Bioinformatics I lecture 13

- Database searches. Profiles
- Orthologs/paralogs
- Tree of Life term projects

Various ways to do database searches

- Purpose of database search (what you want)
 - phylogenetic analysis (accurate distances)
 - functional inference (motif match)
 - 3D modeling (accurate alignment)
- Protein versus DNA search
 - Highly similar seqs --> DNA
 - Non-coding --> DNA
 - Otherwise --> protein
- Degree of similarity

forms of BLAST

BLAST	query	database	
blastn	nucleotide	nucleotide	
blastp	protein	protein	
tblastn	protein	translated DNA	
blastx	translated DNA	protein	
tblastx	translated DNA	translated DNA	
psi-blast	protein, profile	protein	
phi-blast	pattern	protein	
transitive blast*	any	any	
		3	

*not really a blast. A way of using any blast.

Variants of PAM, BLOSUM

When you run an alignment, you get to choose the substitution matrix. How do you know which to use?

olutionary timestep	BLOSUM45	distant homologs, %ID < 50	Distance relationships, gap penalty = lower	
	BLOSUM62	homologs, <%ID>=62	Moderate similarity, optimal for mixed MSA	
larger ev	BLOSUM90	close homologs, few gaps	Close homologs, gap penalty = high	

**Gap penalties optimized against gold-standard alignments (with the same %ID range) such as the alignments in BAliBase

Psi-BLAST: Blast with profiles

Psi-BLAST algorithm.

(Cycle 1) Normal BLASTp search. Align all sequences below e-value cutoff.

(Cycle 2) (a) Construct a **profile** from the results of **Cycle 1**.

(b) Search the database using the profile. Align.

(Cycle n=3...) (a) Construct a **profile** from the results of **Cycle n-1**.

(b) Search the database using the profile. Align.

etc.

Psi-BLAST is **much more** *sensitive* than BLAST.

Psi-BLAST is vulnerable to *low-complexity*.

Psi-BLAST is usually the first step in **homology modeling**.

Aligning sequence to profile

Aligning profile to profile

No need to normalize, since $\sum_{aa_i} \sum_{aa_j} P(aa_i|i) * P(aa_j|j) = 1$ 6

PHI-BLAST --Patterned Hit Initiated BLAST

Table 1. Detection of subtle protein sequence relationships using PHI-BLAST

Conserved domain or motif under investigation	Pattern ^a	GenBank (30) accession no.	Sank (30) Top non-trivial relevant sion no. hit found by PHI-BLAST		Top non-trivial relevant hit found by BLAST	
		of query	Accession no.	E-value	Accession no.	E-value
A. P-loop ATPase domain in apoptosis regulators and plant stress response proteins	[GA]xxxxGK[ST]	231729	2213598	0.038	2961373	4.7
B. ATPase domain in mismatch repair protein MutL, type II topoisomerases, histidine kinases, and HS90 molecular chaperones	hxhxDxGxG	127552	488200	0.017	2495364	1.8
C. Nucleotidyltransferase domain in archaeal tRNA nucleotidyltransferases	DhDhhh	2826366	2650333	0.061	2650333	8.6
D. Motif VI of superfamily II helicases in archaeal homologs of bacterial DNA primases	QxxGRx[GA]R	2128723	2499099	0.54		
					1	

Steps in building a profile

from a set of homolog sequences

In class exercise: build a profile

Us "Alignment of Animal Sequences" in Geneious Sample Documents

(1) Run Tree

(2) Look at tree distances. ("patristic")

(3) Calculate **sequence weights** based on the sum of distances, $w_A = \sum_i D_{iA}$ Then normalize (divide by sum of weights $\sum_i w_i$).

(4) Sum the probabilities of each AA in the **nth column**. (pick one) For example: $P(Q) = sum of w_i$ over sequences that contain an Q.

(5) Convert each P() to a LLR using equal probability AAs (0.05) as the expected value. Use a **pseudocount** of 0.02

 $LLR = \log((P(n)+0.02)/(0.05)) / \log(2)$

(6) Stack letters, **Logo style**. Height of letter = bits.

Orthologs/paralogs

Orthologs: homologs originating from a speciation event Paralogs: homologs originating from a gene duplication event.

How do I know it's a paralog?

- If it's a paralog, then at some point in evolutionary history, a species existed with two identical genes in it.
 - One may have been lost since then. (Descendants are still paralogs!)
 - Paralogs can be from different species.
- Paralogous genes have more than the expected sequence divergence.
 - Because they are more likely to have different functions
 - Because they diverged earlier than the speciation event.
- Without species information or functional information, it's impossible to tell

In class exercise: explore TOL

- tolweb.org
- Start from the root of the tree
 - Find homo sapiens starting
 - Where do the following first appear
 - two eyes
 - jaw
 - four limbs
 - five fingers
 - no tail

tolweb.org/tree

Earliest branching... still controversial.

