
Bioinformatics 1 -- lecture 17

Comparing methods
ROC

How to find motifs, signatures, footprints
MEME
Gibbs sampling
K-means clustering

What to do about low complexity regions: Repeats, 
Satellites and the role of Transposable Elements in creating 
them.

masking repeats
null models for repeat alignment
word HMMs for repeats 



Follow-up for HW4: smart pseudocounts for 
profiles

Sum of sequence weights method: 

Normal profile calculation uses the sequence weights to
sum the amino acid probabilities. If an AA is never 
observed, then Pij is zero.

Pij =

wk
k∈ skj =aai( )
∑

wk
k= all  seqs
∑

Pij =

wk + εwkSm→ j
k∈ skj =aam≠i( )
∑

k∈ skj =aai( )
∑

wk
k= all  seqs
∑

Extrapolated profile 
method: Use the 
BLOSUM substitution 
matrix Si->j to 
"extrapolate" from the 
observed data. Here we 
are adding predicted un-
observed amino acids.

Smart pseudocounts: "I didn't see a L, but I saw a V, 
and L substitutes for V, so let's add some L 
anyway."

skj is sequence k, position j.



How do you compare two models given 
T/F data?

Accuracy = percent of the predictions that are correct, of the 
ones that were made.

Coverage = number of possible predictions that were 
actually predicted.  

Confidence = a score to sort the predictions. A more 
confident prediction should be a more accurate one. This 
could be the score itself.

≠null

=null

+ –

T+

T-

F-

F+

Accuracy = T+/(T+ + F+)

Coverage = T+/(T+ + F-)



False positive rate

A more detailed description of the method is the rate of false 
positive predictions, which can be a function of the score.
A better method has a lower false positive rate.

To calculate, sort the scores and assign T or F to each score. 
The false positive rate for each score is the percent of the 
false scores that are above that score.

false positive = Type 1 error = error of the first kind


 number of false positives above x
fpr(x) = ––––––––––––––––––––––––––––––

  total number of false positives 

(FPR does not provide one handy number.)



Receiver Operator Characteristic 
(ROC)

•A way to describe the whole set of scores with a single 
number. 

•Each score has a T or F. 

•Sort the scores.

•Starting from the highest scoring, draw a vector up for a true, 
to the right for a false. 

•Calculate ROC = the normalized area under this curve. 

•If all of the true scores are greater that the greatest false 
score, then ROC = 1.0.   

• 0.≤ROC≤1.



ROC score0.990
T
0.978
F
0.972
T
0.966
T
0.951
T
0.902
F
0.880
F
0.811
F
0.803
F
0.792
T
0.766
F
0.751
F
0.723
F
0.696
F
0.688
T
0.666
F
0.651
F
0.623
F
0.596
F
0.488
T

Sort the scores, for each score move up one if it is true, right 
one if it is false.

The area under the curve, divided by the total, is the ROC 
score. 0 ≤ ROC ≤ 1.
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In class exercise: calculate ROC score

0.811
 T
0.972
 T
0.766
 T
0.990
 F
0.966
 T
0.951
 F
0.803
 F
0.792
 F
0.503
 F
0.978
 T
0.478
 F

4
 T
39
 F
44
 T
44
 T
40
 T
1
 F
39
 F
29
 F
10
 F
44
 F
45
 T

Which method is better?

Method A Method B



motifssignatures
& footprints



Motifs exist due to selective pressure
Selective pressure for:
structure -- protein motifs
           folding units

 fibrous proteins
           coiled coils
           transmembrane helices
function -- protein motifs

 active site

 binding motifs

 signal sequences
expression -- DNA motifs

       transcription regulation
       chromatin binding             



Zinc finger motif
                                 x  x
                               x      x
                              x        x
                              x        x
                              x        x
                              x        x
                               C      H
                             x   \  /   x
                            x     Zn     x
                             x  /    \  x
                               C      H
                      x x x x x        x x x x x

