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Introduction and Overview

I Recent advances in single cell technologies enable us to probe
dynamic states of individual cells.

I Single cell technologies are also redefining basic understanding of cell
types, tissue organization, pathology, and response.

I Single cell technologies result in datasets, models, and information
that are orders of magnitude larger than conventional genomic/
transcriptomic/ interactomic repositories.
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Introduction: Some Basic Terminology

I DNA is the basic code that governs living systems.

I DNA is transcribed into RNA. This process of transcription is
controlled by a number of transcriptional control mechanisms
(Transcription Regulation, Post Transcriptional Regulation).

I RNA is translated into proteins – the workhorses of living cells. The
process of translation is controlled by a number of control
mechanisms (Translational Controls).

I The activity of proteins is controlled by various post translational
modifications (phosphorylation, methylation).
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Introduction: Some Basic Terminology

I Each cell in an organism (with some noted exceptions) inherits the
same genetic code (its genome).

I Different cells exhibit different behavior (and function) as a result of
different activity levels of genes and controls.

I Cells exhibiting the same profile of genetic activity are generally
believed to be of the same type.

I Within the set of genes, some genes are generally active across all cell
types (housekeeping genes), other are selective to sets of cell types
(tissue selective), others are specific to cell types (tissue specific).

I Genes whose activity is unique to cell types are called markers.
I The activity of genes in a cell is impacted by its state, stressors

(external stimuli), disease, etc.
I One of the common tools to interrogate the state of a cell is to study

gene expression using microarrays or RNA Sequencing (RNASeq).
I Among the most common single cell technologies is single cell RNA

Seq (scRNASeq).
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Establishing functional identity of cells
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Component 1: New measures for cell-cell similarity
Motivation

Underlying hypothesis

Transcriptional profile of cells is dominated by housekeeping genes,
whereas their functional identity is determined by a combination of weak
but preferentially expressed genes.

Grama et al. Allerton’19 6 / 31



Component 1: New measures for cell-cell similarity
Supporting evidence
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Component 1: New measures for cell-cell similarity
Cell similarity kernel in ACTION
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I The main steps involved in identifying similarity between cells
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Component 1: New measures for cell-cell similarity
Supressing Common Signal

ACTION-adjusted cell signatures

Y = diag(w)Z⊥

I To compute w , we assess how informative is observing a gene with
respect to the cell type that it came from

I For each gene i , we compute a specificity factor wi .

ACTION metric (kernel)

KACTION = YTY

=
(
Z⊥
)Tdiag(w2)

(
Z⊥
)
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Component 1: New measures for cell-cell similarity
Supporting evidence
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Benchmark datasets

I Immune: 1,522 immune cells from mouse hematopoietic system (30
different types of stem, progenitor, and fully differentiated cells)

I Melanoma: 4,645 malignant, immune, and stromal cells isolated from 19
freshly procured human melanoma tumors (7 major types, including T, B,
NK, CAF, Endo, Macro, and Tumor)

I MouseBrain: 3005 cells from the mouse cortex and hippocampus (7 major
types, including astrocytes-ependymal, endothelial-mural, interneurons,
microglia, oligodendrocytes, pyramidal CA1, and pyramidal SS).

I Pollen: Small set of 301 cells spanning 11 different cell types in developing
cerebral cortex
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Performance of ACTION Kernel

0.6

0.53

0.53

0.88

0.54

0.35

0.44

0.75

0.6

0.5

0.37

0.74

0.6

0.46

0.44

0.72

ACTION Isomap MDS SIMLR

Immune

Melanoma

MouseBrain

Pollen

0.29

0.4

0.42

0.77

0.25

0.33

0.3

0.62

0.29

0.37

0.22

0.55

0.28

0.4

0.3

0.57

ACTION Isomap MDS SIMLR

Immune

Melanoma

MouseBrain

Pollen

I Benchmarks:

I SIMLR: Specifically designed for single-cell
data

I IsoMap,MDS: General purpose dimension
reduction

I Tested a range of parameters (5:5:50). Reported
best case for each method.

I Ties:
I Immune (NMI: ACTION/MDS/SMLR, ARI: ACTON/MDS)
I Melanoma (ARI: ACTION/SIML)

I In all other cases, ACTION metric significantly
outperforms all other methods.

I Overall, ACTION metric performs better than other methods
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Overall Workflow
Component 2
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Component 2: Characterizing principal functional profiles
Motivation

General framework

argmin
C,H

‖ Y − YC︸︷︷︸
W

H ‖

subject to: ‖ C(:, i) ‖1= 1.

‖ H(:, i) ‖1= 1.

0 ≤ C, 0 ≤ H

Various algorithms can be cast using this formulation

I K-means: C ∈ R+,H ∈ {0, 1}
I K-medoids: C ∈ {0, 1},H ∈ {0, 1}
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Component 2: Characterizing principal functional profiles
Convex Nonnegative Matrix Factorization (NMF)

Convex NMF

argmin
K,H

‖ Y − Y(:,S)H ‖

subject to: ‖ H(:, i) ‖1= 1,H ∈ R+.

I It uses the same formulation as k-medoid, but relaxes the hard
assignment of cells: C ∈ {0, 1},H ∈ Rn

I Unlike k-medoid and k-means, it has an optimal global solution.

I Under near-separability assumption: there exists, for each cell
type, an ideal example in the population.

I A modification of the Gram Schmidt process.
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Component 2: Characterizing principal functional profiles
Convex NMF– Geometric interpretation

Geometry of functional space:
each point is a cell and red
points are the “pure cells”

I Picking k corner points/archetypes
from the convex hull of the cells, such
that they optimally “contain” the rest
of cells.

