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Molecular Interaction Networks

Provides a high level description
of cellular organization

Directed and undirected graph
representation
Nodes represent cellular
components

Protein, gene, enzyme,
metabolite

Edges represent reactions or
interactions

Binding, regulation,
modification, complex
membership, substrate-product
relationship

S.cerevisiae

Protein-Protein Interaction (PPI) Network
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Function : Gene Ontology

Molecular annotation provides a
unified understanding of the
underlying principles

Gene Ontology: A controlled
vocabulary of molecular
functions, biological processes,
and cellular components

Terms (concepts) related by is-a,
part-of relationships

If a molecule is annotated by a
term, then it is also annotated by
terms on the paths towards root.
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Function & Topology in Molecular Networks How does function
relate to network topology?
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Functional Coherence in Networks

Modularity manifests itself in terms of high connectivity in
the network

Functional association (similarity) is correlated with
network proximity

A measure for annotation proximity of nodes (semantic
similarity)

A measure for network distance

Sharan et al., MSB, 2007
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Assessing Functional Similarity

Gene Ontology (GO)
provides a hierarchical
taxonomy of biological
process, molecular
function and cellular
component

Assessment of semantic
similarity between
concepts in a hierarchical
taxonomy is well studied
(Resnik, IJCAI, 1995)
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Semantic Similarity of GO Terms
Resnik’s measure based on information content
I(c) = − log2(|Gc |/|Gr |)

δI(ci , cj) = max
c∈Ai∩Aj

I(c)

Gc : Set of molecules that are associated with term c, r :
Root term
Ai : Ancestors of term ci in the hierarchy
λ(ci , cj) = argmaxc∈Ai∩Aj

I(c): Lowest common ancestor of
ci and cj

Resnik(c3, c4) = Max(IC(c1), IC(c2))
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Functional Similarity of Molecules
Each molecule (protein or domain) is associated with
multiple GO terms
Average (Lord et al., Bioinformatics, 2003)

ρA(Si , Sj) =
1

|Si ||Sj |
∑

ck∈Si

∑

cl∈Sj

δ(ck , cl )

Generalize the concept of lowest common ancestor to sets
of terms (Pandey et al., ECCB, 2008)

Λ(Si , Sj) =
⊔

ck∈Si ,cl∈Sj

λ(ck , cl )

ρI(Si , Sj) = I(Λ(Si , Sj)) = − log2

(

|GΛ(Si ,Sj)|
|Gr |

)

GΛ(Si ,Sj) =
⋂

ck∈Λ(Si ,Sj )

Gck is the set of molecules that are

associated with all terms in the MCA setPandey, Koyutürk, Grama
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Functional Coherence of Module
A set of molecules that participates in the same biological
processes or functions
sub-network with dense intra-connections and sparse
interconnections
Each module is associated with set of molecular entities,
and each molecule associated with set of terms.

S1 = {c4}, S2 = {c4},
S3 = {c4, c6},

S4 = {c1, c6}, S5 = {c1},
S6 = {c6}

Sets:

R1 = {S1, S2, S3, S4}
R2 = {S1, S2, S3}
R3 = {S3, S4}
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Existing Measure

Average (Pu et al., Proteomics, 2007)

σA(R) =
1

n(n − 1)/2

∑

1≤i<j≤n

ρ(Si , Sj).

Example: σA(S1, S2, S3, S4) =

1
6

(3 ∗ σA(S1, S2, S3) + ρ(S3, S4) + ρ(S1, S4) + ρ(S2, S4))
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Generalized Information Content Extend the notion of the
minimum common ancestor of pairs of terms to tuples of terms
λ(ci1 , . . . , cin) = argmaxc∈∩n

k=1Aik
I(c)

σI(R) = I(Λ(S1, . . . , Sn)) = − log2

(

|GΛ(Si ,...,Sj )|
|Gr |

)

.

where

Λ(S1, S2, . . . , Sn) =
⊔

cij
∈Sj ,1≤j≤n

λ(ci1 , ci2 , . . . , cin)

Example: σI(S1, S2, S3, S4) = I(r) = 0, no common ancestor!
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Weighted Information Content Weigh the information content of
shared functionality by the number of molecules that contribute
to the shared functionality

σW (R) = 1 −

∑

1≤i≤n

∑

c∈A′
i

I(c)

∑

1≤i≤n

∑

c∈Ai

I(c)

σW (S1, S2, S3, S4) = 0.86 σW (S1, S2, S3) = 0.75
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Accounting for Multiple Paths
Is "shortest path" a good measure of network proximity?

Multiple alternate paths might indicate stronger functional
association
In well-studied pathways, redundancy is shown to play an
important role in robustness & adaptation (e.g., genetic
buffering)
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Random walks with restarts

Consider a random walker that starts on a source node s.
At every tick, the walker chooses randomly among
available edges or goes back to node s with probability c.
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Proximity Based On Random Walks

Simulate an infinite random walk with random restarts at
protein i

Proximity between proteins i and j is given by the relative
amount of time spent at protein j

Φ(0) = I, Φ(t + 1) = (1 − c)AΦ(t) + cI, Φ = lim
t→∞

Φ(t)

Φ(i, j): Network proximity between protein i and protein j
A: Stochastic matrix derived from the adjacency matrix of
the network
I: Identity matrix
c: Restart probability

Define proximity between proteins i and j as
{Φ(i , j) + Φ(j , i)}/2
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Network Proximity & Functional Similarity

Correlation between functional similarity
and network proximity
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Topological Proximity and Functional Similarity
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Comparison of the DDI and PPI networks with respect to the
relation between semantic similarity vs proximity and network
distance
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Comparison of Coherence Meaures
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pvalue < 0.05

Index of Dectectability vs. complex sizes
d(σ) = meant∈T (σ(t))−meant∈C(σ(t))√

((stdt∈T (σ(t)))2+(stdt∈C(σ(t)))2)/2
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Conclusion & Ongoing work

Random walk based measures of topological proximity are
better suited to existing interaction data

Measures that quantify coherence among entire sets are
superior to aggregares of known pair-wise measures

Future work : Using proximity measure to identify disease
implicated genes in networks
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