C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H 

two Cystines 
separated by 2 or 4 
residues

Loop must be length 12.
4th position in loop must be hydrophobic

two Histidines 
separated by 3 or 5 
residues

Example: selection for structure



ER targeting sequence
[KRHQSA]-[DENQ]-E-L

N-glycosylation
N-{P}-[ST]-{P}

Tyrosine phosphorylation
[RK]-x(2)-[DE]-x(3)-Y or [RK]-x(3)-[DE]-x(2)-Y

C-{DENQ}-[LIVM]-x

C-terminal prenylation

Example: selection for function



Transcription factor binding site

Palindromy in TF footprints (binding sites) is due to the 
symmetry of the TFs, which are almost invariably dimeric.

Example: selection for expression



Where is it, and ... what am I looking for??

How do we, simultaneously, find the 
motif and the locations of the motif in a 
set of sequences?

MEME
motif elucidation by expectation/maximization

...or...



Initial guess of motif location

AGCTAGCTTCTCGTGA

TCTCGAGTGGCGCATG

TATTGCTCTCCGCAGC

From the motif locations, you 
make a profile model.

T
G GMotif

Model:
L=4

1     2     3     4

C C
T

G

C

initial guesses underlined

P1 = 2/3 T, 1/3 G

MEME

...and therefore of the motif



Calculate the probability score for each position

AGCTAGCTTCTCGTGA

From the profile model and the 
sequence, get probability scores.

1    2    3    4   5   6   7    8   9   10  11  12  13 14 15 16

T
G G

C C

T

G

C

P = P1(A)P2(G)P3(C)P4(T)=(0)(.33)(.67)(0.)=0.

MEME



Calculate the probability score for each position

AGCTAGCTTCTCGTGA

Slide the model along the sequence to 
get the next score.

1    2    3    4   5   6   7    8   9   10  11  12  13 14 15 16

T
G G

C C

T

G

C

P = P1(G)P2(C)P3(T)P4(A)=(.33)(.67)(.33)(0.)=0.

MEME



Calculate the probability score for each position

AGCTAGCTTCTCGTGA

Slide the model along the sequence to 
get the next score.

1    2    3    4   5   6   7    8   9   10  11  12  13 14 15 16

T
G G

C C

T

G

C

P = P1(C)P2(T)P3(A)P4(G)=(.0)(.0)(.0)(0.67)=0.

MEME



Calculate the probability score for each position

AGCTAGCTTCTCGTGA

Slide the model along the sequence to 
get the next score.

1    2    3    4   5   6   7    8   9   10  11  12  13 14 15 16

P = P1(T)P2(C)P3(T)P4(C)=(.67)(.67)(.33)(0.33)=0.05
T
G G

C C

T

G

C

0.

0.1

MEME



Calculate the probability score for each position

AGCTAGCTTCTCGTGA

Slide the model along the sequence to 
get the next score.

1    2    3    4   5   6   7    8   9   10  11  12  13 14 15 16

P = P1(G)P2(T)P3(G)P4(A)=(.33)(.0)(.0)(0.0)=0.

T
G G

C C

T

G

C

MEME



Calculate the probability score for each position

AGCTAGCTTCTCGTGA

Do every sequence.

1    2    3    4   5   6   7    8   9   10  11  12  13 14 15 16

T
G G

C C

T

G

C

TCTCGAGTGGCGCATG

MEME



Calculate the probability score for each position

AGCTAGCTTCTCGTGA

Do every sequence.

1    2    3    4   5   6   7    8   9   10  11  12  13 14 15 16

T
G G

C C

T

G

C

TCTCGAGTGGCGCATG

TATTGCTCTCCGCAGC

MEME



Re-Calculate the motif model

AGCTAGCTTCTCGTGA TCTCGAGTGGCGCATG

TATTGCTCTCCGCAGC 1.0 TCTC
0.5 TCTC
0.5 GGCG
0.1 GCTC
0.3 TCTC
0.6 TCCG

T
G G

C C

T
G

C

Probabilities are normalized to sum to one for each sequence, 
since we expect exactly one motif per sequence.

