
Parallel Computing Platforms

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text “Introduction to Parallel Computing”,
Addison Wesley, 2003.



Topic Overview

• Implicit Parallelism: Trends in Microprocessor Architectures

• Limitations of Memory System Performance

• Dichotomy of Parallel Computing Platforms

• Communication Model of Parallel Platforms

• Physical Organization of Parallel Platforms

• Communication Costs in Parallel Machines

• Messaging Cost Models and Routing Mechanisms

• Mapping Techniques

• Case Studies
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Scope of Parallelism

• Conventional architectures coarsely comprise of a processor,
memory system, and the datapath.

• Each of these components present significant performance
bottlenecks.

• Parallelism addresses each of these components in significant
ways.

• Different applications utilize different aspects of parallelism
– e.g., data itensive applications utilize high aggregate
throughput, server applications utilize high aggregate network
bandwidth, and scientific applications typically utilize high
processing and memory system performance.

• It is important to understand each of these performance
bottlenecks.
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Implicit Parallelism: Trends in Microprocessor
Architectures

• Microprocessor clock speeds have posted impressive gains
over the past two decades (two to three orders of magnitude).

• Higher levels of device integration have made available a
large number of transistors.

• The question of how best to utilize these resources is an
important one.

• Current processors use these resources in multiple functional
units and execute multiple instructions in the same cycle.

• The precise manner in which these instructions are selected
and executed provides impressive diversity in architectures.
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Pipelining and Superscalar Execution

• Pipelining overlaps various stages of instruction execution to
achieve performance.

• At a high level of abstraction, an instruction can be executed
while the next one is being decoded and the next one is being
fetched.

• This is akin to an assembly line for manufacture of cars.
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Pipelining and Superscalar Execution

• Pipelining, however, has several limitations.

• The speed of a pipeline is eventually limited by the slowest
stage.

• For this reason, conventional processors rely on very deep
pipelines (20 stage pipelines in state-of-the-art Pentium
processors).

• However, in typical program traces, every 5-6th instruction
is a conditional jump! This requires very accurate branch
prediction.

• The penalty of a misprediction grows with the depth of the
pipeline, since a larger number of instructions will have to be
flushed.
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Pipelining and Superscalar Execution

• One simple way of alleviating these bottlenecks is to use
multiple pipelines.

• The question then becomes one of selecting these instructions.
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Superscalar Execution: An Example

(i)

(a) Three different code fragments for adding a list of four numbers.

(iii)(ii)

WB: Write−back
NA: No Action

E: Instruction Execute

IF ID ENA

IF ID

OF: Operand Fetch

OF

OF

IF ID OF E

IF ID EOF

IF ID NA WB

Adder Utilization

Clock cycle

5

6

7

4

Vertical waste

Horizontal waste
Full issue slots

Empty issue slots

1. load R1, @1000

2. load R2, @1008

3. add R1, @1004

4. add R2, @100C

5. add R1, R2

6. store R1, @2000

0 2 4
Instruction cycles

6 8

1. load R1, @1000

2. add R1, @1004

3. add R1, @1008

4. add R1, @100C

5. store R1, @2000

1. load R1, @1000

3. load R2, @1008

4. add R2, @100C

5. add R1, R2

6. store R1, @2000

2. add R1, @1004

load R1, @1000

load R2, @1008

add R1, @1004

add R2, @100C

add R1, R2

store R1, @2000

ID: Instruction Decode

IF

IF: Instruction Fetch

ID

(b) Execution schedule for code fragment (i) above.

(c) Hardware utilization trace for schedule in (b).

Example of a two-way superscalar execution of instructions.
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Superscalar Execution: An Example

• In the above example, there is some wastage of resources due
to data dependencies.

• The example also illustrates that different instruction mixes with
identical semantics can take significantly different execution
time.
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Superscalar Execution

Scheduling of instructions is determined by a number of
factors:

• True Data Dependency: The result of one operation is an input
to the next.

• Resource Dependency: Two operations require the same
resource.

• Branch Dependency: Scheduling instructions across conditional
branch statements cannot be done deterministically a-priori.

• The scheduler, a piece of hardware looks at a large number
of instructions in an instruction queue and selects appropriate
number of instructions to execute concurrently based on these
factors.

• The complexity of this hardware is an important constraint on
superscalar processors.
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Superscalar Execution: Issue Mechanisms

• In the simpler model, instructions can be issued only in the order
in which they are encountered. That is, if the second instruction
cannot be issued because it has a data dependency with the
first, only one instruction is issued in the cycle. This is called in-
order issue.

• In a more aggressive model, instructions can be issued out
of order. In this case, if the second instruction has data
dependencies with the first, but the third instruction does not,
the first and third instructions can be co-scheduled. This is also
called dynamic issue.

• Performance of in-order issue is generally limited.
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Superscalar Execution: Efficiency Considerations

• Not all functional units can be kept busy at all times.

• If during a cycle, no functional units are utilized, this is referred
to as vertical waste.

• If during a cycle, only some of the functional units are utilized,
this is referred to as horizontal waste.

• Due to limited parallism in typical instruction traces, dependencies,
or the inability of the scheduler to extract parallelism, the
performance of superscalar processors is eventually limited.

• Conventional microprocessors typically support four-way superscalar
execution.

– Typeset by FoilTEX – 11



Very Long Instruction Word (VLIW) Processors

• The hardware cost and complexity of the superscalar
scheduler is a major consideration in processor design.

• To address this issues, VLIW processors rely on compile time
analysis to identify and bundle together instructions that can
be executed concurrently.

