
bioinformatics 1 -- lecture 7

Probability and conditional probability

Random sequences and significance (real sequences are 

not random)

Erdos & Renyi: theoretical basis for the significance of an 
alignment given its length and score

Extreme value distribution, better than a Gaussian for 
estimating significance.

E-values



Probability

"P(H)" means the probability of H, heads. 0 ≤ P ≤ 1

coin S coin Q coin I

Susan B Anthony The Queen Ireland



Unconditional probabilities

P(HHT) = P(H)*P(H)*P(T)

Conditional probabilities

P(S,H) = P(S)*P(H|S)

Joint probability of a sequence of 3 flips, given any one (un)fair coin,
is the product. 

If the coins are "unfair" (not 50:50), then P(H) depends on the 
coin you choose (S,Q or I).  P(H) is "conditional" on the choice 
of coin, which may have its own odds. 



Conditional probabilities
"P(A|B)"  means the probability of A given B, where A is the 
result or observation, B is the condition. (The condition 
may be a result/observation of a previous condition.)

P(H|S) is the probability of H (heads) given that the coin 
is S. 

In general, the probability of two things together, A and B, is

P(A,B) = P(A|B)P(B) = P(B|A)P(A)

Divide by P(B), you get Bayes' rule:

P(A|B)= P(B|A)* P(A) /P(B) To reverse the order of conditional 
probabilities, multiply by the ratio of the 
probabilities of the conditions.



Scoring alignments using P

For each aligned position (match), we get P(A|B) , which is the 
substitution probability. Ignoring all but the first letters, the 
probability of these two sequences being homologs is:

P(s1[1]|s2[1])

Ignoring all but the first two letters, it is: 

P(s1[1]|s2[1])xP(s1[2]|s2[2]) 

Counting all aligned positions:

ΠiP(s1[i]|s2[i]) Each position is treated as a different coin. 
(An independent stochastic process).

substitution of s2[1] for s1[1]



log ΠiP(s1[i]|s2[i])/P(s1[i]) = ΣiS(s1[i]|s2[i]) 

Log space is more convenient

 where S(A|B) = 2*log2(  P(A|B)/P(A)  ) = BLOSUM score

This is the form of the substitution score, 
Log-likelihood ratios (alias LLRs, log-
odds, lods). Usually “2 times log2 of the 
probability ratio” (or “half-bits”).



Dayhoff's randomization 
experiment

Aligned scrambled Protein A versus scrambled Protein B 

100 times (re-scrambling each time). 

NOTE: scrambling does not change the AA composition!

Results: A Normal Distribution
significance of a score is measured
as the probability of getting 
this score in a random alignment



Lippman's randomization experiment
Aligned Protein A to 100 natural sequences, not scrambled. 

Results: A wider normal distribution (Std dev = ~3 times larger)
WHY?  Because natural sequences are different than random.

Even unrelated sequences have similar local patterns, and 
uneven amino acid composition. 

Lippman got a similar result if he randomized the sequences by 
words instead of letters.

Was the significance 
over-estimated using 
Dayhoff's method?



complexity
= sequence heterogeneity

A low complexity sequence is homogeneous in its 
composition. For example:
AAAAAAAAHAAAAAAAAKAAAAAEAA
is a low-complexity sequence.

Compared to other sequences, there are relatively 
few ways to make a 26-residue sequence that has 23 
A's, 1 H, 1 K and 1 E. 



What is the effect of low-complexity regions 
on the score distribution?

What is the effect on significance?

Wider score distribution ---> lower significance of a 
given score.

Narrower score distribution ---> higher significance.

(2) .... from a Lipmann-type randomization experiment?

(1) .... from a Dayhoff-type randomization experiment?



Local patterns (words) increase the standard 
deviation of random alignments scores.

The two-letter sequence "PG" occurs more often than expected 
by chance, perhaps because PG occurs in beta-turns. 

If non-homolog sequences are actually made of of small 
words, instead of letters, then how will the score distribution 
be effected? Narrower? Wider?

•Whole word matches have higher scores.

•Whole word mismatches have lower scores.

•Total score of an alignment is the sum of word scores, which 
are more variable.



Expected

Expectation

Expectation value



Expectation value for coin tosses
Consider a fair coin, tossed n=25 times. The sequence is, let’s say:

HTHTHTTTHHHTHTTHHTHHHHHTH 

The longest row of H’s is 5 in this case.

What is the expected length of the longest row of H's given n?

length of longest sequence of H

number of 
times it 
occurred

Erdos & Renyi equation:

E(n) = log1/p(n)

where p is the P(H).



