
Bioinformatics 1: Lecture 3
•Pairwise alignment

•Substitution

•Dynamic Programming algorithm

Scoring matrix
To prepare an alignment, we first consider the score for
aligning (associating) any one character of the first
sequence with any one character of the second sequence.

A A G A C G T T T A

G

A

C

G

T

A

C

T

0 0 1 0 0 1 0 0 0 0
1 1 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 1 0
1 1 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0

Exact match
1/0

The cost of mutation is not a
constant

DNA: A change in the 3rd base in a codon,
and sometimes the first base, sometimes
conserves the amino acid. No selective
pressure.

Protein: A change in amino acids that are
in the same chemical class conserve their
chemical environment. For example: Lys to
Arg is conservative because both a
positively charged.

Conservative amino acid changes
Lys <--> Arg

Ile <--> Leu

Ser <--> Thr
 Asp <--> Glu
 Asn <--> Gln

N

C
CO

C C
C

C N

N

C
CO

C C
C

N`
N` C

N`

+

+

N

C
CO

C C
C

C N

C
CO

C C
C

C

If the “chemistry” of the sidechain is conserved, then the
mutation is less likely to change structure/function.

Amino acid substitution matrices
Two 20x20 substitution matrices are used: BLOSUM & PAM.

 4 0 -2 -1 -2 0 -2 -1 -1 -1 -1 -2 -1 -1 -1 1 0 0 -3 -2
 9 -3 -4 -2 -3 -3 -1 -3 -1 -1 -3 -3 -3 -3 -1 -1 -1 -2 -2
 6 2 -3 -1 -1 -3 -1 -4 -3 1 -1 0 -2 0 -1 -3 -4 -3
 5 -3 -2 0 -3 1 -3 -2 0 -1 2 0 0 -1 -2 -3 -2
 6 -3 -1 0 -3 0 0 -3 -4 -3 -3 -2 -2 -1 1 3
 6 -2 -4 -2 -4 -3 0 -2 -2 -2 0 -2 -3 -2 -3
 8 -3 -1 -3 -2 1 -2 0 0 -1 -2 -3 -2 2
 4 -3 2 1 -3 -3 -3 -3 -2 -1 3 -3 -1
 5 -2 -1 0 -1 1 2 0 -1 -2 -3 -2
 4 2 -3 -3 -2 -2 -2 -1 1 -2 -1
 5 -2 -2 0 -1 -1 -1 1 -1 -1
 6 -2 0 0 1 0 -3 -4 -2
 7 -1 -2 -1 -1 -2 -4 -3
 5 1 0 -1 -2 -2 -1
 5 -1 -1 -3 -3 -2
 4 1 -2 -3 -2
 5 0 -2 -2
 4 -3 -1
 11 2
 7

A C D E F G H I K L M N P Q R S T V W Y A
C

D
E

FG
H

 IK
LM

N
P

Q
R

S
TV

W
Y

BLOSUM62

Each number is the score
for aligning a single pair
of amino acids.

What is the score for this alignment?:

 ACEPGAA

 ASDDGTV

Scoring matrix
For protein alignments, first set up the scoring matrix by
filling in the appropriate substitution score.

A C E P G A A

A
S

D
D

G
T

V

4 0 -1 0 -1 4 4
1 -1 -4 -3 -3 0 0
-2 -3 2 -1 -1 -2 -2
-2 -3 2 -1 -1 -2 -2
0 -3 -2 -2 6 0 0
0 -1 -1 -1 -2 0 0
0 -1 -2 -2 -3 0 0

Inexact match
using BLOSUM62
substitution
matrix:
score = 10

Pseudo code for alignment matrix
read blosum[1..20][1..20]
aa[1..20]={A,C,D,E,F,G,H,I,J,K,L,M,N,P,Q,R,S,T,V,W,Y}
read firstseq[1..N]
convert firstseq to numbers 1..20 using aa
read secondseq[1..M]
convert secondseq to numbers 1..20 using aa

alignmentmatrix[1..N][1..M]=0

for (i from 1 to N) do
 for (j from 1 to M) do
 alignmentmatrix[i][j] = blosum[firstseq[i]][secondseq[j]]
 enddo
enddo

write alignmentmatrix[1..N][1..M]

An Alignment as a Path through
the Alignment Matrix

A B C

D
 E F

Imagine each of these boxes has a score in it. (i.e. from BLOSUM)

There are directions for
each step: down, right, or
diagonal.