The new model is the profile built 
from the hits.

MEME

see next slide...



Recalculating the profile from the hits

1.0 TCTC
0.5 TCTC
0.5 GGCG
0.1 GCTC
0.3 TCTC
0.6 TCCG

T
G G

C C

T
G

C

P1(T) = the probability of T in the first 
position = the sum of the scores for 
sequences with T in the first position, 
normalized.

P1(T) =1.0+0.5+0.3+0.6
1.0+0.5+0.5+0.1+0.3+0.6

= 0.8

0.8
0.2

MEME



Do it again: Re-Calculate the probability scores

AGCTAGCTTCTCGTGA TCTCGAGTGGCGCATG

TATTGCTCTCCGCAGC 1.0 TCTC
0.9 TCTC
0.1 GGCG
0.1 GCTC
0.6 TCTC
0.3 TCCG

T
G G

C
C

T
G

C
The new model is the profile built 
from the hits.

T
G G

C C

T
G

C
using the refined 
model

MEME



...and again, until converged.

AGCTAGCTTCTCGTGA TCTCGAGTGGCGCATG

TATTGCTCTCCGCAGC 1.0 TCTC
1.0 TCTC
0.0 GGCG
0.0 GCTC
0.95 TCTC
0.05 TCCG

T
G

G

C
C

T
G

C

T
G G

C
C

T
G

C

MEME



EM converges on the conserved pattern if the initial 
guess was not too far off.

T
G

G

C
C

T
G

CT
G G

C
C

T
G

CT
G G

C C

T
G

C
T
G G

C C
T

G

C

If the true motif was not one of the initial guesses, or 
some combination of the initial guesses, then EM would 
never find the true motif.

A summary of the exercise:

MEME

AGCTAGCTTCTCGTGA

TCTCGAGTGGCGCATG

TATTGCTCTCCGCAGC



Pseudocounts, just in case

1.0 TCTC
0.5 TCTC
0.5 GGCG
0.1 GCTC
0.3 TCTC
0.6 TCCG

T
G G

C C

T
G

C

No A is observed  in the first position, but if 
we set P(A) = 0, then we “rule out” a motif 
with A in the first position. Instead, P1(A) = 
a small pseudocount value / sum of the 
weights.

This is especially important in the initial 
guesses, so that the true motif is not missed.

P1(T) =           ε
1.0+0.5+0.5+0.1+0.3+0.6

= 0.8

MEME

G G G G

G G G G

Pseudocounts may be decreased or removed (ε=0) in later stages.



Gibbs Sampling
Stochastic version of MEME.

GIBBS

Radius of convergence is wider than MEME. 
Doesn’t need to start with one correct guess.



            AGCTAGCTTCTCGTGA

    TCTCGAGTGGCGCATG

    TATTGCTCTCCGCAGC

score

aligned position

Slide first sequence through the motif window, calculate score.

GIBBS

keep scoring window fixed
move sequence

Expectation step
Start from random alignment. Select window size and position. Slide one sequence 
through window. Calculate scores.



Expectation step

   AGCTAGCTTCTCGTGA

       TCTCGAGTGGCGCATG

       TATTGCTCTCCGCAGC

score

aligned position

GIBBS



Example
           AGCTAGCTTCTCGTGA

       TCTCGAGTGGCGCATG

       TATTGCTCTCCGCAGC

score

aligned position

GIBBS

Select an aligned position at random from the score distribution.

Do next sequence, and so on, cycling through the sequences many times.



Example
           AGCTAGCTTCTCGTGA

       TCTCGAGTGGCGCATG

       TATTGCTCTCCGCAGC

score

aligned position

GIBBS

Select an aligned position at random from the score distribution.

Do next sequence, and so on, cycling through the sequences many times.



Convergence is when there are no more changes.

       AGCTAGCTTCTCGTGA

               TCTCGAGTGGCGCATG

         TATTGCTCTCCGCAGC

GIBBS

Exactly one segment is aligned to the motif region at each step.