• These instructions are packed and dispatched together, and
thus the name very long instruction word.

• This concept was used with some commercial success in the
Multiflow Trace machine (circa 1984).

• Variants of this concept are employed in the Intel IA64
processors.
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Very Long Instruction Word (VLIW) Processors:
Considerations

• Issue hardware is simpler.

• Compiler has a bigger context from which to select co-
scheduled instructions.

• Compilers, however, do not have runtime information such as
cache misses. Scheduling is, therefore, inherently conservative.

• Branch and memory prediction is more difficult.

• VLIW performance is highly dependent on the compiler. A
number of techniques such as loop unrolling, speculative
execution, branch prediction are critical.

• Typical VLIW processors are limited to 4-way to 8-way
parallelism.
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Limitations of Memory System Performance

• Memory system, and not processor speed, is often the
bottleneck for many applications.

• Memory system performance is largely captured by two
parameters, latency and bandwidth.

• Latency is the time from the issue of a memory request to the
time the data is available at the processor.

• Bandwidth is the rate at which data can be pumped to the
processor by the memory system.
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Memory System Performance: Bandwidth and
Latency

• It is very important to understand the difference between
latency and bandwidth.

• Consider the example of a fire-hose. If the water comes out
of the hose two seconds after the hydrant is turned on, the
latency of the system is two seconds.

• Once the water starts flowing, if the hydrant delivers water at
the rate of 5 gallons/second, the bandwidth of the system is 5
gallons/second.

• If you want immediate response from the hydrant, it is important
to reduce latency.

• If you want to fight big fires, you want high bandwidth.
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Memory Latency: An Example

Consider a processor operating at 1 GHz (1 ns clock)
connected to a DRAM with a latency of 100 ns (no caches).
Assume that the processor has two multiply-add units and is
capable of executing four instructions in each cycle of 1 ns. The
following observations follow:

• The peak processor rating is 4 GFLOPS.

• Since the memory latency is equal to 100 cycles and block
size is one word, every time a memory request is made, the
processor must wait 100 cycles before it can process the data.
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Memory Latency: An Example

On the above architecture, consider the problem of
computing a dot-product of two vectors.

• A dot-product computation performs one multiply-add on
a single pair of vector elements, i.e., each floating point
operation requires one data fetch.

• It follows that the peak speed of this computation is limited to
one floating point operation every 100 ns, or a speed of 10
MFLOPS, a very small fraction of the peak processor rating!
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Improving Effective Memory Latency Using Caches

• Caches are small and fast memory elements between the
processor and DRAM.

• This memory acts as a low-latency high-bandwidth storage.

• If a piece of data is repeatedly used, the effective latency of
this memory system can be reduced by the cache.

• The fraction of data references satisfied by the cache is called
the cache hit ratio of the computation on the system.

• Cache hit ratio achieved by a code on a memory system often
determines its performance.
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Impact of Caches: Example

Consider the architecture from the previous example. In this
case, we introduce a cache of size 32 KB with a latency of 1 ns or
one cycle. We use this setup to multiply two matrices A and B of
dimensions 32 × 32. We have carefully chosen these numbers so
that the cache is large enough to store matrices A and B, as well
as the result matrix C.
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Impact of Caches: Example (continued)

The following observations can be made about the problem:

• Fetching the two matrices into the cache corresponds to
fetching 2K words, which takes approximately 200 µs.

• Multiplying two n × n matrices takes 2n3 operations. For our
problem, this corresponds to 64K operations, which can be
performed in 16K cycles (or 16 µs) at four instructions per cycle.

• The total time for the computation is therefore approximately
the sum of time for load/store operations and the time for the
computation itself, i.e., 200 + 16 µs.

• This corresponds to a peak computation rate of 64K/216 or 303
MFLOPS.
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Impact of Caches

• Repeated references to the same data item correspond to
temporal locality.

• In our example, we had O(n2) data accesses and O(n3)
computation. This asymptotic difference makes the above
example particularly desirable for caches.

• Data reuse is critical for cache performance.
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Impact of Memory Bandwidth

• Memory bandwidth is determined by the bandwidth of the
memory bus as well as the memory units.

• Memory bandwidth can be improved by increasing the size of
memory blocks.

• The underlying system takes l time units (where l is the latency
of the system) to deliver b units of data (where b is the block
size).
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Impact of Memory Bandwidth: Example

Consider the same setup as before, except in this case, the
block size is 4 words instead of 1 word. We repeat the dot-product
computation in this scenario:

• Assuming that the vectors are laid out linearly in memory, eight
FLOPs (four multiply-adds) can be performed in 200 cycles.

• This is because a single memory access fetches four
consecutive words in the vector.

• Therefore, two accesses can fetch four elements of each of
the vectors. This corresponds to a FLOP every 25 ns, for a peak
speed of 40 MFLOPS.
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Impact of Memory Bandwidth

• It is important to note that increasing block size does not
change latency of the system.

• Physically, the scenario illustrated here can be viewed as a
wide data bus (4 words or 128 bits) connected to multiple
memory banks.

• In practice, such wide buses are expensive to construct.

• In a more practical system, consecutive words are sent on the
memory bus on subsequent bus cycles after the first word is
retrieved.
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Impact of Memory Bandwidth

• The above examples clearly illustrate how increased bandwidth
results in higher peak computation rates.

• The data layouts were assumed to be such that consecutive
data words in memory were used by successive instructions
(spatial locality of reference).

