Bioinformatics 1: lecture 5

Follow-up of Lecture 4?

Substitution matrices

Multiple sequence alignment

A teacher's dilemma

To understand	You first need to know
Multiple sequence alignment	Substitution matrices
Substitution matrices	Phylogenetic trees
Phylogenetic trees	Multiple sequence alignment

Substitution matrices

- •Used to score aligned positions, usually of amino acids.
- •Expressed as the *log-likelihood ratio of mutation* (or *log-odds ratio*)
- •Derived from multiple sequence alignments
- Two commonly used matrices: PAM and BLOSUM
- •PAM = percent accepted mutations (Dayhoff)
- •BLOSUM = Blocks substitution matrix (Henikoff)

PAM M Dayhoff, 1978

•Evolutionary time is measured in Percent Accepted Mutations, or PAMs

•One PAM of evolution means 1% of the residues/bases have changed, averaged over all 20 amino acids.

•To get the relative frequency of each type of mutation, we count the times it was observed in a database of multiple sequence alignments.

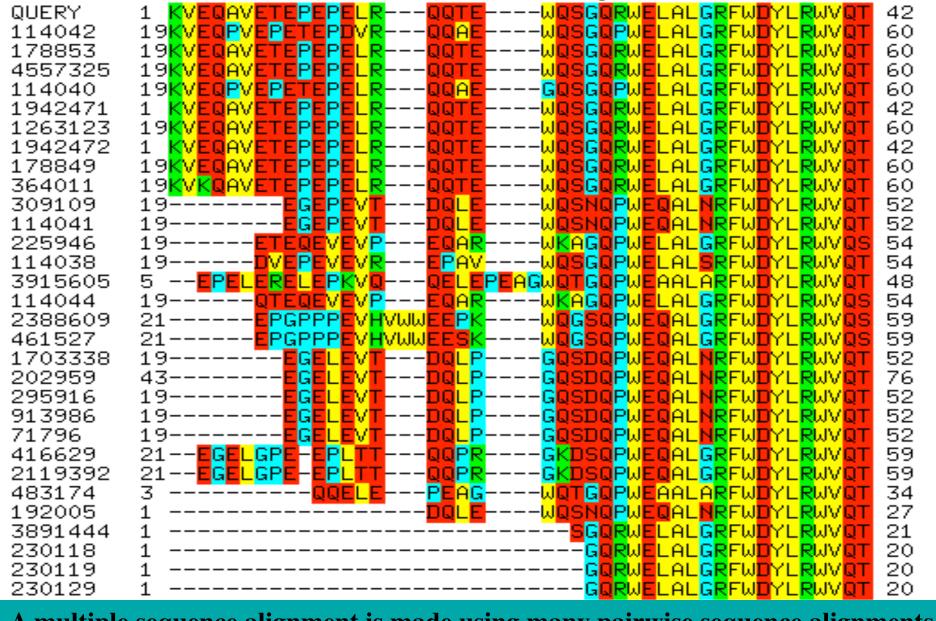
•Based on global alignments

•Assumes a Markov model for evolution.

BLOSUM

Henikoff & Henikoff, 1992

•Based on database of ungapped local alignments (BLOCKS)


	C	S	т	P	A	G	N	D	E	0	H	R	K	M	I	L	v	F	Y	W	-
С	9																				С
S	-1	14																			S
I	-1	1	5																		Т
P	-3	-1	-1	7																	P
ł	0	1	Ø	-1	4																A
G	-3	Ď	-2	-2	Ð	6															G
N	-3	1	0	-2	-2	0	Ó														N
D	-3	0	-1	-1	-2	- 1	1	6													P
Ē	-4	0	-1	-1	- 1	-2	0	2	5												E
Q	-3	0	-1	-1	-1	-2	0	0	2	5											Q
H	-3	-1	-2	-2	-2	-2	1	-1	ø	0	8										H
R	~3	~1	-1	-2	-1	~2	0	-2	Ð	1	0	5									R
зK:	-3	្លា	-1	-1		-2	<u>.</u>	-1		<u>1</u>		2			*****						K
M	~1	-1	~1	-2	-1	~3	-2	~3	-2	0	~2	-1	-1	5							M
Ι	-1	-2	-1	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	4						Ľ
L	-1	~2	-1	-3	-1	-4	~3	-4	~3	-2	-3	~2	-2	2	2	4					L
V	-1	-2	0	-2	0	-3	-3	-3	-2	-2	-3	-3	-2	1	3	1	4				V
F	-2	-2	-4	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-1	6	-		F
Y	-2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7	7.7	W
M	-2 C	<u>-3</u> S	<u>-2</u> T	-9 P	<u>-3</u>	G	-q N	<u>9</u> D	<u>-3</u> E	-/	H	R	<u>-3</u>	M	<u>-3</u> I	L	v	F	Y	W	NAC N

•Alignments have lower similarity than PAM alignments.

•BLOSUM number indicates the percent identity level of sequences in the alignment. For example, for BLOSUM62 sequences with approximately 62% identity were counted.

•Some BLOCKS represent functional units, providing validation of the alignment.

Multiple Sequence Alignment

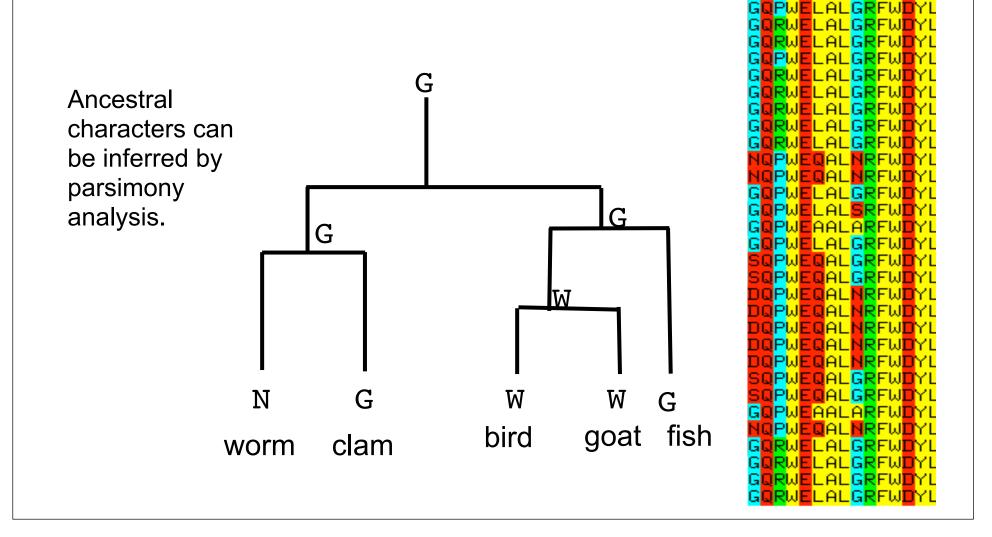
A multiple sequence alignment is made using many pairwise sequence alignments