Gibbs Sampling
Stochastic version of MEME.

(1) Choose length and initial (or random) guesses of motif 
locations.

(2) Sum the motif profile (w/ or w/o pseudocounts/noise) 
from the current motif positions.

(3) Remove one sequence. Calculate probability scores for 
each possible motif position.

(4) Randomly choose a motif position from the probability 
distribution.

(5) Repeat (2)-(4) until convergence. 

GIBBS

Radius of convergence is wider than MEME. 
Doesn’t need to start with one correct guess.



What is Expectation/
Maximization ?

EM is any method that iterates between an “expectation” 
step and a “maximization” step. Starting with a statistical 
model and a set of data.

•Expectation
Calculate the expected values for the parameters of the 
model, using the current model and the data.

•Maximization
Replace the parameters of the model with their expected 
values. 

MEME is an EM algorithm



 K-means clustering
(1)  Choose K.

(2)  Randomly select K  centers in the metric space.

(3)  Get the distance from each center to each data point.

(4)  Assign each data point to the nearest center.

(5)  Calculate the new centers using the center-of-mass of the data 
points.

(6)  Repeat from Step 3 until converged.

Final positions of the centers define K clusters of data 
points.



Example: K=2

x x



Example: K=2

x x



Example: K=2

x x

x

x



Example: K=2

x x

x

x



Example: K=2

x x

x

x

x

x



Example: K=2

x x

x

x

x

x



Example: K=2

x x

x

x

x

x
x

x



Example: K=2

x x

x

x

x

x
x

x

no change.
Converged.

Final cluster 
centers



Application of K-means: I-sites motifs
 Findng “words” within protein sequences

HDFPIEGGDSPMQTIFFWSNANAKLSHGY
    CPYDNIWMQTIFFNQSAAVYSVLHLIFLT
 IDMNPQGSIEMQTIFFGYAESA
ELSPVVNFLEEMQTIFFISGFTQTANSD
      INWGSMQTIFFEEWQLMNVMDKIPS
IFNESKKKGIAMQTIFFILSGR
        PPPMQTIFFVIVNYNESKHALWCSVD
     PWMWNLMQTIFFISQQVIEIPS
           MQTIFFVFSHDEQMKLKGLKGA

Short, recurrent sequence patterns may exist in different protein because they are 
required to initiate folding 

N
on
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og
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s

recurrent 
sequence

Is is a recurrent structure?



Clustering protein sequence profiles (Bystroff&Baker, 1998)

Each dot represents 
a segment of a 
profile from a 
MSA from a 
BLAST search



distance/similarity metrics for clustering 
profiles.

(1) Manhattan, or City-Block metric
  (distance metric)

D( p, q) = P pij( ) − P qij( )
amîno
acids
i

∑
positions

j

∑

(2) Entropy (similarity metric)
not symmetrical!

S(p,q) = pij log qij( )
amîno
acids
i

∑
positions

j

∑

(3) Correlation (similarity metric)

S(p,q) =

pij − p( ) qij − q( )
amîno
acids
i

∑
positions

j

∑

pij − p( )2 qij − q( )2
amîno
acids
i

∑
positions

j

∑
amîno
acids
i

∑
positions

j

∑
=

pij − p( ) qij − q( )
amîno
acids
i

∑
positions

j

∑

σ pσ q

D( p, q) = LLR pij( )LLR qij( )
amîno
acids
i

∑
positions

j

∑(4) Dpq (similarity metric)



Supervised learning is like co-clustering

training set

Search the database for the 
400 nearest neighbors

 

sequence profile

nearest neighbors

remove all cluster members 
that  do not conform with 

the paradigm 

Supervised learning finds predictive correlations between two spaces (sequence 
and structure)

We want this profile 
to predict...

