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Markov chains

Hidden Markov models
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Profile hidden Markov models

The probability of a gap or insertion might be position specific. 
Profile HMMs can model this.

I = insertion state

D = deletion state

M = match state

D

begin M

D

M

I

D

M

D

M end

I...II I



Markov processes

time

sequence

Markov process is any process where the next item in the list depends
on the current item. The dimension can be time, sequence position, etc



Modeling proteins using Markov chains
A Markov chain is a network of “states” connected by “transitions”

H=helix

E=extended (strand)

L=loop

A Markov chain is a stochastic model that 
“emits” symbol data whose probability depends only on the last 
symbol emitted. 

H E

L



What is a stochastic model?
A model is a simplified version of reality. The simpler, the 
better.

A stochastic model has the form:

modelrandom 
numbers

synthetic data



Markov states
• ...emits a symbol each time you visit it.

• ...connects to other states (and possibly itself), with 
probabilities attached.

note ===> Markov chains emit discrete 1-dimensional data.

E L

H

The sum of all 
transition 
probabilities = 1

.1

.3
.6



Setting the parameters of a Markov 
model from data.
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E L

P(L|E) = P(EL)/P(E) = counts(EL)/counts(E)

Secondary structure data

Count the pairs to get the transition probability.

counts(E) = counts(EE) + counts(EL) + counts(EH)

Therefore: P(E|E) + P(L|E) + P(H|E) = 1.

P(L|E)



Bayes’ notation and Rabiner’s notation

ayx = P(x | y) =
P(y, x)
P(y)

=
F(y, x)
F(y)

...the conditional probability of x given y.

πx = P(x) = F(x)/N

...the probability of x (unconditional).



A transition matrix

**This is a “first-order” MM. Transition probabilities depand on 
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What is P(S|λ),  the probability of a 
sequence, given the model?

P(“HHEELL”| λ)

 =P(H)P(H|H)P(E|H)P(E|E)P(L|E)P(L|L) 
 =(.33)(.93)(.01)(.80)(.19)(.90)
 =4.2E-4.93       .01  .06

.01 .80       .19

.04 .06 .90

H

E

L

H           E            L

P(“HHHHHH” | λ) =0.69

P(“HEHEHE” | λ) =1E-6

Probability discriminates between realistic and unrealistic sequences

λ

not protein secondary structure

common protein secondary structure



What is the maximum likelihood model 
given a dataset of sequences?

1 1  0

0 1 1

0 0 1
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H           E            L

HHEELL
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HHEELL

HHEELL

HHEELL

Count the state pairs.

0.5 0.5  0

0 0.5  0.5

.0 0 1.0

H
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L

H           E            L

Normalize by row.

HHEELL
Dataset.

Maximum likelihood model



Real helix length data
*L.Pal et al, J. Mol. Biol. (2003) 
326, 273–291

“A model should be as simple as possible but not simpler” --Einstein

Fr
eq

ue
nc

y Synthetic helix length data from 
this model

1 2 3 4 5 6 7 8 9 10

Is this model too simple? H E

L
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A Markov chain for proteins where helices are always 
exactly 4 residues long



H H H H

EL

A Markov chain for proteins where helices are always 
at least 4 residues long

Can you draw a Markov chain where helices are 
always a multiple of 4 long?



how much wood would a wood 
chuck chuck if a wood 
chuck would chuck wood?

Exercise: generate a MM based on the data.
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Markov chain for DNA sequence

P(ATCGCGTA...) = πAaATaTCaCGaGCaCGaGTaTA …

AA T

GC



CpG Islands
- ......

methylated Not methylated 

DNA is methylated on C to protect against endonucleases.

Using mass spectroscopy we can find regions of DNA that are 
methylated and regions that are not. Regions that are protected 
from methylation may be functionally important, i.e. 
transcription factor binding sites.