Columns in a MSA have a common evolutionary history

G

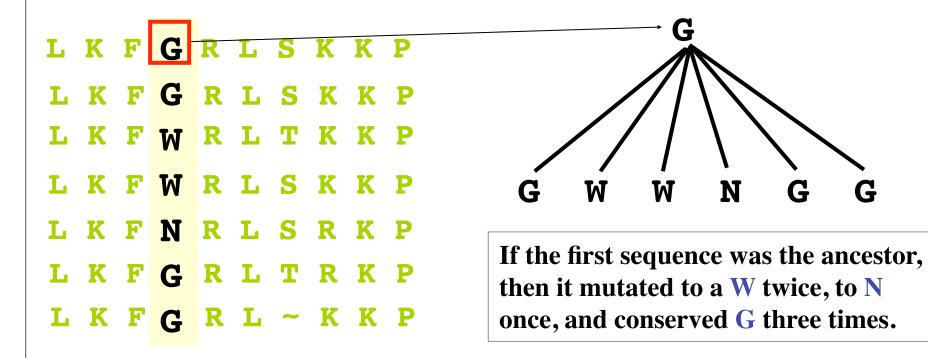
Α

G

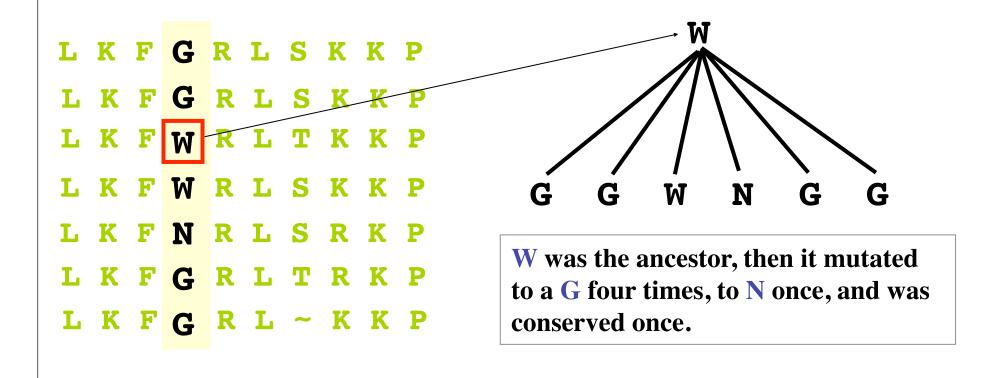

/bach1/server/isites/tmp/junk

					_	
QUERY	1 KVEQAVETEPEPELR-				WDYL <mark>R</mark> WVQT	42
114042	19KVEQPVEPETEPDVR-	QQAE	-WQS <mark>GQ</mark> PWELAI	GIF	WDYL <mark>R</mark> WVQT	60
178853	19KVEQAVETEPEPELR-	OOTE	-WOS <mark>GORWE</mark> LAI	GIF	WDYLRWVQT	60
4557325	19 <mark>KVEQAVETEPEPELR</mark> -	OOTE	-WOSGORWELAI	GLE	WOYLRWVOT	60
114040	19KVEOPVEPETEPELR-		-GOSGOPWELA		WDYL RWVOT	60
1942471	1 KVEQAVETEPEPELR-	00TF	-WOSGORWELA		WDYL RUVOT	42 42
1263123	19KVEQAVETEPEPELR-	00TE	-WOSGORWELAI		WDYL RUVOT	60
1942472		QOTE	-WOSGORWELAI		WDYLRWVOT	42
178849	19KVEGAVETEPEPELR-		-WOSGORWELAI			60
364011	19KVKOAVETEPEPELR-		-WQSGQRWELAI		WDYLRWVQT	60
309109			-WOSNOPWEOAI		WDYLRWVQT	52
114041			-WOSNOPWEOAL			52
225946	19ETEQEVEVP-				WDYLRWYQS	
114038	19DVEPEVEVR-				WDYLRWVQT	54
3915605			GWQTGQPWEAAI		WDYLRWVQT	48
114044	19QTEQEVEVP-				WDYL <mark>R</mark> WVQS	
2388609	21EPGPPPEVHV				FWDYL <mark>R</mark> WVQS	59
461527	21EPGPPPEVHV	WW <mark>EESK</mark>	-WQGSQPWEQAI		WDYL <mark>R</mark> WVQS	59
1703338	19 <mark>EGELEVT</mark> -	<mark>DQLP</mark>	- <mark>G</mark> QSDQ <mark>PWEQ</mark> AI	NI F	WDYL <mark>R</mark> WVQT	52
202959	43 <mark>EGELEVT</mark> -		- <mark>GQSDQ</mark> PWEQAI	NI F	WDYL <mark>R</mark> WVQT	76
295916			- <mark>G</mark> QSDQ <mark>PWEQAI</mark>	NI F	WDYL <mark>R</mark> WVQT	52
913986	19 <mark>EGELEVT</mark> -		- <mark>GQSDQ</mark> PWEQAI	NI F	WDYLRWVQT	52
71796			- <mark>G</mark> OSDO <mark>PWEOAL</mark>	NI F	WDYLRWVOT	52
416629	21EGELGPE-EPLTT-	<mark>00PR</mark>	- <mark>GKDSQ</mark> PWEQAI	GIE	WDYLRWVOT	59 N
2119392	21EGELGPE-EPLTT-		-GKDSQPWEQAI		WDYLRWVOT	59
483174	3QUELE-	PEAG	-WOTGOPWEAAI			34
192005	1		-WQSNQPWEQAI		WDYLRWVOT	27
3891444	1		SGQRWELAI		WDYLRWVOT	21
230118	± 1		GORWELAI		WDYLRWVQT	20
230118	1				WDYLRWVOT	20
230119	1				WDYLRWVQT	20
230129	T		<mark>GQR</mark> WELAI			20

By aligning the sequences, we assert that the aligned residues in each column had a common ancestor.