…as long as it is 
consistent with 

this structure.



diverging type-2 
turn

Serine 
hairpin

Proline helix C-cap alpha-alpha corner glycine helix N-cap

Frayed 
helix

Type-I 
hairpin

I-sites motifs

Amino acids arranged 
from non-polar to 
polar

Backbone angles: 
ψ=green, φ=red



I-sites ---> HMM
I-sites are arranged in predictable non-random order in proteins:

helix helix 
cap

beta
strand

beta
turn

...therefore they can be modeled as a HMM.

helix beta
turn

helix
C-cap loop helix

N-cap helixhelix helix helix
C-cap

beta
strand

beta
strand

beta
strand ......



Related motifs,  branched model.

φψ

Type-1
G α C-cap

Type-2
G α C-cap

 α helix

Type-2
G α C-cap

 α helix

Type-1
G α C-capstate 

topology:

aligned 
profiles

aligned 
structures

State-state transitions are defined wherever I-sites have overlaps.

Where the motifs align, we call each 
positions a state. Where they stop 
aligning, we split the state path.



I-sites HMM 
= 
HMMSTR! 
Hidden Markov  
Model for local 
protein 
STRucture

HMM of linked I-sites 
motifs. Each node is 
one amino acid. 

Size of HMM:
282 nodes
317 transitions

(Bystroff et al., JMB 2000)



HMMSTR server

www.bioinfo.rpi.edu/bystrc/hmmstr/server.php

Sequence

Viterbi algorithm

Forward/Backward 
algorithm

a state sequence

state prob distr

a secondary structure 
prediction

secondary structure 
prob distr 

MESLIFITSGEDILNKKWQNIPDHFILG
LLLHHHHHHHHHLLEEELEEELLEEEEL
0189879887876434489998932011

result



Example HMMSTR output.
    1       ....,....1....,....2....,....3....,....4....,....5
Seq         MATVEPETTPTPNPPTTEEEKTESNQEVANPEHYIKHPLQNRWALWFFKN
Angles      EEEEBHHBBBBBBBBBBHHHHHHHHHHHHBHHEEEEEBHHHBEEEEEEBH
  confid    55568454657654444888888877777777566666443456677776
Sec struct  LLLLLLLLLLLLLLLLLHHHHHHHHHHHHLLLLEEELLLLLLEEEEEELL
  confid    65556777777778887667777666664777445456666445666657
Context                                      nnnddddddnnmmmnhh
  confid                                     44555555554554477

   51       ....,....6....,....7....,....8....,....9....,....0
Seq         DKSKTWQANLRLISKFDTVEDFWALYNHIQLSSNLMPGCDYSLFKDGIEP
Angles      GlBBEEEHHEEEEEHHHHHHHHHHHHHHEEEBHHBBBlBBEEEEBGxBBB
  confid    74555444344444444477787775545554557887755555542465
Sec struct  LLLEEEELLLEEELLLLLHHHHHHHHLLEELLLLLLLLLLEEEELLLLLL
  confid    87634434433333445456666654443435676788764443467655
Context     hhhnnnndddnnn               nn          nnnn      
  confid    7776656444555               55          5445      

This is a helix N-cap motif.This is a beta turn motif.



I-sites/HMMSTR graphical output

55



 summary

MEME -- deterministic EM algorithm for motif finding, 
starting with initial guess

Gibbs sampling -- stochastic EM algorithm for motif 
finding, doesn’t need initial guess

K-means -- unsupervised learning of recurrent patterns, 
requires a metric space (distance or similarity).

Supervised learning -- EM in two spaces. Expectation in 
one space, maximization in the other. 

I-sites/HMMSTR -- motifs and HMM based on linked 
motifs. For sec struct prediction in proteins.

MEME



Repeats, Satellites 
& Transposable 

Elements



Transposable elements: junk dealers 

Barbara McClintock Transposase,  
transposasome

Transposable 
elements “jumping 
genes” lead to rapid 
germline variation.

“Out standing in her field”



Excision of transposon may leave a “scar”.

TR TRIR IR

cruciform structure

repaired DNA with copied TR and 
added IR

TR=tandem repeat
IR=inverted repeat



Millions of years of accumulated TE 
“scars”

Some genomes contain a large accumulation of transposon scars.