• If we take a data-layout centric view, computations must be
reordered to enhance spatial locality of reference.
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Impact of Memory Bandwidth: Example

Consider the following code fragment:

for (i = 0; i < 1000; i++)
column_sum[i] = 0.0;
for (j = 0; j < 1000; j++)

column_sum[i] += b[j][i];

The code fragment sums columns of the matrix b into a vector
column_sum.

– Typeset by FoilTEX – 26



Impact of Memory Bandwidth: Example

• The vector column_sum is small and easily fits into the cache

• The matrix b is accessed in a column order.

• The strided access results in very poor performance.

(a) Column major data access

A b A

=

b A b A b

+ + +

(b) Row major data access.

A b A b A b A b

= = = =

Multiplying a matrix with a vector: (a) multiplying
column-by-column, keeping a running sum; (b) computing each
element of the result as a dot product of a row of the matrix with

the vector.
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Impact of Memory Bandwidth: Example

We can fix the above code as follows:

for (i = 0; i < 1000; i++)
column_sum[i] = 0.0;

for (j = 0; j < 1000; j++)
for (i = 0; i < 1000; i++)

column_sum[i] += b[j][i];

In this case, the matrix is traversed in a row-order and
performance can be expected to be significantly better.
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Memory System Performance: Summary

The series of examples presented in this section illustrate the
following concepts:

• Exploiting spatial and temporal locality in applications is
critical for amortizing memory latency and increasing effective
memory bandwidth.

• The ratio of the number of operations to number of memory
accesses is a good indicator of anticipated tolerance to
memory bandwidth.

• Memory layouts and organizing computation appropriately
can make a significant impact on the spatial and temporal
locality.
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Alternate Approaches for Hiding Memory Latency

Consider the problem of browsing the web on a very slow
network connection. We deal with the problem in one of three
possible ways:

• we anticipate which pages we are going to browse ahead of
time and issue requests for them in advance;

• we open multiple browsers and access different pages in each
browser, thus while we are waiting for one page to load, we
could be reading others; or

• we access a whole bunch of pages in one go – amortizing the
latency across various accesses.

The first approach is called prefetching, the second multithreading,
and the third one corresponds to spatial locality in accessing
memory words.
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Multithreading for Latency Hiding

A thread is a single stream of control in the flow of a program.
We illustrate threads with a simple example:

for (i = 0; i < n; i++)
c[i] = dot_product(get_row(a, i), b);

Each dot-product is independent of the other, and therefore
represents a concurrent unit of execution. We can safely rewrite
the above code segment as:

for (i = 0; i < n; i++)
c[i] = create_thread(dot_product, get_row(a, i), b);
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Multithreading for Latency Hiding: Example

• In the code, the first instance of this function accesses a pair of
vector elements and waits for them.

• In the meantime, the second instance of this function can
access two other vector elements in the next cycle, and so
on.

• After l units of time, where l is the latency of the memory
system, the first function instance gets the requested data from
memory and can perform the required computation.

• In the next cycle, the data items for the next function instance
arrive, and so on. In this way, in every clock cycle, we can
perform a computation.
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Multithreading for Latency Hiding

• The execution schedule in the previous example is predicated
upon two assumptions: the memory system is capable of
servicing multiple outstanding requests, and the processor is
capable of switching threads at every cycle.

• It also requires the program to have an explicit specification of
concurrency in the form of threads.

• Machines such as the HEP and Tera rely on multithreaded
processors that can switch the context of execution in every
cycle. Consequently, they are able to hide latency effectively.
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Prefetching for Latency Hiding

• Misses on loads cause programs to stall.

• Why not advance the loads so that by the time the data is
actually needed, it is already there!

• The only drawback is that you might need more space to store
advanced loads.

• However, if the advanced loads are overwritten, we are no
worse than before!
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Tradeoffs of Multithreading and Prefetching

Multithreading and prefetching are critically impacted by the
memory bandwidth. Consider the following example:

Consider a computation running on a machine with a 1 GHz
clock, 4-word cache line, single cycle access to the cache, and
100 ns latency to DRAM. The computation has a cache hit ratio
at 1 KB of 25% and at 32 KB of 90%. Consider two cases: first, a
single threaded execution in which the entire cache is available
to the serial context, and second, a multithreaded execution with
32 threads where each thread has a cache residency of 1 KB.

If the computation makes one data request in every cycle of
1 ns, you may notice that the first scenario requires 400MB/s of
memory bandwidth and the second, 3GB/s.
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Tradeoffs of Multithreading and Prefetching

• Bandwidth requirements of a multithreaded system may
increase very significantly because of the smaller cache
residency of each thread.

• Multithreaded systems become bandwidth bound instead of
latency bound.

• Multithreading and prefetching only address the latency
problem and may often exacerbate the bandwidth problem.

• Multithreading and prefetching also require significantly more
hardware resources in the form of storage.
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Explicitly Parallel Platforms
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Dichotomy of Parallel Computing Platforms

• An explicitly parallel program must specify concurrency and
interaction between concurrent subtasks.

• The former is sometimes also referred to as the control structure
and the latter as the communication model.
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Control Structure of Parallel Programs

• Parallelism can be expressed at various levels of granularity –
from instruction level to processes.

• Between these extremes exist a range of models, along with
corresponding architectural support.
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Control Structure of Parallel Programs

• Processing units in parallel computers either operate under
the centralized control of a single control unit or work
independently.

• If there is a single control unit that dispatches the same
instruction to various processors (that work on different data),
the model is referred to as single instruction stream, multiple
data stream (SIMD).