A tree shows the evolutionary history of a single position

ELALGREWDYL



Counting mutations without knowing ancestral sequences

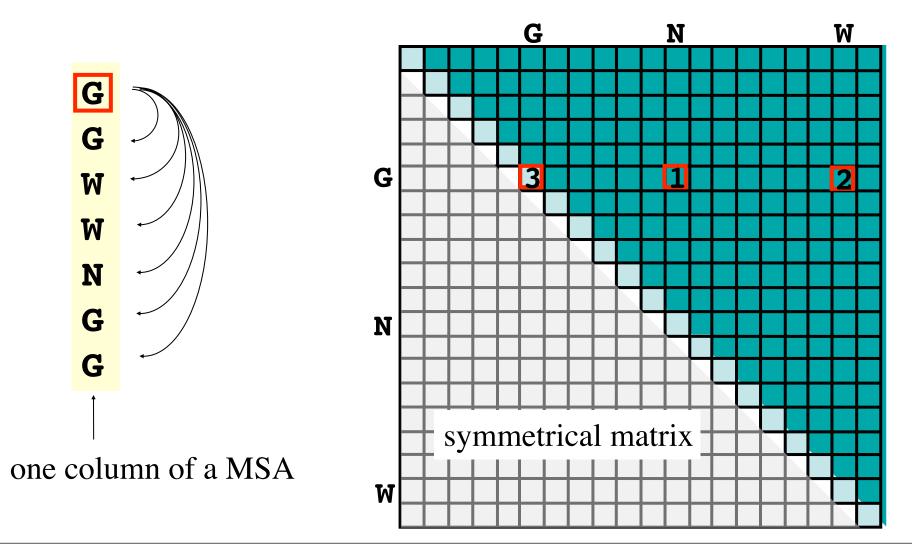
Assume *any* of the sequences could be the ancestral one.



Or, instead of G we could have picked W as the ancestor...

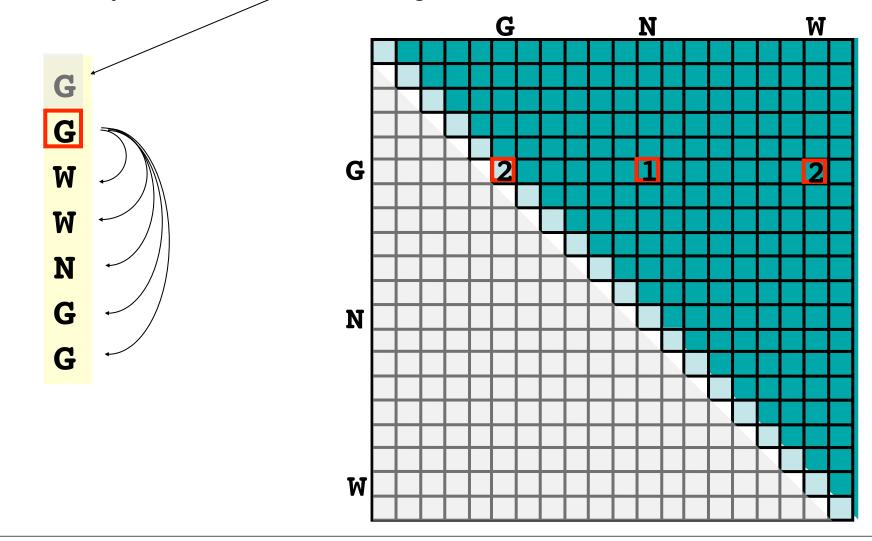
Subsitution matrices are symmetrical

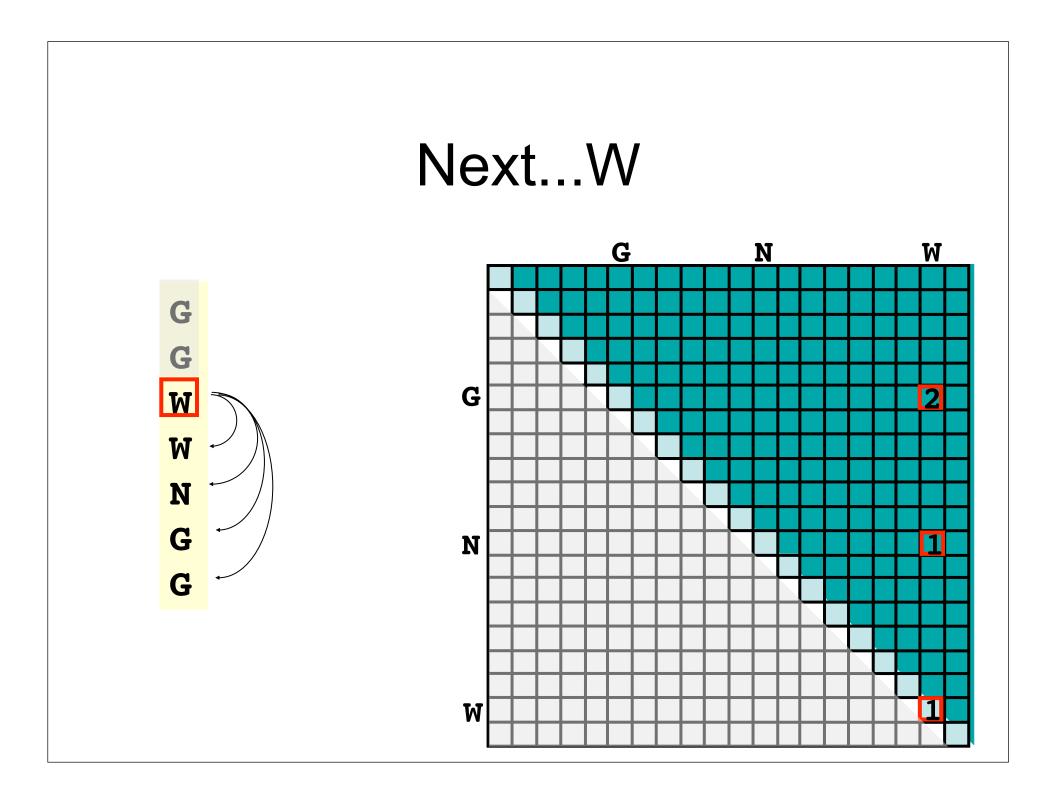
Since we don't know which sequence came first, we don't know whether