The alignment is complete
when we reach the lower
right-hand corner box.

arrows
Upper seq advances by one,
Lower seq advances by zero.
Gap in lower seq.

Upper seq advances by zero,
Lower seq advances by one.
Gap in upper seq.

Upper seq advances by one,
Lower seq advances by one.
Match.

X
~

~
Y

X
Y

Gap

Insertion

Deletion

10

Gap rows

A B C

D
 E F

The size of the alignment
matrix is (N+1)x(M+1),
where N and M are the
lengths of the two
sequences.

Rows on top and left
("gap" rows) have no
scores.

starting point

An alignment

A B C

D
 E F

A
~
B
D
~
E
C
F

Scoring an alignment with gaps

A B C

D
 E F

A
~
B
D
~
E
C
F

A11

A12

A13

A21

A22

A23

A31

A32

A33

Start with score = 0
For each step:

 if gap: add a gap penalty

 if match: add Aij value.

Pseudocode for scoring an alignment with gaps
program scoremyalignment

right=1; down=2; diag=3;
Aseq=0; Bseq=0; gappenalty=2;
read myfile, A[0..3,0..3]
walk[1..4]=(right,diag,down,diag)
score = 0.
for i from 1 to len(walk) do
 if (walk[i]==right) then
 score = score + gappenalty
 Aseq = Aseq + 1
 elseif (walk[i]==down) then
 score = score + gappenalty
 Bseq = Bseq + 1
 elseif (walk[i]==diag)
then

 Aseq = Aseq + 1
 Bseq = Bseq + 1
 score = score + A[Aseq,Bseq]
 endif
enddo
write *, "Score =",score

end program scoremyalignment

myfile contains precalculated alignment scores

right, down, diag are arbitrary constants in this case

Aseq, Bseq are counters

walk is a series of arrows

add the alignment score to the score
only if the arrow was diag

add a penalty for gaps

A walk through the alignment matrix
A B C

D
 E F

A B C

D
 E F

A B C

D
 E F

A B C

D
 E F

A B C

D
 E F

A B C

D
 E F

~~~ABC
DEF~~~

~~ABC
DEF~~

A~BC
DEF~

AB~C
~DEF

ABC~
~DEF

ABC
DEF



All possible alignments for 
ABC versus DEF

ABC~~~
~~~DEF 
ABC~~
~~DEF
ABC~
~DEF
ABC
DEF
~ABC
DEF~
~~ABC
DEF~~

AB~C
~DEF
A~BC
~DEF
A~BC
DE~F
A~BC
DEF~
AB~C
~DEF
AB~C
DEF~

A~~BC
DEF~~
ABC~~
~D~EF
A~B~C
~DEF~
A~~BC
~DEF~

no gaps one gaps two gaps

All possible alignments = all
possible paths

A B C

D
 E F

starting here

ending here

Each box spawns three paths.

A B C

D
 E F

Total number of
possible paths of n
arrows = 3n

You could take all
possible walks by
cloning yourself twice
in each box. One clone
goes right, one clone
goes down, and you
(the original) go
diagonal.

Getting the optimal alignment
All "walks" through the alignment matrix end in the lower
right-hand corner. We can ask each "walker" as it enters the
last box what its score is. Then we pick the best one.

Consider the last down arrow before the last box. All
alignments that traversed that arrow added the same amount
-- a gap penalty. So the relative scores of those walks before
the arrow and after the arrow did not change. Whichever
walker had the highest score in the previous box still has the
highest score after all the walkers traverse the same arrow
together. That means we didn't need to keep track of any of
those suboptimal walks, just the optimal one for that box.

This is true for all boxes back to the beginning. We only need
to keep the optimal walk into each box. We can ignore the
others, since they will always rank lower than the optimal.

Dynamic Programming

• For each box, add up the scores of the three walks that
end in that box. Keep just the highest scoring one.

•Draw an arrow (traceback) from the box that had the
highest scoring walk.

•When you reach the last box, trace back along the
arrows.

•Convert the arrows into an alignment. (This is the
optimal alignment!)

Dynamic programming algorithm

Si,j = MAX { Si-1,j-1 + s(i,j),

 Si-1,j - wx,

 Si,j-1 - wy }

Assign the alignment score at (i,j) to the maximum of the three values, the
alignment score at (i-1,j-1) plus the match score at (i,j), or the alignment
score at (i-1,j) minus the gap penalty, or the alignment score at (i,j-1)
minus the gap penalty..