• If each processor has its own control control unit, each
processor can execute different instructions on different data
items. This model is called multiple instruction stream, multiple
data stream (MIMD).
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SIMD and MIMD Processors

(a) (b)
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A typical SIMD architecture (a) and a typical MIMD architecture
(b).
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SIMD Processors

• Some of the earliest parallel computers such as the Illiac IV,
MPP, DAP, CM-2, and MasPar MP-1 belonged to this class of
machines.

• Variants of this concept have found use in co-processing units
such as the MMX units in Intel processors and DSP chips such as
the Sharc.

• SIMD relies on the regular structure of computations (such as
those in image processing).

• It is often necessary to selectively turn off operations on certain
data items. For this reason, most SIMD programming paradigms
allow for an “activity mask”, which determines if a processor
should participate in a computation or not.
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Conditional Execution in SIMD Processors

Idle

Idle

(b)

Step 2

(a)

Idle

Step 1

Initial values

Idle

C

B

0

A

B

C 0

A

B

C0

A

B

A

0

else

C

Processor 0 Processor 1 Processor 2

5

0

4

2

1

1

0

0

A

B

C 0

A

B

C

A

B

C 0

A

B

C5 0

C = A/B;

C = A;

if (B == 0)

Processor 3

Processor 0 Processor 1 Processor 2 Processor 3

5

0

4

2

1

1

0

0

Processor 0 Processor 1 Processor 2 Processor 3

5

0

4

2

1

1

0

0

0

A

B

C

A

B

C

A

B

C

A

B

C 5 12

Executing a conditional statement on an SIMD computer with
four processors: (a) the conditional statement; (b) the execution

of the statement in two steps.
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MIMD Processors

• In contrast to SIMD processors, MIMD processors can execute
different programs on different processors.

• A variant of this, called single program multiple data streams
(SPMD) executes the same program on different processors.

• It is easy to see that SPMD and MIMD are closely related in
terms of programming flexibility and underlying architectural
support.

• Examples of such platforms include current generation Sun
Ultra Servers, SGI Origin Servers, multiprocessor PCs, workstation
clusters, and the IBM SP.
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SIMD-MIMD Comparison

• SIMD computers require less hardware than MIMD computers
(single control unit).

• However, since SIMD processors ae specially designed, they
tend to be expensive and have long design cycles.

• Not all applications are naturally suited to SIMD processors.

• In contrast, platforms supporting the SPMD paradigm can be
built from inexpensive off-the-shelf components with relatively
little effort in a short amount of time.

– Typeset by FoilTEX – 45



Communication Model of Parallel Platforms

• There are two primary forms of data exchange between
parallel tasks – accessing a shared data space and
exchanging messages.

• Platforms that provide a shared data space are called shared-
address-space machines or multiprocessors.

• Platforms that support messaging are also called message
passing platforms or multicomputers.

– Typeset by FoilTEX – 46



Shared-Address-Space Platforms

• Part (or all) of the memory is accessible to all processors.

• Processors interact by modifying data objects stored in this
shared-address-space.

• If the time taken by a processor to access any memory
word in the system global or local is identical, the platform
is classified as a uniform memory access (UMA), else, a non-
uniform memory access (NUMA) machine.
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NUMA and UMA Shared-Address-Space Platforms
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Typical shared-address-space architectures: (a)
Uniform-memory-access shared-address-space computer; (b)
Uniform-memory-access shared-address-space computer with

caches and memories; (c) Non-uniform-memory-access
shared-address-space computer with local memory only.
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NUMA and UMA Shared-Address-Space Platforms

• The distinction between NUMA and UMA platforms is important
from the point of view of algorithm design. NUMA machines
require locality from underlying algorithms for performance.

• Programming these platforms is easier since reads and writes
are implicitly visible to other processors.

• However, read-write data to shared data must be coordinated
(this will be discussed in greater detail when we talk about
threads programming).

• Caches in such machines require coordinated access to
multiple copies. This leads to the cache coherence problem.

• A weaker model of these machines provides an address map,
but not coordinated access. These models are called non
cache coherent shared address space machines.
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Shared-Address-Space vs. Shared Memory Machines

• It is important to note the difference between the terms shared
address space and shared memory.

• We refer to the former as a programming abstraction and to
the latter as a physical machine attribute.

• It is possible to provide a shared address space using a
physically distributed memory.
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Message-Passing Platforms

• These platforms comprise of a set of processors and their own
(exclusive) memory.

• Instances of such a view come naturally from clustered
workstations and non-shared-address-space multicomputers.

• These platforms are programmed using (variants of) send and
receive primitives.

• Libraries such as MPI and PVM provide such primitives.
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Message Passing vs. Shared Address Space Platforms

• Message passing requires little hardware support, other than a
network.

• Shared address space platforms can easily emulate message
passing. The reverse is more difficult to do (in an efficient
manner).

– Typeset by FoilTEX – 52



Physical Organization of Parallel Platforms

We begin this discussion with an ideal parallel machine called
Parallel Random Access Machine, or PRAM.
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Architecture of an Ideal Parallel Computer

• A natural extension of the Random Access Machine (RAM)
serial architecture is the Parallel Random Access Machine, or
PRAM.

• PRAMs consist of p processors and a global memory of
unbounded size that is uniformly accessible to all processors.

• Processors share a common clock but may execute different
instructions in each cycle.
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Architecture of an Ideal Parallel Computer

Depending on how simultaneous memory accesses are
handled, PRAMs can be divided into four subclasses.