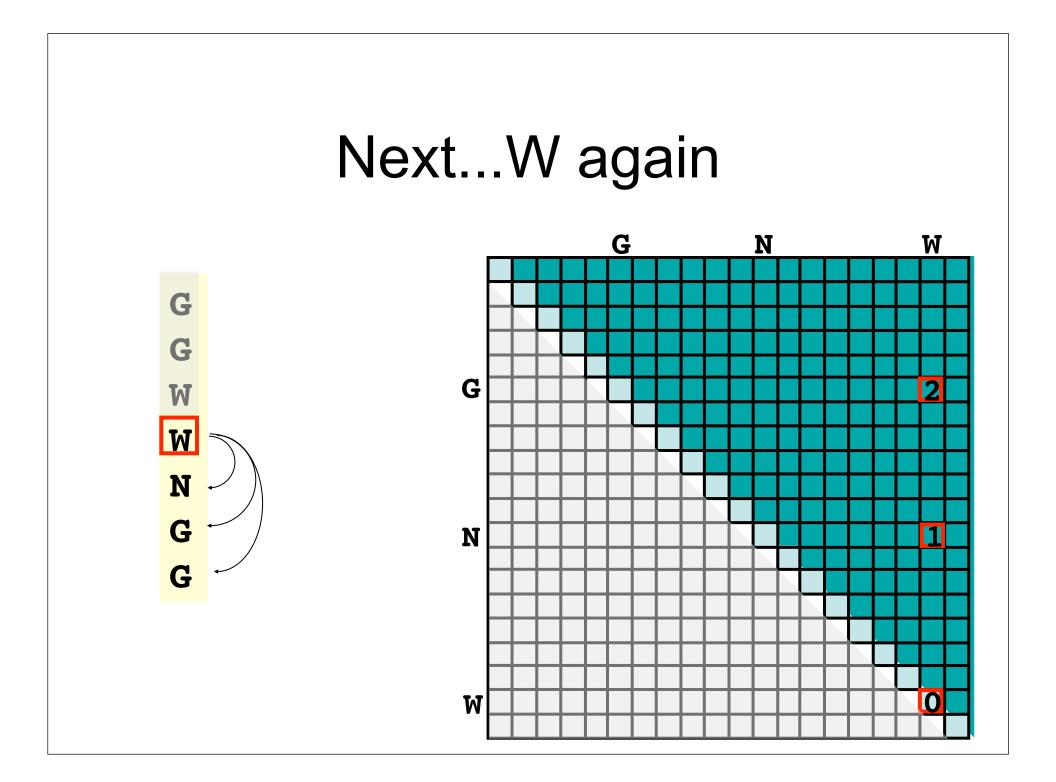

... is correct. So we count this as one mutation of each type.

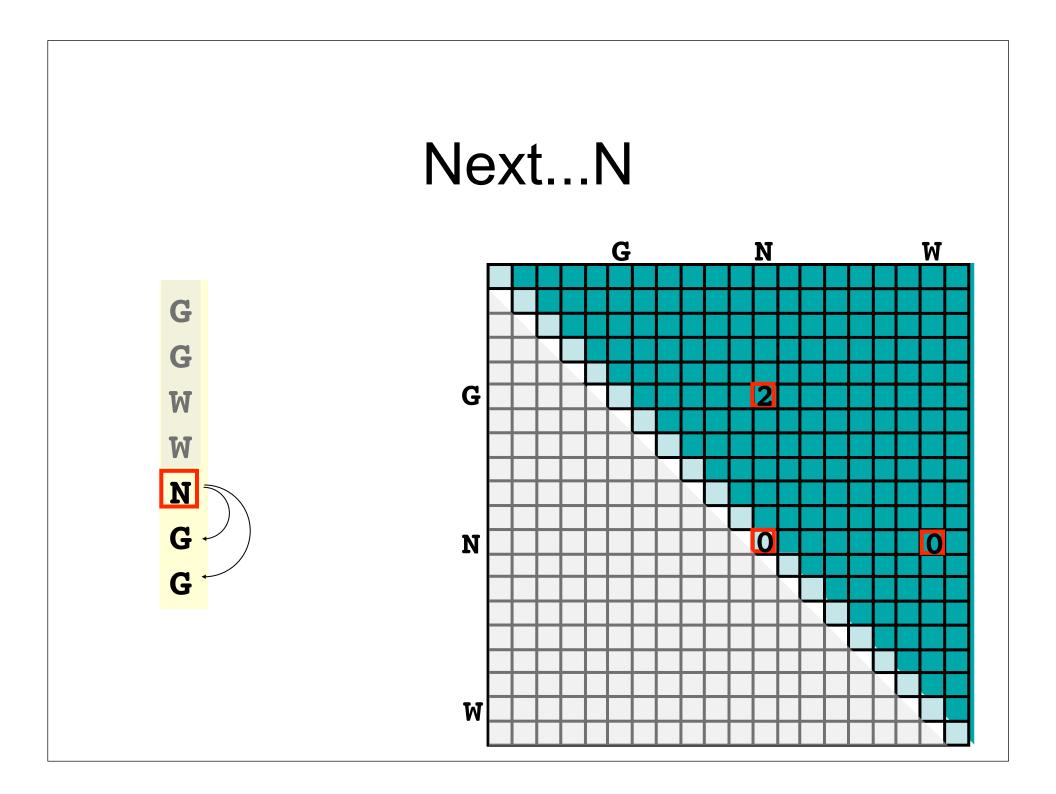
G-->W and W-->G. In the end the 20x20 matrix will have the same number for elements (i,j) and (j,i).

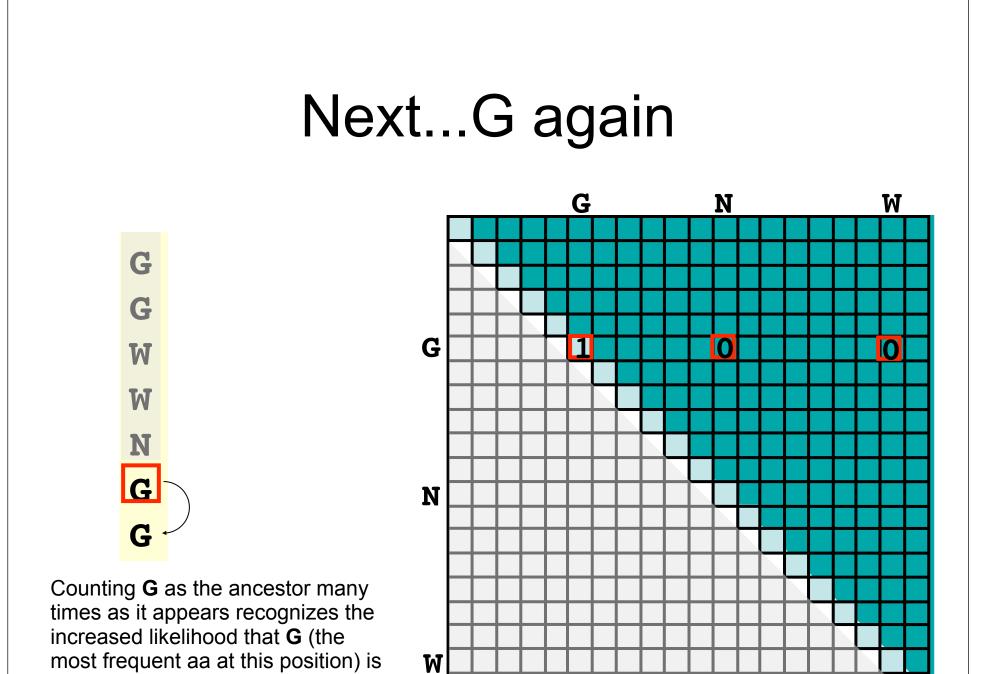
(That's why we only show the upper triangle)

