are penalized for functional divergence (what about

experimental error?)

• Scores are functions of similarity between associated proteins

• Problem: Find all protein subset pairs with significant alignment
score

– High scoring protein subsets are likely to correspond to conserved

modules

• A graph equivalent to BLAST
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Weighted Alignment Graph

• G(V,E) : V consists of all pairs of homolog proteins v = {u ∈
U, v ∈ V }

• An edge vv
′ = {uv}{u′v′} in E is a

– match edge if uu′ ∈ E and vv′ ∈ V , with weight w(vv
′) = µ(uv, u′v′)

– mismatch edge if uu′ ∈ E and vv′ /∈ V or vice versa, with weight

w(vv
′) = −ν(uv, u′v′)

– duplication edge if S(u, u′) > 0 or S(v, v′) > 0, with weight w(vv
′) =

δ(u, u′) or w(vv
′) = δ(v, v′)
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Maximum Weight Induced Subgraph Problem

• Definition: (MAWISH)

– Given graph G(V, E) and a constant ǫ, find Ṽ ∈ V such that
P

v,u∈Ṽ w(vu) ≥ ǫ.

– NP-complete by reduction from Maximum-Clique

• Theorem: (MAWISH ≡ Pairwise alignment)

– If Ṽ is a solution for the MAWISH problem on G(V, E), then P = {Ũ , Ṽ }
induces an alignment A(P ) with σ(A) ≥ ǫ , where Ṽ = Ũ × Ṽ .

• Solution: Local graph expansion

– Greedy graph growing + iterative refinement

– Linear-time heuristic

• Source code available at
http://www.cs.purdue.edu/pdsl/

http://www.cs.purdue.edu/pdsl/
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Alignment of Yeast and Fruit Fly PPI Networks

Rank Score z-score # Proteins # Matches # Mismatches # Dups.

1 15.97 6.6 18 (16, 5) 28 6 (4, 0)

protein amino acid phosphorylation (69%)

JAK-STAT cascade (40%)

2 13.93 3.7 13 (8, 7) 25 7 (3, 1)

endocytosis (50%) / calcium-mediated signaling (50%)

5 8.22 13.5 9 (5, 3) 19 11 (1, 0)

invasive growth (sensu Saccharomyces) (100%)

oxygen and reactive oxygen species metabolism (33%)

6 8.05 7.6 8 (5, 3) 12 2 (0, 1)

ubiquitin-dependent protein catabolism (100%)

mitosis (67%)

21 4.36 6.2 9 (5, 4) 18 13 (0, 5)

cytokinesis (100%, 50%)

30 3.76 39.6 6 (3, 5) 5 1 (0, 6)

DNA replication initiation (100%, 80%)
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Subnets Conserved in Yeast and Fruit Fly

Proteosome regulatory particle subnet
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Discussion

• Comparison to other approaches: NetworkBlast [Sharan et al.,

PNAS, 2005], NUKE [Novak et al., Genome Informatics, 2005]

– Faster than NetworkBLAST, but provides less coverage

– Comparable to NUKE depending on speed vs coverage trade-off

• Scores evolutionary events

– Flexible, allows incorporation of different evolutionary models, experimental

bases, target structures

– Somewhat ad-hoc, what is a good weighting of scores?
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Analytical Assessment of Statistical Significance

• What is the significance of a dense component in a network?

• What is the significance of a conserved component in multiple
networks?

• Existing techniques

– Mostly computational (e.g., Monte-Carlo simulations)

– Compute probability that the pattern exists rather than a pattern with

the property (e.g., size, density) exists

– Overestimation of significance
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Random Graph Models

• Interaction networks generally exhibit power-law property (or
exponential, geometric, etc.)

• Analysis simplified through independence assumption [Itzkovitz

et al., Physical Review, 2003]

• Independence assumption may cause problems for networks with arbitrary

degree distribution

• P (uv ∈ E) = dudv/|E|, where du is expected degree of u, but generally

d2
max > |E| for PPI networks

• Analytical techniques based on simplified models [Koyutürk, Grama,

Szpankowski, RECOMB, 2006]

– Rigorous analysis on G(n, p) model

– Extension to piecewise G(n, p) to capture network characteristics more

accurately
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Significance of Dense Subgraphs

• A subnet of r proteins is said to be ρ-dense if F (r) ≥ ρr2, where
F (r) is the number of interactions between these r proteins

• What is the expected size of the largest ρ-dense subgraph in a
random graph?

– Any ρ-dense subgraph with larger size is statistically significant!

• G(n, p) model

– n proteins, each interaction occurs with probability p

– Simple enough to facilitate rigorous analysis

– If we let p = dmax/n, largest ρ-dense subgraph in G(n, p) stochastically

dominates that in a graph with arbitrary degree distribution

• Piecewise G(n, p) model

– Few proteins with many interacting partners, many proteins with few

interacting partners

– Captures the basic characteristics of PPI networks

– Analysis of G(n, p) model immediately generalized to this model
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Largest Dense Subgraph

• Theorem: If G is a random graph with n nodes, where every
edge exists with probability p, then

lim
n→∞

Rρ

log n
=

1

κ(p, ρ)
(pr.), (1)

where

κ(p, ρ) = ρ log
ρ

p
+ (1 − ρ) log

1 − ρ

1 − p
. (2)

More precisely,

P (Rρ ≥ r0) ≤ O

(

log n

n1/κ(p,ρ)

)

, (3)

where

r0 =
log n − log log n + log κ(p, ρ)

κ(p, ρ)
(4)

for large n.
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Piecewise G(n, p) model