• Exclusive-read, exclusive-write (EREW) PRAM.

• Concurrent-read, exclusive-write (CREW) PRAM.

• Exclusive-read, concurrent-write (ERCW) PRAM.

• Concurrent-read, concurrent-write (CRCW) PRAM.
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Architecture of an Ideal Parallel Computer

What does concurrent write mean, anyway?

• Common: write only if all values are identical.

• Arbitrary: write the data from a randomly selected processor.

• Priority: follow a predetermined priority order.

• Sum: Write the sum of all data items.

– Typeset by FoilTEX – 56



Physical Complexity of an Ideal Parallel Computer

• Processors and memories are connected via switches.

• Since these switches must operate in O(1) time at the level of
words, for a system of p processors and m words, the switch
complexity is O(mp).

• Clearly, for meaningful values of p and m, a true PRAM is not
realizable.
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Interconnection Networks for Parallel Computers

• Interconnection networks carry data between processors and
to memory.

• Interconnects are made of switches and links (wires, fiber).

• Interconnects are classified as static or dynamic.

• Static networks consist of point-to-point communication links
among processing nodes and are also referred to as direct
networks.

• Dynamic networks are built using switches and communication
links. Dynamic networks are also referred to as indirect
networks.
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Static and Dynamic Interconnection Networks

Static network Indirect network

Switching element
Processing node

Network interface/switch

P

P P P

P

P

PP

Classification of interconnection networks: (a) a static network;
and (b) a dynamic network.
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Interconnection Networks

• Switches map a fixed number of inputs to outputs.

• The total number of ports on a switch is the degree of the
switch.

• The cost of a switch grows as the square of the degree of the
switch, the peripheral hardware linearly as the degree, and the
packaging costs linearly as the number of pins.
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Interconnection Networks: Network Interfaces

• Processors talk to the network via a network interface.

• The network interface may hang off the I/O bus or the memory
bus.

• In a physical sense, this distinguishes a cluster from a tightly
coupled multicomputer.

• The relative speeds of the I/O and memory buses impact the
performance of the network.
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Network Topologies

• A variety of network topologies have been proposed and
implemented.

• These topologies tradeoff performance for cost.

• Commercial machines often implement hybrids of multiple
topologies for reasons of packaging, cost, and available
components.
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Network Topologies: Buses

• Some of the simplest and earliest parallel machines used buses.

• All processors access a common bus for exchanging data.

• The distance between any two nodes is O(1) in a bus. The bus
also provides a convenient broadcast media.

• However, the bandwidth of the shared bus is a major
bottleneck.

• Typical bus based machines are limited to dozens of nodes.
Sun Enterprise servers and Intel Pentium based shared-bus
multiprocessors are examples of such architectures.
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Network Topologies: Buses
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(b)

Address

Processor 1

Bus-based interconnects (a) with no local caches; (b) with local
memory/caches.

Since much of the data accessed by processors is local to the
processor, a local memory can improve the performance of bus-
based machines.
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Network Topologies: Crossbars

A crossbar network uses an p×m grid of switches to connect p
inputs to m outputs in a non-blocking manner.
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A completely non-blocking crossbar network connecting p
processors to b memory banks.
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Network Topologies: Crossbars

• The cost of a crossbar of p processors grows as O(p2).

• This is generally difficult to scale for large values of p.

• Examples of machines that employ crossbars include the Sun
Ultra HPC 10000 and the Fujitsu VPP500.
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Network Topologies: Multistage Networks

• Crossbars have excellent performance scalability but poor cost
scalability.

• Buses have excellent cost scalability, but poor performance
scalability.

• Multistage interconnects strike a compromise between these
extremes.
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Network Topologies: Multistage Networks
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The schematic of a typical multistage interconnection network.
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Network Topologies: Multistage Omega Network

• One of the most commonly used multistage interconnects is
the Omega network.

• This network consists of log p stages, where p is the number of
inputs/outputs.

• At each stage, input i is connected to output j if:

j =

{

2i, 0 ≤ i ≤ p/2 − 1
2i + 1 − p, p/2 ≤ i ≤ p − 1
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Network Topologies: Multistage Omega Network

Each stage of the Omega network implements a perfect
shuffle as follows:
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= left_rotate(111)

A perfect shuffle interconnection for eight inputs and outputs.
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Network Topologies: Multistage Omega Network

• The perfect shuffle patterns are connected using 2×2 switches.

• The switches operate in two modes – crossover or passthrough.

(b)(a)

Two switching configurations of the 2 × 2 switch: (a) Pass-through;
(b) Cross-over.
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Network Topologies: Multistage Omega Network

A complete Omega network with the perfect shuffle
interconnects and switches can now be illustrated:
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000 000
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010

011

100

101

110

111

A complete omega network connecting eight inputs and eight
outputs.

An omega network has p/2 × log p switching nodes, and the
cost of such a network grows as Θ(p log p).

– Typeset by FoilTEX – 72



Network Topologies: Multistage Omega Network –
Routing

• Let s be the binary representation of the source and d be that
of the destination processor.

• The data traverses the link to the first switching node. If the
most significant bits of s and t are the same, then the data is
routed in pass-through mode by the switch else, it switches to
crossover.

• This process is repeated for each of the log p switching stages.

• Note that this is not a non-blocking switch.

– Typeset by FoilTEX – 73



Network Topologies: Multistage Omega Network –
Routing
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An example of blocking in omega network: one of the messages
(010 to 111 or 110 to 100) is blocked at link AB.
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Network Topologies: Completely Connected Network

• Each processor is connected to every other processor.