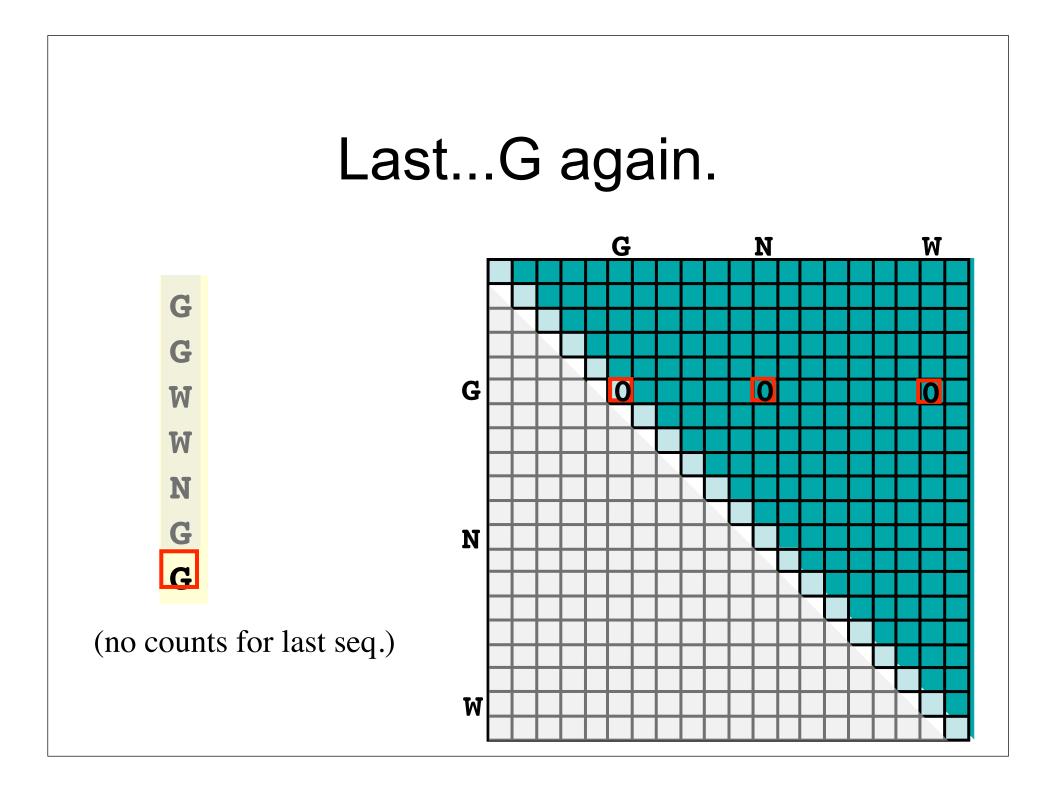

Summing the substitution

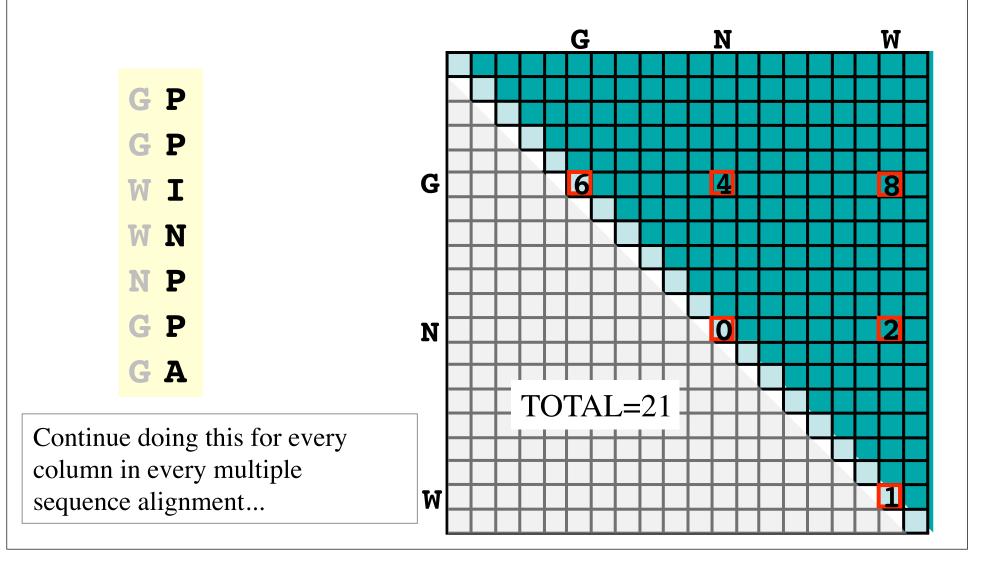

We assume the ancestor is one of the observed amino acids, but we don't know which, so we try them all.




Next possible ancestor, G again.


We already counted this residue against all others, so be blank it out.





the true ancestor.

Go to next column. Continue summing.

log odds

Substitutions (and many other things in bioinformatics) are expressed as a "likelihood ratio", or "odds ratio" of the observed data over the expected value. Likelihood and odds are synomyms for <u>Probability</u>.

So Log Odds is the log (usually base 2) of the odds ratio.

 $\log \text{ odds ratio} = \log_2(\text{observed/expected})$

Getting log-odds from counts

P(G) = 4/7 = 0.57

Observed probability of G->G $q_{GG} = P(G->G)=6/21 = 0.29$

Expected probability of G->G,

 $e_{GG} = 0.57 * 0.57 = 0.33$

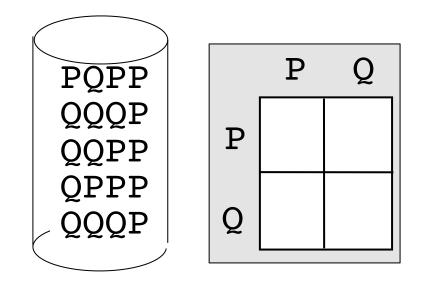
odds ratio = $q_{GG}/e_{GG} = 0.29/0.33$

If the 'lod' is < 0., then the mutation is less likely than expected by chance. If it is > 0., it is more likely.