Dynamic programming algorithm
Si,j = MAX { Si-1,j-1 + s(i,j),
 Si-1,j - wx,
 Si,j-1 - wy }

A B C

D
 E F

Si,j

Si,j-1
Si-1,j-1

Si-1,j

- wx

- wy

+ s(i,j)

Think of each arrow as adding a
new term, either s(i,j) or a gap

penalty.

Filling in a box requires that the values in the three input boxes be already filled in.

Forward summation

Si,j = MAX { Si-1,j-1 + s(i,j),
 Si-1,j - wx,
 Si,j-1 - wy }

A B C

D
 E F

- wx

- wy

+ s(i,j)

The first row and column (gap
rows) are filled in using only one
of the arrows, since the other two

are out-of-bounds..

-wy

0

-2wy

-3wy

-wx -2wx -3wx

Forward summation

Si,j = MAX { Si-1,j-1 + s(i,j),
 Si-1,j - wx,
 Si,j-1 - wy }

A B C

D
 E F

- wx

- wy

+ s(i,j)

The last row and column are
filled in normally

Traceback

Ti,j = argmax { Si-1,j-1 + s(i,j),
 Si-1,j - wx,
 Si,j-1 - wy }

A B C

D
 E F

Ti,j="1"

We save one traceback value in each
box. This is a number,letter, or word
that represents the arrow direction:

i.e. down, right, or diagonal.

Ti,j="2"

Ti,j="3"

2 2 2

3

3

3

1 1 1

131

1 2 1

* argmax() is a function that returns the number of the
maximum argument, not the value.

*

Traceback
Ti,j = argmax { Si-1,j-1 + s(i,j),
 Si-1,j - wx,
 Si,j-1 - wy }

A B C

D
 E F

Traceback starts from the last box
where i=length of x, and j=length of y.

2 2 2

3

3

3

1 1 1

131

1 2 1

Each "arrow" points back to the
previous box. The result is a

series of arrows in reverse order:
1312

These are reversed: 2131

...and translated to an alignment:

AB~C
~DEF

2 1 3 1

From arrows to alignment.
Remember that each arrow is one "column" of the alignment.

Upper seq advances by one,
Lower seq advances by zero.
Gap in lower seq.

Upper seq advances by zero,
Lower seq advances by one.
Gap in upper seq.

Upper seq advances by one,
Lower seq advances by one.
Match.

A
~

~
B

A
B w

rit
e

th
e

cu
rre

nt
 se

qu
en

ce
 le

tte
r

From arrows to alignment.
Remember that each arrow is one "column" of the alignment.

Upper seq advances by one,
Lower seq advances by zero.
Gap in lower seq.

Upper seq advances by zero,
Lower seq advances by one.
Gap in upper seq.

Upper seq advances by one,
Lower seq advances by one.
Match.

Align ADGTFR with
ADTFRE using the
following arrows:

A
A

D
D

G
~

F
F

T
T

R
R

~
E

In class exercise: using a substitution matrix with DP
Match=use BLOSUM score Gap penalty = -1

A D G T F R M G G

G G Y R I

0

DP Instructions

• Prefill the boxes with the appropriate BLOSUM score.
(done)

•Calculate Si,j = max { Si-1,j-1 + s(i,j), Si-1,j - 1, Si,j-1 - 1 } . Ignore
arrows that are out-of-bounds. Fill in boxes from upper left
to lower right, as you read.

•As you fill in each Si,j score, also draw one arrow(argmax
{ Si-1,j-1 + s(i,j), Si-1,j - 1, Si,j-1 - 1 }) coming into the box, where
arrow(1) = diagonal, arrow(2)=right, arrow(3)=down.

•At the lower right, traceback and draw the arrows.

•Translate the arrows into an alignment.

Follow along: Geneius Align
Enter the two short sequences into Geneious using
Sequence/New Sequence

Align them using Geneious Align, Global Alignment. Try gap
settings 1, 1. Do you get the same answer as you did on paper?

Select Local/SampleDocuments/Alignments/Pairwise protein

Remove all graphs, annotations, etc. Set sequences to wrap.

Align (re-align) using Global Alignment. Try different gap
penalty settings. What happens to the alignment? Does it make
sense to you given the algorithm?