I Each archetype is an ideal example of a
cell type with a distinct set of principal
functions.
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Component 2: Characterizing principal functional profiles
Archetypal Analysis (AA)

I AA further relaxes matrix C: C,H ∈ R+.

I It can handle cases where pure pixel assumption is violated.

I But it no longer has global convergence guarantee → it is also
dependent on the initialization

I To address this, we use the solution of convex NMF for
initializing AA.

I In essence, this allows local adjustment of the Convex NMF solution.

I This can be thought of as a variant of block-coordinate descent for
optimization.
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Component 2: Characterizing principal functional profiles
Finding the number of archetypes (k)

Goal: To identify when we should stop adding new archetypes.

I Underlying concept: add archetypes until we sense ”oversampling.”

I Oversampling happens when we start adding archetypes that are “too close”
to each other.

I Each archetype is a cell → we can compute their similarity of using the
ACTION metric.
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Component 2: Characterizing principal functional profiles
Test 1: Identifying cell types using closest archetype

I ACTION excels at identifying underlying cell types in all cases
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Component 2: Characterizing principal functional profiles
Visualizing the functional space

I Use matrix H instead of Y in visualization:

I We are interested in the relationship between cells and their
surrounding archetypes.

I Initialize using Fiedler embedding

I Position according to the dominant eigenvectors of the Laplacian
matrix: L = diag(∆Y)− Y.

I Update using t-SNE
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A continuous view of transcriptional profiles
Case study in the Melanoma dataset

I T-cells reside in a continuum of
states (Thogerson et al.).

I Tumor cells form compact groups.

I Two subclasses of MITF-associated
tumors significantly differ in terms
of their survival.

I ACTION highlights the underlying topology of cell types

Grama et al. Allerton’19 21 / 31



Overall Workflow
Component 3: Identifying the interactions underlying architypes
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Component 3: Identifying the interactions underlying architypes
Constructing TRN
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Component 3: Identifying the interactions underlying architypes
Constructing TRN

Goal: Identifying key regulatory elements that drive each cell type

1. Archetype Orthogonalization (→ Only over positive projection)

a⊥i =
(

I− A−i (AT
−iA−i )

−1AT
−i

)
ai

2. Assessing significance of TFs/TGs

p-value(Z = bl(λ)) = Prob(bl(λ) ≤ Z )

=

min(T ,l)∑
x=bl (λ)

(T
x

)(m−T
l−x
)(m

l

)
Use Dynamic Programming to compute exact p-value.
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Functional activity of transcription factors (TFs)

Key point!

We identify “functional activity” of transcription factors (TFs) by
aggregating transcriptional activity of their downstream targets, not the
transcriptional level of TFs themselves. TFs can, and typically do, get
regulated through post-translational mechanisms.
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Identifying transcriptional controls of Melanoma subtypes
Proliferative versus invasive status

I Both Subtype A and Subtype C exhibit high activity of MITF and Sox10
transcription factors, which are canonical markers for melanoma cells in the
“proliferative” (as opposed to “invasive”) state (Verfaiilie et al.).

I These two subtypes are significantly enriched for marker genes in the
proliferative state:

I Subtype A: 9.3× 10−14

I Subtype B: 7.9× 10−11

I Subtype A has higher MITF activity (according to its activated targets):

I GPNMB, M1ANA, PMEL, and TYR are shared between two subtypes.
I ACP5, CDK2, CTSK, DCT, KIT, and TRPM1/P1 are uniquely

upregulated in subtype A.
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Dissecting transcriptional controls of Melanoma subclasses
Case study in MITF�/MYC↑ subtype
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I 19 “functionally” active transcription factors in subtype A (p-value ≤ 0.05)

I We focus on the five most significant TFs and their targets (p-value ≤ 10−3)
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Case study in MITF�/MYC↑ subtype
Core transcription factors

I MITF is among the best-known markers for classifying melanoma patients
(Hartman et al.: MITF in melanoma: mechanisms behind its expression and
activity).

I Overexpression of the E2F1 is common in high-grade tumors that are associated
with poor survival in melanoma patients (Alla et al.: E2F1 in melanoma
progression and metastasis).

I Melanoma cell phenotype switching, between proliferative an invasive states, is
regulated by differential expression of LEF1/TCF4 (Eichhoff et al.:Differential
LEF1 and TCF4 expression is involved in melanoma cell phenotype switching).

I Amplification and overexpression of the c-myc have been associated with poor
outcome (Kraehn et al.: Extra c-myc oncogene copies in high risk cutaneous
malignant melanoma and melanoma metastases).
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Inferring transcriptional controls of Melanoma subtypes
Survival analysis
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Subtype C: p-value = 0.31

I OncoLnc (Jordan Anaya)

I Multivariate Cox regressions

I Gene expression, sex, age, and grade or
histology as factors

I Genes associated with Subclass A have
significantly worse outcome, compare to
the background of all genes
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Case study in MITF�/MYC↑ subtype
Survival analysis revisited – Kaplan-Meier plots
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Recap

1. A novel cell similarity metric that is robust to biological noise, while
at the same time is sensitive enough to identify weak cell type-specific
signals

2. New notion of functional identity of cells

I Under the pure cell assumption, this metric induces a convex
topology that embeds functional identity of cells

3. Use functional identity of cells to identify both discrete cell types and
continuous cell states

4. Identify driving transcriptional controls that mediate the functional
identity of cells

Clinical significance: Characterization of two MITF-associated subclasses
of Melanoma patients, one of which has substantially worse outcomes,

along with their underlying regulatory elements.
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