log odds ratio = $\log_2(q_{GG}/e_{GG})$

Different observations, same expectation

G W
G A
G W
G A
GW
GA
G A G A
A U


G's concentrated

Different observations, same expectation

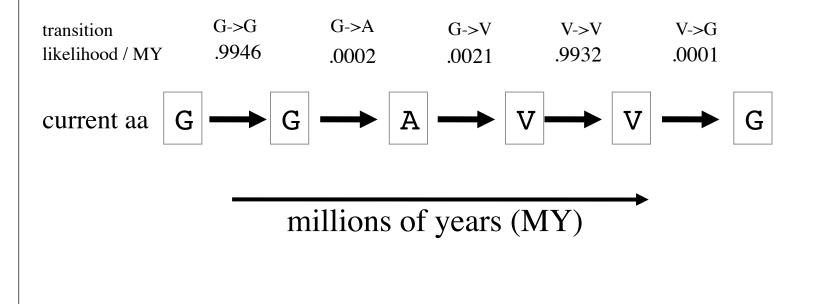
	P(G)=0.50, P(W)=0.14 $e_{GW} = 0.07$ $q_{GW} = 7/42 = 0.17$ $lod = log_2(0.17/0.07) = 1.3$					P(G)=0.50, P(W)=0.14 $e_{GW} = 0.07$ $q_{GG} = 3/42 = 0.07$ $lod = log_2(0.07/0.07) = 0$						
		G	G				G	W				
		G	A				G	A				
		W	G				G	W				
		A	W				G	A				
		N	G					W				
		G	A				_	A				
		G	A					G				
G a	G and W seen together more					G's and W's not						
ofte	n than	exp	pecte	ed.		seen t	oge	ther	•			

In class exercise:

Get the substitution value for P->Q

$$P(P) = _, P(Q) = _$$

$$e_{PQ} = _, P(Q) = _, P$$


sequence alignment database.

substitution counts

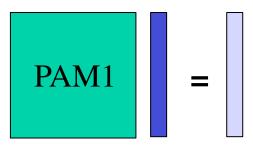
expected (e), versus observed (q) for P->Q

Markovian evolution and PAM

A **Markov process** is one where the likelihood of the next "state" depends only on the current state. The inference that **evolution** is **Markovian** assumes that base changes (or amino acid changes) occur at a constant rate and depend only on the *identity of the current base (or amino acid)*.

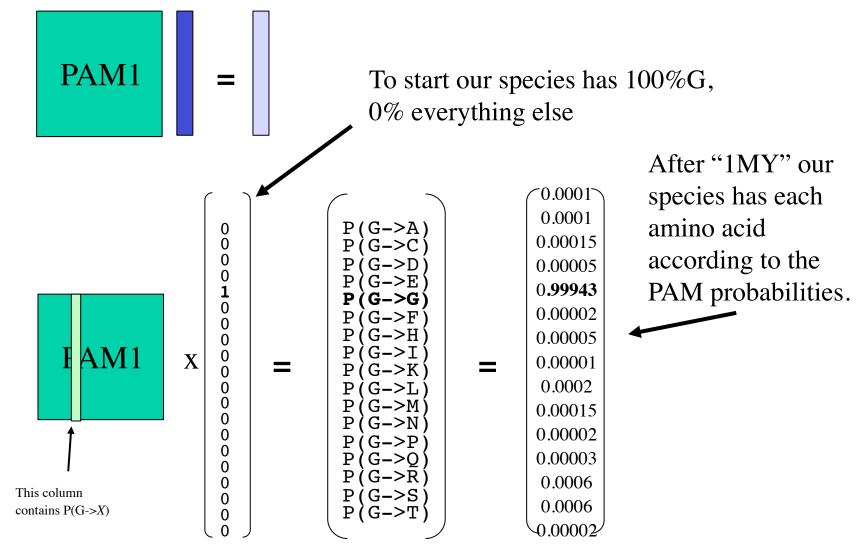
Markovian evolution is an extrapolation

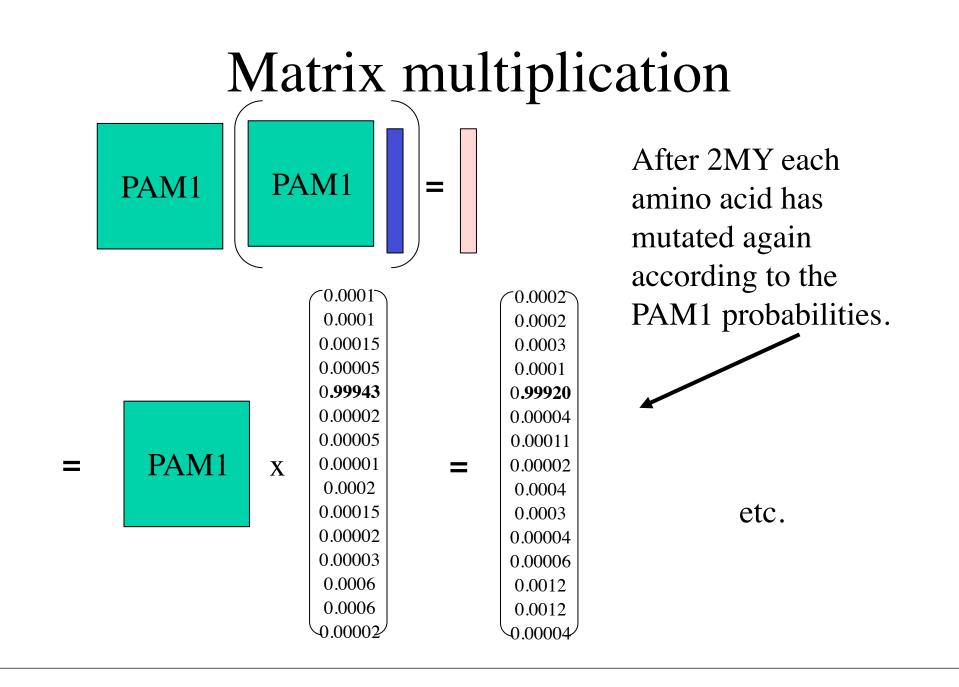
Start with all G's. Wait 1 million years. Where do they go?