-++

During the course of evolution. Methylated CpG’s get mutated 
to TpG’s

NNNCGNNN NNNTGNNN

DNA
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Using Markov chains for descrimination: 

CpG Islands in human chromosome sequences

From Durbin,Eddy, Krogh and Mitcheson “Biological Sequence Analysis” (1998) p.50

+-+ - ......
CpG rich CpG poor 

CpG poor= "-" CpG rich= "+" 

P(CGCG|+) = πC(0.274)(0.339)(0.274) = πC 0.0255

P(CGCG|-) = πC(0.078)(0.246)(0.078) = πC 0.0015

+ A C G T

A 0.180 0.274 0.426 0.120

C 0.171 0.368 0.274 0.188

G 0.161 0.339 0.385 0.125

T 0.079 0.355 0.384 0.182

- A C G T

A 0.300 0.205 0.285 0.210

C 0.322 0.298 0.078 0.302

G 0.248 0.246 0.298 0.208

T 0.177 0.239 0.292 0.292
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The log likelihood ratio (LLR)

Log-likelihood ratios
for transitions:

log
ax i−1x i
+

ax i−1x i
−

i=1

L

∏ = log
axi−1 xi
+

axi−1 xi
−

i=1

L

∑ = βx i−1x i
i=1

L

∑

Comparing two MMs

β   A   C   G   T

A -0.740 0.419 0.580 -0.803

C -0.913 0.302 1.812 -0.685

G -0.624 0.461 0.331 -0.730

T -1.169 0.573 0.393 -0.679

Sum the LLRs. 
If the result is positive, its a CpG island, otherwise not.

LLR(CGCG)=1.812 + 0.461 + 1.812 = 4.085 yes
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What is the LLR that this seq is a CpG Island?

LLR = β xi−1xi
i=1

L

∑

β   A    C    G    T

A -0.740 0.419  0.580  -0.803

C -0.913 0.302  1.812  -0.685

G -0.624 0.461  0.331  -0.730

T -1.169 0.573  0.393  -0.679

ATGTCTTAGCGCGATCAGCGAAAGCCACG

=  _______________

In class exercise: what’s the LLR?



1

Markov chain for DNA sequence

P(ATCGCGTA...) = πAaATaTCaCGaGCaCGaGTaTA …

AA T

GC
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A hidden Markov model can have 
multiple paths for a sequence

In Hidden Markov models (HMM), there is no  one-to-one correspondence 
between the state and the emitted symbol.

A

C

T

A T

"+" model

"–"model

Transitions 
between +/-  

models

Combining two Markov chains to make a hidden Markov model

G

G
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Probability of a sequence using a HMM

Nucleotide sequence:  C  G  C  G

State sequences (paths):

   C+ G+ C+ G+

    C- G- C- G-

   C+ G+ C- G-

   C+ G- C- G+

   etc....

πC+ aC+G+aG+C+aC+G+

P(sequence,path)

πC-  aC-G-  aG-C- aC-G-
πC+ aC+G+aG+C-aC-G-
πC+ aC+G- aG-C- aC-G+

etc....  sum these

 P(CGCG|λ) = Σ  P(Q)
All paths Q

Different state sequences can produce the same emitted sequence 

Each state sequence has a probability. The sum of all state 
sequences that emit CGCG is the P(CGCG).



The problem is finding the states 
given the sequence.

Typically, when using a HMM, the task is to determine the 
optimal state pathway given the sequence. The state pathway 
provides some predictive feature, such as secondary structure, 
or splice site/not splice site, or CpG island/not CpG island, etc. 

In Principle, we can do this task by trying all state 
pathways Q, and choosing the optimal. In Practice, this is 
usually impossible, because the number of pathways increases 
as the number of states to the power of the length, i.e. O(nm).

How do we do it, then?



HMM that use profiles

probability distribution == a set of 
probabilities (0 ≤ p ≤ 1) that sum to 1.

0. 1.

H E

L
Each state emits one 
amino acid from the 
marblebag, for each visit.