• The number of links in the network scales as O(p2).

• While the performance scales very well, the hardware
complexity is not realizable for large values of p.

• In this sense, these networks are static counterparts of
crossbars.

– Typeset by FoilTEX – 75



Network Topologies: Completely Connected and Star
Connected Networks

Example of an 8-node completely connected network.

(a) (b)

(a) A completely-connected network of eight nodes; (b) a Star
connected network of nine nodes.
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Network Topologies: Star Connected Network

• Every node is connected only to a common node at the
center.

• Distance between any pair of nodes is O(1). However, the
central node becomes a bottleneck.

• In this sense, star connected networks are static counterparts
of buses.

– Typeset by FoilTEX – 77



Network Topologies: Linear Arrays, Meshes, and k-d
Meshes

• In a linear array, each node has two neighbors, one to its left
and one to its right. If the nodes at either end are connected,
we refer to it as a 1-D torus or a ring.

• A generalization to 2 dimensions has nodes with 4 neighbors, to
the north, south, east, and west.

• A further generalization to d dimensions has nodes with 2d
neighbors.

• A special case of a d-dimensional mesh is a hypercube. Here,
d = log p, where p is the total number of nodes.
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Network Topologies: Linear Arrays

(a) (b)

Linear arrays: (a) with no wraparound links; (b) with wraparound
link.
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Network Topologies: Two- and Three Dimensional
Meshes

(c)(b)(a)

Two and three dimensional meshes: (a) 2-D mesh with no
wraparound; (b) 2-D mesh with wraparound link (2-D torus); and

(c) a 3-D mesh with no wraparound.
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Network Topologies: Hypercubes and their
Construction
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0-D hypercube 1-D hypercube 2-D hypercube 3-D hypercube

4-D hypercube

Construction of hypercubes from hypercubes of lower
dimension.
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Network Topologies: Properties of Hypercubes

• The distance between any two nodes is at most log p.

• Each node has log p neighbors.

• The distance between two nodes is given by the number of bit
positions at which the two nodes differ.

– Typeset by FoilTEX – 82



Network Topologies: Tree-Based Networks

(a) (b)

Processing nodes

Switching nodes

Complete binary tree networks: (a) a static tree network; and
(b) a dynamic tree network.
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Network Topologies: Tree Properties

• The distance between any two nodes is no more than 2 log p.

• Links higher up the tree potentially carry more traffic than those
at the lower levels.

• For this reason, a variant called a fat-tree, fattens the links as
we go up the tree.

• Trees can be laid out in 2D with no wire crossings. This is an
attractive property of trees.
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Network Topologies: Fat Trees

A fat tree network of 16 processing nodes.
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Evaluating Static Interconnection Networks

• Diameter: The distance between the farthest two nodes in the
network. The diameter of a linear array is p − 1, that of a mesh
is 2(

√
p − 1), that of a tree and hypercube is log p, and that of a

completely connected network is O(1).

• Bisection Width: The minimum number of wires you must cut to
divide the network into two equal parts. The bisection width
of a linear array and tree is 1, that of a mesh is

√
p, that of a

hypercube is p/2 and that of a completely connected network
is p2/4.

• Cost: The number of links or switches (whichever is
asymptotically higher) is a meaningful measure of the cost.
However, a number of other factors, such as the ability to lay
out the network, the length of wires, etc., also factor in to the
cost.
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Evaluating Static Interconnection Networks

Bisection Arc Cost
Network Diameter Width Connectivity (No. of links)

Completely-connected 1 p2/4 p − 1 p(p − 1)/2
Star 2 1 1 p − 1
Complete binary tree 2 log((p + 1)/2) 1 1 p − 1
Linear array p − 1 1 1 p − 1
2-D mesh, no wraparound 2(

√
p − 1)

√
p 2 2(p − √

p)
2-D wraparound mesh 2b√p/2c 2

√
p 4 2p

Hypercube log p p/2 log p (p log p)/2

Wraparound k-ary d-cube dbk/2c 2kd−1 2d dp
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Evaluating Dynamic Interconnection Networks

1pt Bisection Arc Cost
Network Diameter Width Connectivity (No. of links)
Crossbar 1 p 1 p2

Omega Network log p p/2 2 p/2

Dynamic Tree 2 log p 1 2 p − 1
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Cache Coherence in Multiprocessor Systems

• Interconnects provide basic mechanisms for data transfer.

• In the case of shared address space machines, additional
hardware is required to coordinate access to data that might
have multiple copies in the network.

• The underlying technique must provide some guarantees on
the semantics.

• This guarantee is generally one of serializability, i.e., there exists
some serial order of instruction execution that corresponds to
the parallel schedule.
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Cache Coherence in Multiprocessor Systems

When the value of a variable is changes, all its copies must
either be invalidated or updated.

(b)

(a)

Invalidate
MemoryMemory

P1P0P1P0

Update
MemoryMemory

P1P0P1P0

load x

write #3, xload xload x

x = 1

x = 1x = 1

x = 1

x = 1x = 1

x = 3

x = 3

x = 3x = 3

x = 1

x = 1

write #3, xload x

Cache coherence in multiprocessor systems: (a) Invalidate
protocol; (b) Update protocol for shared variables.
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Cache Coherence: Update and Invalidate Protocols

• If a processor just reads a value once and does not
need it again, an update protocol may generate significant
overhead.

• If two processors make interleaved test and updates to a
variable, an update protocol is better.

• Both protocols suffer from false sharing overheads (two words
that are not shared, however, they lie on the same cache line).