Heads is like match, tails is like mismatch

Similarly, we can define an expectation value, E(M), for the 
longest row of matches in an alignment of length n. E(M) is 
calculated similar to the heads/tails way, using the Erdos & 
Renyi equation (p is the odds of a match, 1-p is the odds of a 
mismatch):

E(M) = log1/p(M)

But over all possible alignments of two sequences of length 
n, the number is

E(M) = log1/p(n*n) = 2 log1/p(n) 

If the two sequences are length n and length m, it is

E(M) = log1/p(mn) [+ some constant terms that don’t depend on m and n]

expectation given an alignment of length M



Heads/tails = match/mismatch
Theoretically derived equation for the expectation value for 
M, the longest block of Matches. 

E(M) = log1/p(mn) + log1/p(1-p) + 0.577log(e) - 1/2

Note that we can define a number K such that log1/p(K) = constant terms.

E(M) = loge(Kmn)/λ

...where λ = loge(1/p)



In class exercise: empirical expectation value

Open Geneious.

Using DNA from any viral genome, extract 100 bases at 
random, twice. (make sure these two sequences non-overlapping!)

Align the two extracted segments (default DNA parameters)

Find the longest string of identity matches. Write it down.

Delete the extracted sequences, and do it again. As many times 
as you can.

Plot the frequency vs lengths on the board.



Theoretical expectation value

E(M) = loge(Kmn)/λ

E(M) = log1/p(mn) + log1/p(1-p) + 0.577log(e) - 1/2

Solving, using p=0.25, we get K=0.6237, λ= loge(4) = 1.386, m=n=100 

E(M) = loge(Kmn)/λ

 = 6.3

Is this what we found for the most 
probable longest string of identity 
matches?



P(S > x)
E(M) gives us the expected length of the longest number of 
matches in a row. But, what we really want is the answer to this 
question:

How good is the score x?  (i.e. how significant)

So, we need to model the whole distribution of chance scores, 
then ask how likely is it that my score or greater comes from 
that model.

score

freq



Distribution Definitions
Mean = average value.

Mode = most probable value.

extreme = minimum and maximum values.

Standard deviation = one type of decay function.

For a variable whose distribution comes from extreme 
value, such as random sequence alignment scores, the 
score must be greater than expected from a normal 
distribution to achieve the same level of significance.



A Normal Distribution

Usually, we suppose the likelihood of deviating from the mean 
by x in the positive direction is the same as the likelihood of 
deviating by x in the negative direction, and the likelihood of 
devating by x decreases as the power of x.

Why? Because multiplying probabilities gives this type of 
curve.  

This is called a Normal, or Gaussian distribution. 



Extreme value distribution, a distribution derived 
from extreme values

all possible scores 
for two sequences =
Normal distrib.

best score (optimal)
Using only  best 
scores produces a 
skewed distrib.

Get statistics from lots of 
optimal scores 

EVD has this shape. But the Mode and decay parameters depend on the data.

y = exp(–x – e–x)
Extreme value distribution



Empirical proof of the EVD

Suppose you had a Gaussian distribution “dart-board”. You 
throw 1000 darts randomly. Score your darts according the 
number on the X-axis where it lands. What is the 
probability distribution of scores? 
Answer:The same Gaussian distribution! (duh)



Empirical proof of the EVD

What if we throw 10 darts at a time and remove all but the 
highest-scoring dart. Do that 1000 times. What is the 
distribution of the scores? 



Empirical proof of the EVD

The EVD 
gets sharper 
as we 
increase the 
number of 
darts thrown



Empirical proof of the EVD



Extreme value distribution for sequence scores

y = exp(–x – e–λ(x-u))

u = loge(Kmn)/λ

P(S≥x) = 1 - exp(-Kmne-λx)Integrating from x 
to infinity gives:

The EVD with mode 
uλ and decay 
parameter λ:

The mode, from 
the Erdos & 
Renyi equation: 

P(x) = exp(–x – e–λ(x-ln(Kmn)/λ))substituting gives: 



the scoring function and λ

λ is calculated as the value of x that satisfies:

ΣpipjeSijx = 1
Substitution matrix values.