• The size of largest dense subgraph is still proportional to log n/κ
with a constant factor depending on number of hubs

• Model:

P (uv ∈ E(G)) =







ph if u, v ∈ Vh

pl if u, v ∈ Vl

pb if u ∈ Vh, v ∈ Vl or u ∈ Vl, v ∈ Vh

• Result:
Let nh = |Vh|. If nh = O(1), then P (Rn(ρ) ≥ r1) ≤ O

(

log n

n1/κ(pl,ρ)

)

,

where

r1 =
log n − log log n + 2nh log B + log κ(pl, ρ) − log e + 1

κ(pl, ρ)

and B = pbql
pl

+ qb, where qb = 1 − pb and ql = 1 − pl.
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Algorithms Based on Statistical Significance

• Identification of topological modules

• Use statistical significance as a stopping criterion for graph
clustering heuristics

• HCS Algorithm [Hartuv & Shamir, Inf. Proc. Let., 2000]

– Find a minimum-cut bipartitioning of the network

– If any of the parts is dense enough, record it as a dense cluster of proteins

– Else, further partition them recursively

• SIDES: Use statistical significance to determine whether a
subgraph is sufficiently dense

– For given number of proteins and interactions between them, we can

determine whether those proteins induce a significantly dense subnet
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SIDES Algorithm

p << 1p << 1

p << 1

SIDES is available at http://www.cs.purdue.edu/pdsl

http://www.cs.purdue.edu/pdsl
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Performance of SIDES

• Biological relevance of identified clusters is assessed with
respect to Gene Ontology (GO)

– Estimate the statistical significance of the enrichment of each GO term

in the cluster

• Quality of the clusters with respect to GO annotations

– Assume cluster C containing nC genes is associated with term T that is

attached to nT genes and nCT of genes in C are attached to T

– specificity = 100 × nCT/nC

– sensitivity = 100 × nCT/nT

SIDES MCODE

Min. Max. Avg. Min. Max. Avg.

Specificity (%) 43.0 100.0 91.2 0.0 100.0 77.8

Sensitivity (%) 2.0 100.0 55.8 0.0 100.0 47.6

Comparison of SIDES with MCODE [Bader & Hogue, BMC Bioinformatics, 2003]
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Performance of SIDES
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Performance of SIDES
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Statistical Significance as an Optimization Criteria

• Most algorithms satisfy queries and quantify the significance of
the answer.

• Can we pose this as an optimization problem on the
signficance – give me the most significant result for the query?

• We address this problem in the simple context of finding
significant pathways.
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Finding Statistically Significant Functional Pathways

• Stack functional annotation of a molecule (gene) from an
ontology on to the network.

• Generate a null-hypothesis for node functional annotation.

• Find all pathways with p-values lower than a threshold.
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Finding Statistically Significant Functional Pathways

• Statistical significance is not monotonic in pathway space
(cannot build longer pathways from known significant
pathways)

• Statistical significance is not monotonic in ontology space
(cannot build pathways at coarse levels in ontology and refine)

• The above statements are true for a broad class of measures of
statistical significance we refer to as statistically interpretable.
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Finding Statistically Significant Functional Pathways

From interactions between functional attributes to pathways
of functional attributes: (a) statistically significant regulatory
interactions between DNA-dependent regulation of transcription,
positive regulation of transcription, and cillary and flagellar
motility, (b) the two regulatory interactions are connected in the
gene network as well, (c) these separate interactions may be
combined into a pathway of functional attributes.
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Finding Statistically Significant Functional Pathways

Pairwise assessment of interactions between functional attributes
does not necessarily imply indirect paths: (a) regulation
of protein modification by sensory perception is significantly
overrepresented, as well as the regulation of biotin biosynthetic
process by protein modification; (b) the two frequent interactions
never go through the same gene.
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Finding Statistically Significant Regulatory Pathways

Greedy Enumeration to the Rescue!
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Finding Statistically Significant Regulatory Pathways

A global view of E. coli transcriptional network mapped to cellular
processes described by GO.
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Finding Statistically Significant Regulatory Pathways

A global view of E. coli transcriptional network obtained
after short-circuting common mediator processes related to
transcription and translation.
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Finding Statistically Significant Regulatory Pathways

Frequency p-value Pathway

276 5E-94 metabolic process ⊣ flagellum biogenesis → transport

136 3.1E-71 regulation of translation ⊣ DNA recombination → transport

38 4.9E-47 response to stimulus ⊣ transcription → cell motility

36 6.6E-35 flagellum biogenesis → ciliary or flagellar motility

56 1.4E-24 regulation of translation ⊣ transcription → carboxylic acid metabolism

178 8.3E-21 signal transduction ⊣ transcription → transport

14 8.6E-20 phosphate transport → transcription → phosphonate transport

16 2E-16 SOS response ⊣ regulation of transcription ⊣ DNA repair

501 1.2E-13 regulation of transcription, DNA-dependent → transport

12 3.6E-10 proteolysis ⊣ regulation of transcription ⊣ response to external stimulus

15 3.8E-7 nitrate assimilation ⊣ cytochrome complex assembly

10 1.4E-6 cell morphogenesis ⊣ protein secretion

178 3.8E-4 transcription → carbohydrate metabolic process

Narada available at:

http://www.cs.purdue.edu/homes/jpandey/narada/

http://www.cs.purdue.edu/homes/jpandey/narada/
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Outstanding Challenges

• Models, measures, algorithms and analysis!

• Data and data quality.

• Discriminative analysis.