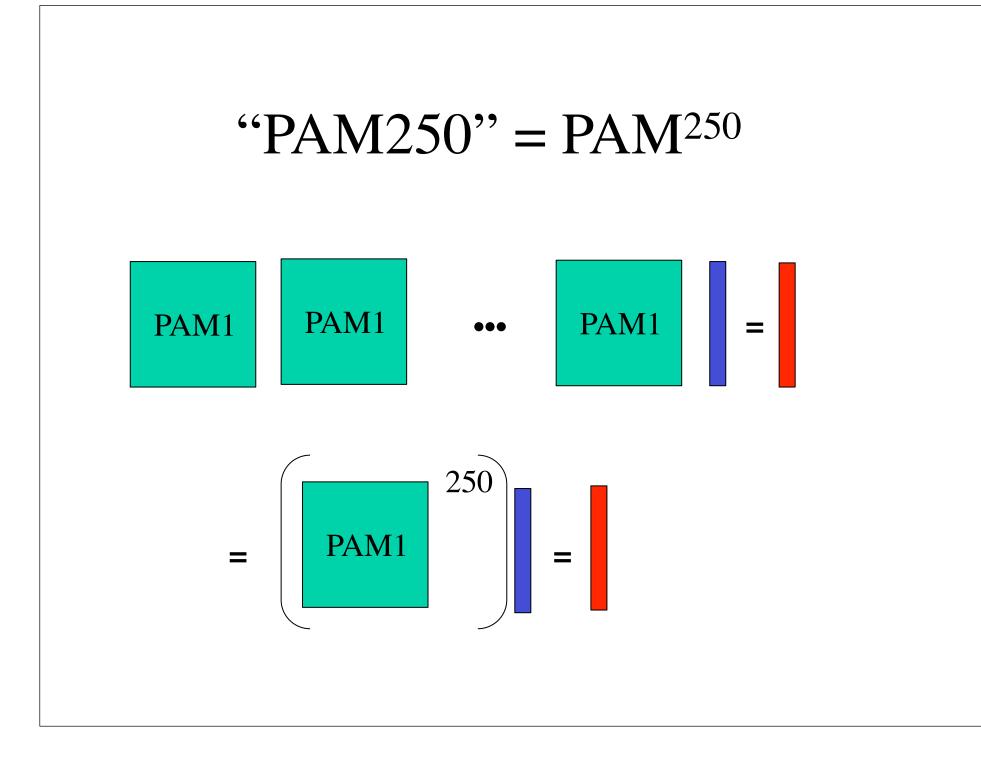

Using PAM1, we expect them to mutate to about 0.0002 A, 0.0007 P, 0.9946 G, etc

Wait another million years.

The new A's mutate according to PAM1 for A's, P's mutate according to PAM1 for P's, etc.


Wait another million, etc , etc etc.


What is the final distribution of amino acids at the positions that were once G's?



PAM1

Differences between PAM and BLOSUM

PAM

•PAM matrices are based on *global alignments* of closely related proteins.

•The PAM1 is the matrix calculated from comparisons of sequences with no more than 1% divergence.

•Other PAM matrices are extrapolated from PAM1 using an assumed Markov chain.

BLOSUM

•BLOSUM matrices are based on *local alignments*.

•BLOSUM 62 is a matrix calculated from comparisons of sequences with approx 62% identity.

•All BLOSUM matrices are based on observed alignments; they are not extrapolated from comparisons of closely related proteins.

•BLOSUM 62 is the default matrix in BLAST (the database search program). It is tailored for comparisons of moderately distant proteins. Alignment of distant relatives may be more accurate with a different matrix.

	PAM250																				
C	C	S	T	P	A	G	N	D	E	Q	H	R	K	м	I	L	V	F	¥	W	c
STRAG	0 -2 -3 -2 -3	21111	3 0 1 0	6 1 ~1	2	5															STPAG
	4555		0 0 0 -1	-1 -1 -1 0	0000	0 1 0 -1	2211	430	4	4											n d E Q
H R K	-3 -4 -5	-1 0 0	-1 -1 0	0 0 -1	-1 -2 -1	-2 -3 -2	2 0 1	1 -1 0	1 -1 0	3 1 1	6 2 0	6 3	5								H R K
MILV	5 2 6 2	2131	1020	-2 -2 -3 -1	1120	3341	N N N N	3242	12 2 3 2 1 2 3 2	1111	-222	0232	0232	6242	5.01.44	62	4				NILV
F Y W	-4 0 -8 C	-3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -	-3 -3 -5 T	-5 -5 -6 P	-4 -3 ~6 A	-5 -5 -7 G	-4 -2 -4 N		-5 -4 -7 E		-2 0 -3 H		-5 -4 -3 K	0 -2 -4 M	1 -1 ~5 I	2 -1 -2 L		9 7 0 F		17 W	F Y N

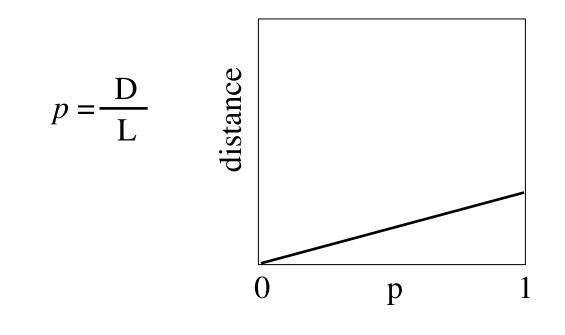
	BLOSUM62																				
С	с 9	S	т	P	A	G	N	ם	E	0	н	R	ĸ	м	I	L	v	F	¥	W	С
W H H A W	11000	411	5 -1 -2	7 -1 -2	4	6															S II P A G
N D E Q	-3 -3 -4 -3	1 0 0 0	0 -1 -1 -1	-2 -1 -1 -1	-2 -2 -1 -1	0 -1 -2 -2	6 1 0 0	6 2 0	5	5											전 H C K
HRKM	-3 -3 -3	-1 ~1 0 -1	-2 -1 -1 -1	-2 -2 -1 -2	-2 -1 -1	-2 ~2 -2 -3	1 0 0 -2	-1 -2 -1 -3	0 0 1 -2	0 1 1 0	8 0 -1 ~2	5 2 -1	5	5							H R K M
ILV	-1 -1 -1	-2 -2 -2	-1 -1 0	-3 -3 -2	-1 -1 0	-4 -4 -3	-3 -3 -3 -3	-3 -4 -3	-3 -3 -2	-3 -2 -2 -2	-3 -3 -3	-3 -2 -3	-3 -2 -2	1 2 1	4 2 3 0	4	4	6			N N N
YW	-2 -2 -2 C	-2 -3 S	-2 -2 -2 T	-3 -4 P	-2 -3	-3 -2	-2 -4	-3 -4	-2	-1 -2 Q	2	-2 -3	-2 -3	-1 -1	-1 -3	-1 -2 L	-1 -3	3 1 F	7 2 ¥	11 W	Y W

In class exercise: Which substitution matrix favors...

	PAM250	BLOSUM62
conservation of polar residues		
conservation of non-polar residues		
conservation of C, Y, or W		
polar-to-nonpolar mutations		
polar-to-polar mutations		

Protein versus DNA alignments

Are protein alignment better?


- Protein alphabet = 20, DNA alphabet = 4.
 - Protein alignment is more informative
 - Less chance of homoplasy with proteins.
 - Homology detectable at greater edit distance
 - Protein alignment more informative
- Better Gold Standard alignments are available for proteins.
 - Better statistics from G.S. alignments.
- On the other hand, DNA alignments are more sensitive to short evolutionary distances. 34

Evolving ... in class

- Open Geneious, create 10 base sequence TACTGCAGTA
- Use Sequence/Generate Mutated Seq...
- Record the number of mutations (true distance) and p-distance
 - do single base changes only
 - generate 10 sequences with *n* mutations
- Align mutated sequences with original, using high gap penalties, global alignment, so you get no gaps.
- In the alignment, *Right-click* the original sequence. Set it as reference sequence. Highlight disagreements (*p-distance*). Count them.
- Plot *p*-*distance* as a function of *n*.
- What happens if you used a sequence of all A's?
- What would happen if you use sequence/Generate Shuffled Seq..., instead of mutation?
- All A's, shuffled? Half A's?