Sij is the log-likelihood ratio, log[P(i->j)/pipj]. So, eSij is the likelihood ratio, 
P(i->j)/pipj. So eSijx is exP(i->j)/pipj. If ex = pipj (on average), then 
eSijx is approximately the observed P(i->j) the sum over all amino acid 
pairs of P(i->j) is one by definition. So λ = log(ex) = the log of the average 
expected subsitution probability pipj.



voodoo mathematics

1-exp[-e-x] ≈ e-x

P(S≥x) = 1 - exp(-Kmne-λx)

log(P(S≥x)) ≈ log(Kmn) - λx

We can plot log(P(S≥x)) versus x 
(using a large number of known false alignment scores x), 

and fit it. The slope is −λ, the intercept is log(Kmn) 

For values of x greater than 1, we can make this approximation:

That means,

becomes, P(S≥x) ≈ Kmne-λx

taking the log of 
both sides,



Finding the EVD parameters

log(P(S≥x)) ≈ log(Kmn) - λx
We generate a large number of known false alignment scores S, 
(all alignments with the same two lengths m and n), 
plot log(P(S≥x)) versus x , and fit the data to a line! 

Estimated P( score x 
or higher) given 

random alignments:
P(S≥x) ≈ Kmne-λx

Taking the log of 
both sides,
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Geneious exercise: fitting EVD to false 
scores

1.Scramble a protein sequence “by words”. (cut and 
paste 5-10 residue segments about 20 times)

2.Submit to BLAST. Set max e-value = 1000, max hits=200, 
gapcost 12 , uncheck “fully annotate..”

3.Sort by “bit-score” (= alignment score) high to low.
4.Save n (row number) and S (bit score) on a list. Randomly 

choose from your list.
5.Write log(n) next to S.
6.Plot S on the x-axis, log(n) on the y-axis. Find the slope and 

intercept. 
7.Find the p-value for S=50. Find the e-value, assuming the size 

of the database was 1,000,000.
30



e-values in BLAST
•Every BLAST "hit" has a bit-score, x, derived from the 
substitution matrix.

•Parameters for the EVD have been previously calculated 
for m and n, the lengths of the database and query.

•Applying the EVD to x we get P(S≥x), which is our "p-
value"

•To get the “e-value” (expected number of times this score 
will occur over the whole database) we multiply by the size 
of the database m.

e-value(x) = P(S≥x)*m
where x is the alignment score, m is the size of the database, and P is calculated from 
false alignment scores. 



Matrix bias in local alignment

In Local Alignment we take a MAX over zero (0) and three other 
scores (diagonal, across, down). Matrix Bias is added to all 
match scores, so the average match score,and the extremes, can be 
adjusted.

What happens if match scores are....?
all negative? :   
 Best alignment is always no alignment.

all positive? : 

 Best alignment is gapless, global-local.

average positive? : 
 Best alignment is local (longer).

 
 
 Typical random alignment is local.
average negative? :
 Best alignment is local (shorter).

 
 
 Typical random alignment is no alignment.



Altschul's Principle
For local DP alignment, the match (substitution) scores 
should be 


 > zero for a match, and 


 < zero for a mismatch, 

on average. (some mismatches may have a > 0 score)



What happens with matrix bias?
If we add a constant to each value in the substitution matrix, it 
favors matches over gaps. As we increase matrix bias...

• Longer alignments are more common in random sets.
• Longer alignments are less significant.

No matrix bias Positive matrix biasNegative matrix 
bias



summary of significance

•Significance of a score is measured by the probability of 
getting that score by chance.

•History of modeling “chance” in alignments

•1970’s Dayhoff: Guassian fit to scrambled alignments

•1980’s Lipman: Gaussian fit to false alignments

•1990’s Altschul: EVD fit to false alignments



summary of significance

•The expectation value for the maximum length of a match 
between two sequences, lengths n and m, given the probability 
of a match p, has a theoretical solution.  log(1/p)(nm), the Erdos 
& Lenyi equation.

•The score of an alignment is roughly proportional to the 
number of matches (local alignments only).  Therefore, the 
expectation value of alignment scores follows the same 
theoretical equation. 



summary
•The Extreme Value Distribution = exp[-x-exp(-x)] 
models the distribution is over extreme random values (such as 
optimal, but false, alignment scores). 

•The EVD models the length-dependence of the score.

•The parameters (λ,K) of the EVD are determined empirically 
by plotting false scores and fitting.

•Once λ and K have been found, the significance of a given 
score x is the probability of getting a higher score S from 
random alignments. This is approximated by integrating the 
EVD from x to infinity. 

P(S≥x) = 1 - exp(-Kmne-λx)≈ Kmne-λx



Pop-quiz

You did a BLAST search using a sequence that has 
absolutely no homologs in the database.  Absolutely 
none.

The BLAST search gave you false “hits” with the top e-
values ranging from 0 to 20. You look at them and you 
notice a pattern in the e-values. 

How many of your hits have e-value ≤ 10.?