The marble bag represents 
a probability distribution 
of amino acids, b. ( a 
profile )

stacked odds?

bH(i)



states emit aa and ss.

H E

L

State sequence
(secondary 
structure)

Amino acid 
Sequence

Given an amino acid sequence, what is the 
most probable state sequence?



Joint probability of a sequence and pathway
Q = {q1,q2,q3,…qT} = sequence of Markov states, or pathway

S = {s1,s2,s3,…sT} = sequence of amino acids or nucleotides

T = length of S and Q.

Joint probability of a pathway and sequence, given a HMM λ.

H

E

L

A G P L V D

πHbH(A) aHHbH(G) aHEbE(P) aEEbE(L) aEEbE(V) aELbL(D)

S=

P=

Q=

× × × × ×

H

E

L

H

E

L

H

E

L

H

E

L

H

E

L

Maximize:



Joint probability : general expression

P(S,Q | λ ) = πq1 bqt st( )aqtqt+1
t=1,T
∏

**when t=T, there is no qt+1. Use a = 1

**

H

E

L

H

E

L

H

E

L

H

E

L

H

E

L

H

E

L

A G P L V D

General expression for pathway Q through HMM λ :



The Three HMM Algorithms

1. The Viterbi algorithm:  get the optimal state pathway. 
Maximum joint prob.

2. The Forward/Backward algorithm: get the probability of 
each state at each position. Sum over all joint probs.

3. Expectation/Maximization: refine the parameters of the 
model using the data 



The Viterbi algorithm:the maximum probability path

M
ar

ko
v 

st
at

es
  l

T-1

k
When t = T the last position, the 
traceback arrow from the MAX give the 
optimal state sequence. 

T

...

1  2  3

sequence position t

Plot state versus position. Each v is a MAX over the whole previous column of v’s.

Recursive. We save the value v 
and also a traceback arrow Trc as 
we go along.

vl(i)

vk(t) = MAX vl(t-1) alk bk(st)
Trck(t) = ARGMAX vl(t-1) alk bk(st)l

l



Exercise: Write the Viterbi algorithm

sta
te

s 1
..L

positions 1..T

6

5
4

3

21

vk(t) = MAX vl(t-1) alk bk(st)
Trck(t) = ARGMAX vl(t-1) alk bk(st)



Exercise: Write the Viterbi algorithm

vk(t) = MAX vl(t-1) alk bk(st)
Trck(t) = ARGMAX vl(t-1) alk bk(st)

st
at

es
 1

..L

positions 1..T

6

5
4

3

21

 initialize vk(1)=bk(s1)

for t=2,T {

  for k=1,L {

 }

}



The Forward algorithm:all paths to a state

M
ar

ko
v 

st
at

es
  l Sum of P over all paths up to state k 

at t
=   αk(t)

At the end of the sequence, when t=T, the sum of αk(T) equals the total 
probability of the seuqence given the model, P(S|λ). 

αk(t) = Σ αl(t-1) alk bk(t)
l

t-1

k
αlt

t

...

1  2  3

...

“Forward” stands for 
“forward recursion”

sequence position i

After the first row, each α depends on the whole previous row of α’s.

This is alpha, the forward probability This is ‘a’, the ‘arrow’ between states.

α



The Backward algorithm:all paths from a state

M
arkov states  l

t+1

k

βlt

Sum over all paths to state k from t+1

=   βk(t)

βk(t) = Σ βl(t+1) akl bk(t)
l

t

...

T-2 T-1 T

...

sequence position i

Each β depends on the whole next row of β’s.

At the beginning of the sequence, when t=1, the sum of βk(1) equals the total 
probability of the sequence given the model, P(S|λ). 

“Backward” stands for 
“backward recursion”. The 
algorithm starts at t=T, the end 
of the sequence. (The 
transitions are still forward.)