DNA evolutionary models: P-distance

What is the relationship between time and the %identity?

p is a good measure of time only when p is small.

DNA evolutionary models: Poisson correction

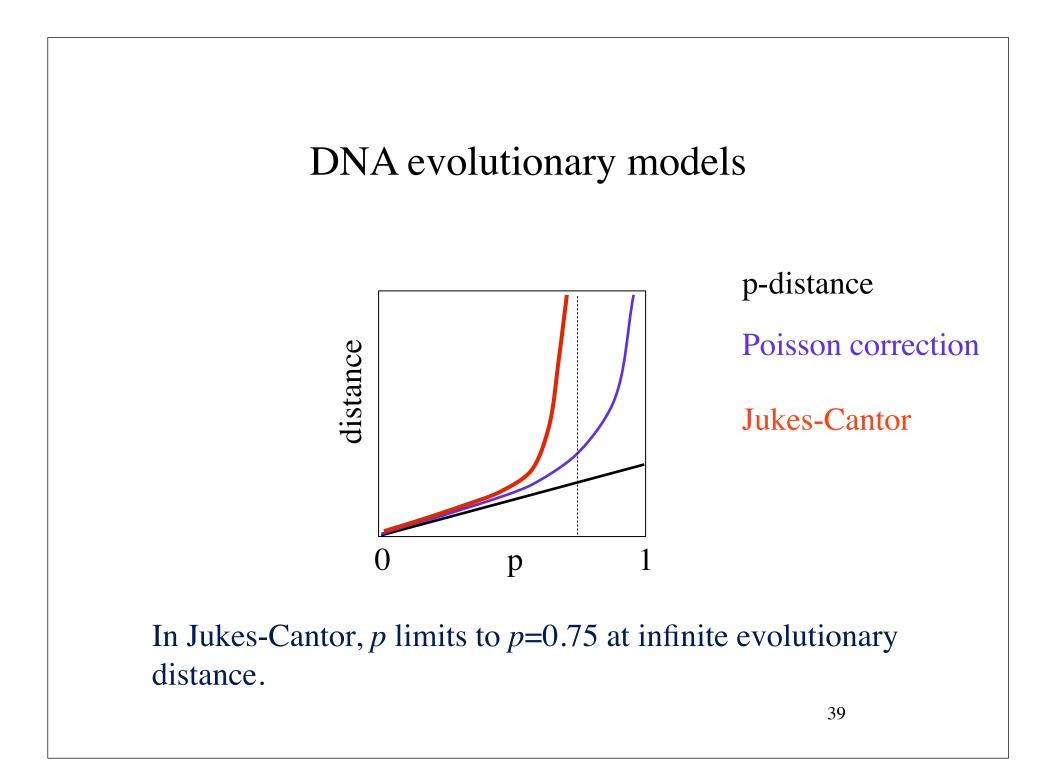
Corrects for multiple mutations at the same site. Unobserved mutations.

The fraction unchanged decays according to the Poisson function. In the time *t* since the common ancestor, 2rt mutations have occurred, where r is the mutation rate (r =genetic drift * selection pressure) $1-p = e^{-2rt}$ distance $d_{\rm P} = 2rt$ $d_{\rm P} = -\ln(1-p)$ p

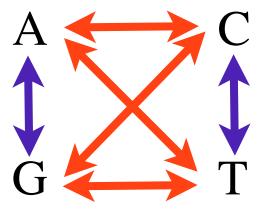
Poisson correction assumes p goes to 1 at $t=\infty$. Where should it really go?

DNA evolutionary models: Jukes-Cantor

What is the relationship between true evolutionary distance and *p*-distance?


Prob(mutation in one unit of time) = α $\alpha \ll 1$. Prob(no mutation) = 1-3 α A C G

At time t, fraction identical is q(t). Fraction non-identical is p(t). p(t) + q(t) = 1


In time t+1, each of q(t) positions stays same with prob = 1-3 α .

Т 1-3α Α α α α 1-3α C α α α G α $1-3\alpha$ α α α α α $1-3\alpha$ Т

Prob that **both** sequences do not mutate = $(1-3\alpha)^2 = (1-6\alpha+9\alpha^2) \approx (1-6\alpha)$. (Since $\alpha <<1$, we can safely neglect α^2 .) Prob that a mismatch mutates back to an identity = $2\alpha p(t)$ $q(t+1) = q(t)(1-6\alpha) + 2\alpha(1-q(t))$ $d q(t)/dt \approx q(t+1) - q(t) = 2\alpha - 8\alpha$ Integrating: $q(t) = (1/4)(1 + 3\exp(-8\alpha t))$ Solving for $\mathbf{d}_{JC} = 6\alpha t = -(3/4)\ln(1 - (4/3)p)$, where p is the *p*-distance.

Transitions/transversions

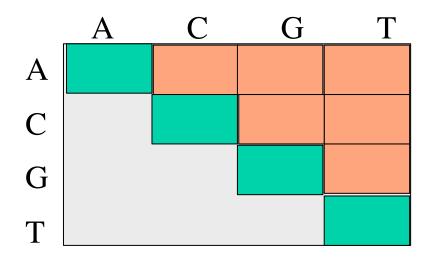
In DNA replication, errors can be **transitions** (purine for purine, pyrimidine for pyrimidine) or **transversions** (purine for pyrimidine & vice versa)

R = transitions/transversions.

R would be 1/2 if all mutations were equally likely. In DNA alignments, R is observed to be about 4. Transitions are greatly favored over transversions.

Jukes-Cantor with correction for transitions/ transversions

(Kimura 2-parameter model, **d**_{K2P})


	A	С	G	Т
A	1-2β-	α β	α	β
С	β	1-2β-α	β	α
G	α	β	1-2β-α	β
Т	β	α	β	1-2β-α

Split changes (D) into the two types, transition (P) and transversion (Q) p-distance = D/L = P + QP = transitions/L, Q = transversions/L

The the corrected evolutionary distance is...

 $d_{K2P} = -(1/2)\ln(1-2P-Q) - (1/4)\ln(1-2Q)$

Further corrections are possible

A nucleotide substitution matrix?

Additional corrections for:
Sequence position (gamma)
Isochores (GC-rich, AT-rich regions)
??

Review

- Amino acid substitution matrices
 - lods
 - observed vs expected
 - Markovian evolution
- DNA, p-distance
 - Poisson
 - Jukes-Cantor
 - transitions/transversions. Kimura.