Estimated Transposable element-associated 
DNA content in selected genomes

H.sapiens Z. mays Drosophila Arabidopsis C. elegans S. cerevisiae

Everything else
TEs

35%

>50%

2%15% 1.8% 3.1%



How do you recognize a repeat sequence?

•High scoring self-alignments

•High dot plot density

•Compositional bias

A repeat region 
in a dot plot.



Types of repeat sequences
Satellites -- 1000+ bp   in 
heterochromatin: centromeres, telomeres

Simple Sequence Repeats (SSRs), 
in euchromatin :


 Minisatellites -- ~15bp (VNTR)


 Microsatellites -- 2-6 bp

heterochromatin=compact, light bands
euchromatin=loose, dark bands.



microsatellite

541 gagccactag tgcttcattc tctcgctcct actagaatga acccaagatt gcccaggccc      
601 aggtgtgtgt gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt gtatagcaga gatggtttcc      
661 taaagtaggc agtcagtcaa cagtaagaac ttggtgccgg aggtttgggg tcctggccct      
721 gccactggtt ggagagctga tccgcaagct gcaagacctc tctatgcttt ggttctctaa      
781 ccgatcaaat aagcataagg tcttccaacc actagcattt ctgtcataaa atgagcactg      
841 tcctatttcc aagctgtggg gtcttgagga gatcatttca ctggccggac cccatttcac

a microsatellite in a dog (canis familiaris) gene.



Minisatellite
1 tgattggtct ctctgccacc gggagatttc cttatttgga ggtgatggag gatttcagga       

61 tttgggggat tttaggatta taggattacg ggattttagg gttctaggat tttaggatta      
121 tggtatttta ggatttactt gattttggga ttttaggatt gagggatttt agggtttcag      
181 gatttcggga tttcaggatt ttaagttttc ttgattttat gattttaaga ttttaggatt      
241 tacttgattt tgggatttta ggattacggg attttagggt ttcaggattt cgggatttca      
301 ggattttaag ttttcttgat tttatgattt taagatttta ggatttactt gattttggga      
361 ttttaggatt acgggatttt agggtgctca ctatttatag aactttcatg gtttaacata      
421 ctgaatataa atgctctgct gctctcgctg atgtcattgt tctcataata cgttcctttg

This 8bp tandem repeat has a consensus sequence AGGATTTT,

but is almost never a perfect match to the consensus. 



ACRONYMS for satellites and transposons
SSR
 Short Sequence Repeat
STR
 Short Tandem Repeat
VNTR
 Variable Number Tandem Repeat
LTR
 Long Terminal Repeat
LINE 
 Long Interspersed Nuclear Element
SINE
  Short Interspersed Nuclear Element
MITE
 Miniature Inverted repeat Transposable Element (class III TE)
TE
 Transposable Element
IS
 Insertion Sequence
IR
 Inverted Repeat
RT
 Reverse Transcriptase

TPase
 Transposase
Alu 
 11% of primate genome (SINE)
LINE1  
 14.6% of human genome
Tn7,Tn3,Tn10,Mu,IS50  transposons or transposable bacteriophage
retroposon=retrotransposon

Class I TE, uses RT.
Class II TE, uses TPase.
Class III TE, MITEs*

*Cl,ass III are now merged with Class II TEs.

fun with bioinformatics jargon



Is there an evolutionary advantage of 
repeat sequences?

Repeat sequences are prone to 


 (1) locally: errors in replication


 (2) non-locally: homologous recombination

Errors in replication (polymerase slippage) can lead to a 
change in the reading frame, eliminating a STOP codon, 
adding one, or translating to a different sequence entirely.


 Neisseriae Gonorrheoae evades the human immune system by 
periodically (weeks) changing the reading frame of the pilin surface 
antigen protein.



(How) do you align repeat sequences?

B: Dynamic Programming with special EVD. Align just like 
any other sequence, but using a special null model to assess the 
significance of the alignment score. Use EVD to fit  random 
scores.