β



Exercise: Write the Forward algorithm

αk(t) = Σ αl(t-1) alk bk(t)

st
at

es
 1

..L

positions 1..T

6

5
4

3

21

 initialize αk(1)=πk(s1)

for t=2,T {

  for k=1,L {

 }

}



Forward/Backward algorithm:all paths through a state.

M
arkov states  l

t+1

k

βlt

γk(t) = αk(t) *βk(t)

t

...

T-2 T-1 T

M
ar

ko
v 

st
at

es
  l

t-1

αlt

...

1   2   3

sequence position t

γk(t) is the total probability of state k at t, 
given the sequence S and the model, λ.

γ

The bottleneck through which all paths must travel.



Expectation/Maximization: refining the model

Step 1) Count how many Glycines are found in state k.

Step 2) Normalize it. Reset bk(G) in the new model to that value.

Step 3) Do steps 1-2 for all states k in λ and all 20 amino acids.

Repeat steps 1-3 using the new model. Iterate to convergence. 

Expectation/Maximization is often abbreviated “EM”.

Example: refining bk(G)  (i.e. the number of Gly’s in the kth marble bag)



Expectation/Maximization: refining the model

To count the Glycines, we calculate the Forward/Backward value for state k at 
every Glycine in the database. Then sum them.

+ + +

+ + +

+ + = b’k(G)

Example: refining bk(G) 

  S D K P H S G  L K V S D E

  S D K P H S S I K G  S D E

  S D K P Q  G  L K V S D E F F  S D K P H S E E E G  S D E

K P  G  L K V S D E G Q G QD  G  L K V S D E G W W N N

K S G I N C  L K V H R S D E
 S D K P H S G M  G L K E A S D K P H  G  L K V S D E

P(k|t,S,λ) = Σ all paths though k at t = γk(t) = αk(t) *βk(t)

This is normalized to sum to 1 over all 20 AA’s.

Σ
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Expectation/Maximization: refining the model

Step 1) Get the probability of ending in state j at t 
--> αj(t)

Step 2) Get the probability of starting in state k at t+1 
--> βk(t)

Step 3) Multiply these by the current ajk

Step 4) Do Steps 1-3 for all positions t and all sequences, S. 
Sum--> a’. Then normalize. Reset ajkin the new model to a’.

Do 1-4 using the new model. Repeat until convergence.

Example: refining ajk, the probability of a transition from state j to state k.



Expectation/Maximization: refining the model

+

= a’

Example: refining ajk, the probability of a transition from state j to state k.

+

+ + +

+ + ...

αj(t)
βk(t+1)

Σ Σ αj(t) ajk βk(t+1)
S t

ajk

Σ
 o

ve
r a

ll 
t i

n 
al

l s
eq

ue
nc

es
, S

After summing all a’, they are 
normalized to sum to 1.



“Profile HMMs”

I = insert state, one character from the 
background profile

D = delete state, non-emitting. A connector.

M = match state, one character from a specific 
profile.

Begin = non-emitting. Source state.

End = non-emitting. Sink state.

All π(q)=0, except π(Begin)=1

To get the scores of a sequence to a profile HMM, we use the F/B algorithm 
to get P(End). This is the measure of how well the sequence fits the model. 
Then we can test several models.

D

begin M

D

M

I

D

M

D

M end

I...II I

State emissions:



Generating a profile HMM from a multiple 
sequence alignment

VGA--H
V----N
VEA--D
VKG---
VYS--T
FNA--N
IAGADN

Make four 
match states

base the 
model on, say, 
this one

begin M M M M end



Generating a profile HMM from a multiple 
sequence alignment

VGA--H
V----N
VEA--D
VKG---
VYS--T
FNA--N
IAGADN

Make four 
match states

base the 
model on, say, 
this one



Generating a profile HMM from a multiple 
sequence alignment

VGA--H
V----N
VEA--D
VKG---
VYS--T
FNA--N
IAGADN

begin M M M M end

I

Add insertion 
states where 
there are 
insertions. 
(red)



Generating a profile HMM from a multiple 
sequence alignment

VGA--H
V----N
VEA--D
VKG---
VYS--T
FNA--N
IAGADN

begin M

D

M

D

M

D

M end

I

Add deletion  
states where 
there are 
deletions. (red 
dashes)

...now optimize using expectation 
maximization.