• Most current machines use invalidate protocols.
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Maintaining Coherence Using Invalidate Protocols

• Each copy of a data item is associated with a state.

• One example of such a set of states is, shared, invalid, or dirty.

• In shared state, there are multiple valid copies of the data item
(and therefore, an invalidate would have to be generated on
an update).

• In dirty state, only one copy exists and therefore, no invalidates
need to be generated.

• In invalid state, the data copy is invalid, therefore, a read
generates a data request (and associated state changes).
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Maintaining Coherence Using Invalidate Protocols

flush

read/write

read write

C_read

read

C_write

write

C_write

Dirty

Shared

Invalid

State diagram of a simple three-state coherence protocol.
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Maintaining Coherence Using Invalidate Protocols
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Example of parallel program execution with the simple
three-state coherence protocol.
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Snoopy Cache Systems

How are invalidates sent to the right processors?

In snoopy caches, there is a broadcast media that listens
to all invalidates and read requests and performs appropriate
coherence operations locally.
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A simple snoopy bus based cache coherence system.
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Performance of Snoopy Caches

• Once copies of data are tagged dirty, all subsequent
operations can be performed locally on the cache without
generating external traffic.

• If a data item is read by a number of processors, it transitions
to the shared state in the cache and all subsequent read
operations become local.

• If processors read and update data at the same time, they
generate coherence requests on the bus – which is ultimately
bandwidth limited.
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Directory Based Systems

• In snoopy caches, each coherence operation is sent to all
processors. This is an inherent limitation.

• Why not send coherence requests to only those processors that
need to be notified?

• This is done using a directory, which maintains a presence
vector for each data item (cache line) along with its global
state.
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Directory Based Systems
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Architecture of typical directory based systems: (a) a centralized
directory; and (b) a distributed directory.
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Performance of Directory Based Schemes

• The need for a broadcast media is replaced by the directory.

• The additional bits to store the directory may add significant
overhead.

• The underlying network must be able to carry all the
coherence requests.

• The directory is a point of contention, therefore, distributed
directory schemes must be used.
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Communication Costs in Parallel Machines

• Along with idling and contention, communication is a major
overhead in parallel programs.

• The cost of communication is dependent on a variety of
features including the programming model semantics, the
network topology, data handling and routing, and associated
software protocols.
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Message Passing Costs in Parallel Computers

The total time to transfer a message over a network comprises
of the following:

• Startup time (ts): Time spent at sending and receiving nodes
(executing the routing algorithm, programming routers, etc.).

• Per-hop time (th): This time is a function of number of hops and
includes factors such as switch latencies, network delays, etc.

• Per-word transfer time (tw): This time includes all overheads that
are determined by the length of the message. This includes
bandwidth of links, error checking and correction, etc.
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Store-and-Forward Routing

• A message traversing multiple hops is completely received at
an intermediate hop before being forwarded to the next hop.

• The total communication cost for a message of size m words to
traverse l communication links is

tcomm = ts + (mtw + th)l. (1)

• In most platforms, th is small and the above expression can be
approximated by

tcomm = ts + mltw.
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Routing Techniques

P0

P3

P2

P1

P3

P1

P2

P3

P2

P0

P1

P0

Time

Time

Time

(a) A single message sent over a
store-and-forward network

(b) The same message broken into two parts

       and sent over the network.

(c) The same message broken into four parts

       and sent over the network.

Passing a message from node P0 to P3 (a) through a
store-and-forward communication network; (b) and (c)

extending the concept to cut-through routing. The shaded
regions represent the time that the message is in transit. The

startup time associated with this message transfer is assumed to
be zero.
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Packet Routing

• Store-and-forward makes poor use of communication resources.

• Packet routing breaks messages into packets and pipelines
them through the network.

• Since packets may take different paths, each packet must
carry routing information, error checking, sequencing, and
other related header information.

• The total communication time for packet routing is approximated
by:

tcomm = ts + thl + twm

• The factor tw accounts for overheads in packet headers.
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Cut-Through Routing

• Takes the concept of packet routing to an extreme by further
dividing messages into basic units called flits.

• Since flits are typically small, the header information must be
minimized.

• This is done by forcing all flits to take the same path, in
sequence.

• A tracer message first programs all intermediate routers. All flits
then take the same route.

• Error checks are performed on the entire message, as opposed
to flits.

• No sequence numbers are needed.
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Cut-Through Routing

• The total communication time for cut-through routing is
approximated by:

tcomm = ts + thl + twm.

• This is identical to packet routing, however, tw is typically much
smaller.
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Simplified Cost Model for Communicating Messages

• The cost of communicating a message between two nodes l
hops away using cut-through routing is given by

tcomm = ts + lth + twm.

• In this expression, th is typically smaller than ts and tw. For this
reason, the second term in the RHS does not show, particularly,
when m is large.

• Furthermore, it is often not possible to control routing and
placement of tasks.

• For these reasons, we can approximate the cost of message
transfer by

tcomm = ts + twm.
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Simplified Cost Model for Communicating Messages

• It is important to note that the original expression for
communication time is valid for only uncongested networks.

• If a link takes multiple messages, the corresponding tw term
must be scaled up by the number of messages.

• Different communication patterns congest different networks
to varying extents.

• It is important to understand and account for this in the
communication time accordingly.
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Cost Models for Shared Address Space Machines

• While the basic messaging cost applies to these machines as
well, a number of other factors make accurate cost modeling
more difficult.

• Memory layout is typically determined by the system.

