Bioinformatics I

• Miscellaneous

• Midterm review

Variants of PAM, BLOSUM

When you run an alignment, you get to choose the substitution matrix. How do you know which to use?

larger evolutionary timestep	BLOSUM45	distant homologs, %ID < 50	Distance relationships, gap penalty = lower		
	BLOSUM62	homologs, <%ID>=62	Moderate similarity, optimal for mixed MSA		
	BLOSUM90	close homologs, few gaps	Close homologs, gap penalty = high		

**Gap penalties optimized against gold-standard alignments (with the same %ID range) such as the alignments in BAliBase

Other forms of BLAST

T (or U

K M B D

. or -

BLAST	query	database		
blastn	nucleotide	nucleotide		
blastp	protein	protein		
tblastn	protein	translated DNA		
blastx	translated DNA	protein		
tblastx	translated DNA	translated DNA		
psi-blast	protein, profile	protein		
phi-blast	pattern	protein		
transitive blast*	any	any		

*not really a blast. A way of using any blast.

Psi-BLAST: Blast with profiles

Psi-BLAST searches the database *iteratively*.

(Cycle 1) Normal BLAST (with gaps)

(Cycle 2) (a) Construct a **profile** from the results of **Cycle 1**.

(b) Search the database using the profile.

(Cycle 3) (a) Construct a **profile** from the results of **Cycle 2.**

(b) Search the database using the profile.

And So On... (user sets the number of cycles)

Psi-BLAST is much more *sensitive* than BLAST.

Also more vulnerable to *low-complexity*.

PHI-BLAST --Patterned Hit Initiated BLAST

able 1. Detection of subtle protein sequence relationships using PHI-BLAST

Conserved domain or motif under investigation	Pattern ^a	GenBank (30) accession no.	Top non-trivial hit found by PH	relevant H-BLAST	Top non-trivial relevant hit found by BLAST		
		of query	Accession no.	E-value	Accession no.	E-value	
A. P-loop ATPase domain in apoptosis regulators and plant stress response proteins	[GA]xxxxGK[ST]	231729	2213598	0.038	2961373	4.7	
B. ATPase domain in mismatch repair protein MutL, type II topoisomerases, histidine kinases, and HS90 molecular chaperones	hxhxDxGxG	127552	488200	0.017	2495364	1.8	
C. Nucleotidyltransferase domain in archaeal tRNA nucleotidyltransferases	DhDhhh	2826366	2650333	0.061	2650333	8.6	
D. Motif VI of superfamily II helicases in archaeal homologs of bacterial DNA primases	QxxGRx[GA]R	2128723	2499099	0.54			
					5		

Example parsimony problem

 <u>http://www.biorecipes.com/</u> <u>CompBioExercises/ParsimonySol.html</u>

A "regular expression" for an essay question answer.

//*Thesis statement

(N > 1) {There are [perhaps, at least, exactly] N [reasons, algorithms, theories, models,...] that [explain, justify, allow, model, show....] the [data, observation, goal, mechanism ...] with regard to X.} X can be [understood explained, ruled out,...] as Y by [using, applying, realizing,...] Z.

//*Itemized list

{First}, ([<explanation>,<observation>,<instruction set>, ...])*n (where 1≤n≤3). [Second], ([<explanation>,<observation>,<instruction set>, ...])*n (where 1≤n≤3) [Third, To a lesser extent, In the rare case that, ...], ... [Nth]

//*Thesis restatement

[Taken together, The most likely conclusion given the aggregate evidence, With the exception of X, Given current theoretical understanding, Given the observed data,...] we can conclude that X, [when, if and only if, because] is Y because Z.

{optional} [options] (conditions) X, Y, Z: clauses. N, n: integers

alignment a	ffine gap	aligne	d scran	nbled see	quence	s algor	ithms	addit	ivity	BLAST	Г
Bioinformatics	class cla	adogram	clade	Clusta	W co	mplexity		BJ da	tabas	e searc	hing
data structures	datab	ases dy	namic p	orogram	ming	evolutio	n e	-value	2	expect	ted
Erdos-Renyi equation Extreme value distribution evolutionary models genetic drift								ft			
FASTA format	Fitch-M	1argoliasl	h FA	STA algo	rithm	false d	latabas	e hits		global	
GenBank format heuristic homoplasy iterative refinement Jukes-Cantor											
LLR local alignment multiple sequence alignment MUSCLE matrix bias											
natural select	ion r	null mode	el N	ICBI N	J no	ormal dis	tributi	on	optir	nal	
p-distance parsimony position-specific gap penalty probability											
p-value pairwise sequence alignment phylogram profiles phylogenetic trees											
progressive	phylc	ogram re	oot so	oftware	star	selectiv	e/sensi	tive	synte	eny	
sequence wei	ights s	emi-glob	al	significa	ance	SSEAR	СН			,	
substitution	matrix	termino	logy 1	ransitio	ns/tran	sversion	s tria	angle i	inequ	ality	
ultrametric t	ree wei	ghts									
Items for mind map											