Getting profiles for every Match state

VGA--H
V----N
VEA--D
VKG---
VYS--T
FNA--N
IAGADN

begin M

D

M

D

M

D

M end

I

Count the 
frequency of 
each amino 
acid, scaled by 
sequence 
weights, w.

w1

w2

w3

w4

w5

w6

w7

bM1(V) = (w1+w2+w3+w4+w5)/ 
(w1+w2+w3 +w4+w5 +w6+w7)

P V( ) =
wi

si =V
∑
wi

all  i
∑



Calculating the probability of a sequence 
given the model: P(s|λ)

begin M

D

M

D

M

D

M end

I

Sum forward (forward algorithm) using the sequence s.

For each Match state, multiply by the transition (a) and the 
profile value, bM(si), and increment i

For each Deletion state, multiply by a, do not increment i.

For each Insertion state, multiply by a, increment i. 



Picking a parent sequence

• The parent defines the number of Match states

• A Match state should conserve the chemical nature of the 
sidechain as much as possible.

• A Match state implies structural similarity. 



Homolog detection using a library of profile HMMs

MYSEQUENCE

2

1

3

4

P(s|λ2)

P(s|λ3)

P(s|λ4)

P(s|λ1)

Pick the m
odel w

ith the m
ax P

Get P(S|λ) for each λ



In Class exercise: make a profile HMM
AGF---PDG
AGGYL-PDG
AG----PNG
SGFFLIPNG
SGF--EPNG

•Pick the best parent. Draw match states.

•Draw insertion states for positions followed by "-" in the parent. 

•Draw deletion states for positions in parent that align with "-".

•For each Match state, write the predominant amino acid.



Make a HMM  from Blast data
 Score    E
Sequences producing significant alignments:                      (bits) Value

gi|18977279|ref|NP_578636.1| (NC_003413) hypothetical protein [P...   136   5e-32
gi|14521217|ref|NP_126692.1| (NC_000868) hypothetical protein [P...    59   8e-09
gi|14591052|ref|NP_143127.1| (NC_000961) hypothetical protein [P...    56   8e-08
gi|18313751|ref|NP_560418.1| (NC_003364) translation elongation ...    42   9e-04
gi|729396|sp|P41203|EF1A_DESMO Elongation factor 1-alpha (EF-1-a...    40   0.007
gi|1361925|pir||S54734 translation elongation factor aEF-1 alpha...    39   0.008
gi|18312680|ref|NP_559347.1| (NC_003364) translation initiation ...    37   0.060

QUERY    3   GLFDFLKRKEVKEEEKIEILSKKPAGKVVVEEVVNIMGK-DVI-IGTVESGMIGVGFK-V 59
18977279 2   GLFDFLKRKEVKEEEKIEILSKKPAGKVVVEEVVNIMGK-DVI-IGTVESGMIGVGFK-V 58
14521217 1   -MLGFFRRKKKEEEEKI---TGKPVGKVKVENILIVGFK-TVI-ICEVLEGMVKVGYK-V 53
14591052 1   -MFKFFKRKGEDEKD----VTGKPVGKVKVESILKVGFR-DVI-ICEVLEGIVKVGYK-V 52
18313751 243 --------------------------RMPIQDVFTITGAGTVV-VGRVETGVLKVGDR-V 274
729396   236 --------------------------RIPIQDVYNISGI-GVVPVGRVETGVLKVGDKLV 268
1361925  239 --------------------------RIPIQDVYNISGI-GVVPVGRVETGVLKVGDKLV 271
18312680 487 -----------------------------------IVGV-KVL-AGTIKPGVT----L-V 504