• Finite cache sizes can result in cache thrashing.

• Overheads associated with invalidate and update operations
are difficult to quantify.

• Spatial locality is difficult to model.

• Prefetching can play a role in reducing the overhead
associated with data access.

• False sharing and contention are difficult to model.
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Routing Mechanisms for Interconnection Networks

How does one compute the route that a message takes from
source to destination?

• Routing must prevent deadlocks – for this reason, we use
dimension-ordered or e-cube routing.

• Routing must avoid hot-spots – for this reason, two-step routing
is often used. In this case, a message from source s to
destination d is first sent to a randomly chosen intermediate
processor i and then forwarded to destination d.
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Routing Mechanisms for Interconnection Networks
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Routing a message from node Ps (010) to node Pd (111) in a
three-dimensional hypercube using E-cube routing.
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Mapping Techniques for Graphs

• Often, we need to embed a known communication pattern
into a given interconnection topology.

• We may have an algorithm designed for one network, which
we are porting to another topology.

For these reasons, it is useful to understand mapping between
graphs.
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Mapping Techniques for Graphs: Metrics

When mapping a graph G(V, E) into G′(V ′, E′), the following
metrics are important:

• The maximum number of edges mapped onto any edge in E ′

is called the congestion of the mapping.

• The maximum number of links in E ′ that any edge in E is
mapped onto is called the dilation of the mapping.

• The ratio of the number of nodes in the set V ′ to that in set V is
called the expansion of the mapping.
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Embedding a Linear Array into a Hypercube

A linear array (or a ring) composed of 2d nodes (labeled
0 through 2d − 1) can be embedded into a d-dimensional
hypercube by mapping node i of the linear array onto node
G(i, d) of the hypercube. The function G(i, x) is defined as follows:

G(0, 1) = 0

G(1, 1) = 1

G(i, x + 1) =

{

G(i, x), i < 2x

2x + G(2x+1 − 1 − i, x), i ≥ 2x

The function G is called the binary reflected Gray code (RGC).

Since adjoining entries (G(i, d) and G(i + 1, d)) differ from each
other at only one bit position, corresponding processors are
mapped to neighbors in a hypercube. Therefore, the congestion,
dilation, and expansion of the mapping are all 1.
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Embedding a Linear Array into a Hypercube: Example

1−bit Gray code 2−bit Gray code 3−bit Gray code 3−D hypercube 8−processor ring
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(a) A three-bit reflected Gray code ring; and (b) its embedding
into a three-dimensional hypercube.
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Embedding a Mesh into a Hypercube

A 2r × 2s wraparound mesh can be mapped to a 2r+s-node
hypercube by mapping node (i, j) of the mesh onto node G(i, r−
1)‖G(j, s − 1) of the hypercube (where ‖ denotes concatenation
of the two Gray codes).
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Embedding a Mesh into a Hypercube
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(a) A 4 × 4 mesh illustrating the mapping of mesh nodes to the
nodes in a four-dimensional hypercube; and (b) a 2 × 4 mesh

embedded into a three-dimensional hypercube.

Once again, the congestion, dilation, and expansion of the
mapping is 1.
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Embedding a Mesh into a Linear Array

• Since a mesh has more edges than a linear array, we will not
have an optimal congestion/dilation mapping.

• We first examine the mapping of a linear array into a mesh and
then invert this mapping.

• This gives us an optimal mapping (in terms of congestion).
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Embedding a Mesh into a Linear Array: Example

(a) Mapping a linear array into a

linear array (congestion 5)
(b) Inverting the mapping − mapping a 2D mesh into a

2D mesh (congestion 1).

(a) Embedding a 16 node linear array into a 2-D mesh; and (b)
the inverse of the mapping. Solid lines correspond to links in the

linear array and normal lines to links in the mesh.
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Embedding a Hypercube into a 2-D Mesh

• Each
√

p node subcube of the hypercube is mapped to a
√

p
node row of the mesh.

• This is done by inverting the linear-array to hypercube mapping.

• This can be shown to be an optimal mapping.
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Embedding a Hypercube into a 2-D Mesh: Example

P = 32(b) 

P = 16(a)

Embedding a hypercube into a 2-D mesh.
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Case Studies: The IBM Blue-Gene Architecture

...

...
.

..

(b) Chip (32 GF)

.

(a) CPU (1GF) (c) Board (2 TF)

(d) Tower (16 TF) (e) Blue Gene (1 PF)

The hierarchical architecture of Blue Gene.
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Case Studies: The Cray T3E Architecture

Router

(a) (b)

P Control

Memory

Interconnection network of the Cray T3E: (a) node architecture;
(b) network topology.
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Case Studies: The SGI Origin 3000 Architecture

1 R-Brick, 4 C-Bricks, and
16 processors at each vertex.

Processor

128 Processor Configuration

(16 processors)R-Brick

To meta-router

To 8 other R-Bricks

C-Brick

To 4 C-Bricks

C-Brick

C-Brick

Metarouter

128 processors

512 Processor Configuration

C-Brick

C-Brick

C-Brick

C-Brick

C-Brick

Crossbar

Memory/
DirectoryC-Brick

I/P/D/X Brick

R-Brick

R-Brick

32 Processor Configuration

Architecture of the SGI Origin 3000 family of servers.
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Case Studies: The Sun HPC Server Architecture

Starfire Ultra 1000 (up to 64 processors)
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Sun Ultra 6000 (6 - 30 processors)
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System Board

System Board

System BoardSystem Board

Architecture of the Sun Enterprise family of servers.
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