Life is not strictly a tree --

horizontal gene transfer

Discrete Steps Needed for Stability of Gene Transfer

Stably incorporating horizontally transferred genes into a recipient genome involves five distinct steps (Fig. 1). **1.** First, a particular segment of DNA or RNA is prepared for transfer from the donor strain through one of several processes, including excision and circularization of conjugative transposons, initiation of conjugal plasmid transfer by synthesis of a mating pair-formation protein complex, or packaging of nucleic acids into phage virions. **2.** Next, the segment is transferred either by conjugation, which requires contact between the donor and recipient cells, or by transformation and transduction without direct contact. **3.** During the third step, genetic material enters the recipient cell, where cell exclusion may abort the transfer. **4.** Otherwise, during the fourth step, the incoming gene is integrated into the recipient genome by legitimate or sitespecific recombination or by plasmid circularization and complementary strand

> synthesis. Barriers to transfer during this step come from restriction modification systems, failure to integrate and replicate within the new host genome, and incompatibility with resident plasmids. 5. In the final step, transferred genes are replicated as part of the recipient genome and transmitted to daughter cells in stable fashion over successive generations. Researchers from different disciplines tend to focus on specific stages within this five-step sequence. Thus, evolutionary biologists who examine microbial genomes for evidence of past transfers tend to look at HGTs from the perspective of step five. Molecular biologists are more likely to examine the details of the transfer events, while microbial ecologists look more broadly when they describe the magnitude and diversity of the mobile gene pool, sometimes called the mobilome.

> > 16

Classification is not phylogeny

- Paraphyly (paraphyletic) -- a taxonomic classification that does not contain all of the descendents of the common ancestor.
 "Reptile" is paraphyletic because does not include birds which diverged after the common ancestor.
- Monophyletic -- a classification that includes all descendents of a common ancestor.

Phylogenetics using Mitochondrial sequences

- Blastn search against 'nr' using thunnus thynnus mitochondrial DNA (whole genome = 16526 bp)
- Used Blast tree view to find a clade of about 10 species.
- Downloaded those species in GenBank format
- Imported these into Geneious. Ran ClustalW
- Selected **10 non-overlapping regions** and calculated a tree for each.
- Assigned confidences to branchpoints by hand using Bootstrap analysis.

"Boot strap analysis"

- A method to validate a phylogenetic tree, branchpoint by branchpoint.
- Requires a means to generate independent trees. (For example trees generated from different regions of the mitochondrial genome.)
- Choose the representative tree as the 'parent'. Calculate the following:

For each branchpoint in the parent tree,

For each tree, ask

Is there a branchpoint having the same subclade contents (i.e. same taxa, any order)

Bootstrap value = number of trees having the branchpoint / total trees.

• = P((A,B),C) = 5/8

For each branchpoint in the parent tree,

For each tree, ask

Is there a branchpoint having the same subclade contents (i.e. same taxa, any order)

Bootstrap value = number of trees having the branchpoint / total trees.

Bootstrap values for this data

 $\circ = P(A,B) = 6/8$

For unrooted trees or rooted trees.

•Treat any lineage as the root.

•Ask how often the root branching is conserved.

Atlantic bluefin tuna: thunnus thynnus

Kingom	Phylum	Class	Order	Family	Genus	Species
ANIMALIA	CHORDATA	ACTINOPTERYGII	PERCIFORMES	SCOMBRIDAE	THUNNUS	THYNNUS
animal	notochord	ray-finned fishes	perch-like	mackerels	tuna	bluefin

Critically Endangered (IUCN 2.3)

http://www.iucnredlist.org/search

The classification "bluefin" is paraphyletic, since the common ancestor of N. Atlantic Bluefin and Pacific Bluefin includes a non-bluefin tuns, the albacore.

**Unrooted trees. Bootstrap value for root not possible.

Tuna MSA Mitochondrial cytochrome B (DNA) -- one of the most widely sequenced genes 60 20 40 80 100 160 120 140 1. alalunga 2. orientalis 3. thynnus 4. obesus 5. albacares 6. maccoyii 180 200 220 240 260 280 300 320 1. alalunga 2. orientalis 3. thynnus 4. obesus 5. albacares 6. maccoyii 340 360 380 400 420 440 460 480 1. alalunga 2. orientalis 3. thynnus 4. obesus 5. albacares Are there 6. maccoyii 640 540 500 520 560 580 600 620 1. alalunga 2. orientalis enough 3. thynnus differences 4. obesus 5. albacares 6. maccoyii here? 760 660 680 700 720 740 780 800 1. alalunga 2. orientalis 3. thynnus 4. obesus 5. albacares 6. maccoyii 860 880 920 960 820 840 900 940 1. alalunga 2. orientalis 3. thynnus 4. obesus 5. albacares 6. maccoyii 1,000 980 1,100 1,020 1,040 1,060 1,080 1,120 1,141 1. alalunga 2. orientalis 3. thynnus 4. obesus 5. albacares 6. maccoyii

Tuna features			Southern Bluefin Tuna Thunnus maaccoyli First Deep blue above Sye Sye Sye Derk Cheek Dersal Fin Second Dorsal Fin Yellow band along the Sides Dark Caudal Fin Caudal Fin Caudal Second Dorsal Fin Second Dorsal Fin Second Dorsal Fin Second Dark Caudal Fin Caudal Second Dark Caudal Second Dark Caudal Second Dark Caudal Second Dark Caudal Second Dark Caudal Second Dark Caudal Second Dark Caudal Second Dark Caudal Second Dark Caudal Second Dark Caudal Second Dark Caudal Second Dark Caudal Second Dark Caudal Second Dark Caudal Second Dark Caudal Second Second Dark Caudal Second Second Dark Caudal Second Sec
feature	tree result		Gill Ventral below Anal Lateral Gill Ventral Fin Line Cover Fin Pectoral Fin Line Fin ©EnchantedLearning.com
size and shape	monophyletic	1	
tropical versus sub-tropical			
number of gill rakers			
number of dorsal spines			
existence/number of anal spines			
coloring	paraphyletic	1	
fin shape			
caudal keels/shape			
pelagic versus coastal			