QUERY    60  --KGPSGIGGIVR-IERNREKVEFAIAGDRIGISIEGKI---GK--VKKGDVLEIYQT 109
18977279 59  --KGPSGIGGIVR-IERNREKVEFAIAGDRIGISIEGKI---GK--VKKGDVLEIYQT 108
14521217 54  --RKGKKVAGIVS-MEREHKKVEFAIPGDKIGIMLEKNI---G---AEKGDILEVF-- 100
14591052 53  --KKGKKVAGIVS-MEREHKKIEFAIPGDRVGMMLEKNI----N--AEKDDILEVY-- 99
18313751 275 VIVPPAKVGDVRS-IETHHMKLEQAQPGDNIGVNVRG-I---AKEDVKRGDVL----- 322
729396   269 --FMPAGLVAEVKTIETHHTKIEKAEPGDNIGFNVKGVE---KKD-IKRGDV------ 314
1361925  272 --FMPAGLVAEVKTIETHHTKIEKAEPGDNIGFNVKGVE---KKD-IKRGDV------ 317
18312680 505 --KDGREVGRIMQ-IQKTGRAINEAAAGDEVAISIHGDVIVGRQ--IKEGDILYVY-- 555



Make a HMM  from Blast data

GLFDFLKRKEVKEEEKIEILSKKPAGKVVVEEVVNIMGK-DVI-IGTVESGMIGVGFK-V
GLFDFLKRKEVKEEEKIEILSKKPAGKVVVEEVVNIMGK-DVI-IGTVESGMIGVGFK-V
-MLGFFRRKKKEEEEKI---TGKPVGKVKVENILIVGFK-TVI-ICEVLEGMVKVGYK-V
-MFKFFKRKGEDEKD----VTGKPVGKVKVESILKVGFR-DVI-ICEVLEGIVKVGYK-V
--------------------------RMPIQDVFTITGAGTVV-VGRVETGVLKVGDR-V
--------------------------RIPIQDVYNISGI-GVVPVGRVETGVLKVGDKLV
--------------------------RIPIQDVYNISGI-GVVPVGRVETGVLKVGDKLV
-----------------------------------IVGV-KVL-AGTIKPGVT----L-V

--KGPSGIGGIVR-IERNREKVEFAIAGDRIGISIEGKI---GK--VKKGDVLEIYQT
--KGPSGIGGIVR-IERNREKVEFAIAGDRIGISIEGKI---GK--VKKGDVLEIYQT
--RKGKKVAGIVS-MEREHKKVEFAIPGDKIGIMLEKNI---G---AEKGDILEVF--
--KKGKKVAGIVS-MEREHKKIEFAIPGDRVGMMLEKNI----N--AEKDDILEVY--
VIVPPAKVGDVRS-IETHHMKLEQAQPGDNIGVNVRG-I---AKEDVKRGDVL-----
--FMPAGLVAEVKTIETHHTKIEKAEPGDNIGFNVKGVE---KKD-IKRGDV------
--FMPAGLVAEVKTIETHHTKIEKAEPGDNIGFNVKGVE---KKD-IKRGDV------
--KDGREVGRIMQ-IQKTGRAINEAAAGDEVAISIHGDVIVGRQ--IKEGDILYVY--

begin

end

Match states

Insert states

Delete states



Added information

In DP, we assumed insertions and deletions were equally 
probable, and that the probability was independent of position.

With Profile HMMs we allow insertions and deletions to have 
different probabilities, and to be dependent on the position.



Many uses of HMMs

Weather prediction

Ecosystem modeling

Brain activity

Language structure

Econometrics

etc  etc

HMMs can be applied to 
any dataset that can be 
represented as strings.

The expert input is the 
“topology”, or how the 
states are connected. 



Profile HMM libraries available 
via web

Pfam (HMMer): 

  pfam.wustl.edu

SAM:
www.cse.ucsc.edu/research/compbio/HMM-apps/