Remember: Low complexity sequences will have high-scoring alignments 
randomly. For example:

ATTTATATAATTAATATATAAATATAATAAATAT
aligned to

TATTATATATATATATATATTATATATATATATA

Random score is likely to have >50% identity!

A: Don’t align. Mask them out instead. 



www.repeatmasker.org

 

Annotation Results 
    SW perc  perc perc query             position in query              matching repeat                       position in  repeat
 score div.  del. ins. sequence          begin    end     (left)        repeat          class/family          begin  end (left)  ID    Overlap

   194 10.5  2.6  0.0 chr1               1031265  1031302 (244491545) + C-rich          Low_complexity        3      41     (0) 624         0
   238 26.4  0.7  0.7 chr1               1031638  1031782 (244491065) + (TG)n           Simple_repeat         1     145     (0) 625         0
   298 29.0  2.1  0.0 chr1               1031794  1031886 (244490961) + (CGTG)n         Simple_repeat         3      97     (0) 626         0
   255 23.1  1.8  1.8 chr1               1031900  1032062 (244490785) + (TG)n           Simple_repeat         1     163     (0) 627         0
  1864 13.8  0.0  0.7 chr1               1032330  1032614 (244490233) + AluJo           SINE/Alu              5     287    (25) 628         0

Compares your seqeunce to a curated library of known repeats to a query 
sequence: Returns: (1) Location and type of each repeat, and/or

   (2) Query sequence with repeats masked (set to “N”)

 Ariana Smit, Phil Green



If you must align repeat sequences, you 
need significance.

What is a good model for random alignments of low-
complexity/repeat sequences?

REMINDER:     Significance is what matters!
[  What is the likelihood of getting a score at “random”.   ]
Getting e-values requires a model for random scores.
These scores are fit to a EVD. Using the EVD equation, we 
can convert a  score to a e-value.

Simplest null model (1) Composition-biased model.
Generate random sequences based on composition. Align them.
Get scores. Fit the scores to the EVD.

A,C,G,T



Getting expectation values for low 
complexity/repeat sequences.

Microrepeat null model (2) Dinucleotide composition model.
Generate random sequences based on dinucleotide model, such as
4-state Markov chain. Align them. Get scores. Fit the scores to the 
EVD.

A C

GT



Microrepeat null model (3) Trinucleotide composition model.
Generate random sequences based on dinucleotide model, such as
16-state HMM. Align them. Get scores. Fit the scores to the EVD.

A C GT A C GT

A C GT A C GT

after A after C

after Gafter T

Only the arrows into the 4 “after A” states are shown

Getting expectation values for low 
complexity/repeat sequences.



Minirepeat null model (4) Motif model. (Grammatical model.)
 Repeats are (possibly misspelled) words. 
Generate sequences. Align them. Get scores. Fit the scores to the EVD.

A G K V T T T H

N

8 character misspelled-word repeat model, with occasional extra character(s).

Getting expectation values for low 
complexity/repeat sequences.



In class exercise: create a HMM for a microsatellite.

•Using Netscape: Go to the NCBI database and download 
the nucleotide sequence with GenBank identifier (gi) 
21912445

•Import it into Geneious.

•Find the microsatellite that starts at around 330. 
Draw a motif HMM. Use ProSite syntax

•Run your model to generate a random microsatellite 
sequence.  



TE HMM?

begin end

begin end

Complementary base states. Training paired 
states enforces complementarity.

Inverted repeat

Tandom repeat

Transposase gene

A heirarchical HMM is made by connecting the end and begin states of HMMs.



Constrained training of HMM states is possible.

end1 2 3 4
8 7 6 5

Inverted repeat

begin

end begin

In expectation/maximization training, we select the new parameters of 
the model.

In constrained training, we can enforce:

•
 identical emission probabilities

•
 complementary emission probabilities

•
 identical transition probablities.

For example in the maximization step of E/M: (‘ = expected value)


 
 b3(A) = ( b’3(A) + b’6(T) ) / 2


