Parallel Computing








Final Exam

120 minutes, 100 points

This is an open book, open notes exam. 

Note: Pace yourself! Where necessary, make clearly stated assumptions.

Answer all question clearly and concisely. No points will awarded for answers that are not clear.

1 (3 + 4 + 3 points)

a) In a cut-through routed network with negligible per-hop time, is a fat tree as good as a hypercube in terms of performance? Why?

Yes, because both have identical bisection bandwidth, and the larger diameter does not impact the performance.

3 points for correct justification.

b) Consider an architecture in which a tree connectivity is imposed on each row and each column of a two- dimensional mesh (this is in addition to the mesh links). The internal nodes of the tree are simply switches and the leaf nodes of the tree correspond to processors. Clearly, there are 2xsqrt(p) such trees since there are sqrt(p) rows and sqrt(p) coumns. What is the diameter and bisection width of this network?

The diameter of the network is 2*(log(sqrt(p)) and the bisection width is 2*sqrt(p).

2 points for diameter, 2 points for bisection width.

c) In two-step routing, all messages from processor s to processor d are first routed to a randomly selected processor r and then to d. This is done to alleviate congestion in the network. Between a mesh and a hypercube, which architecture is better suited to 2-step routing? Why?

The hypercube is better since a random permutation requires bisection bandwidth to be linear in the number of processors.

3 points for correct justufucation.

[image: image1.png]




3. (a) (4 points)  The total overhead function of a parallel algorithm is given by To = p log W log p. What is the isoefficiency of the algorithm?

Equating W with T_o, we get W ~  p log W log p. Substituting W on the right hand side with itself and repeating, we get W~ p log^2 P

4 points for correct answer with justification.

(b) (3 points) Compute the runtime for broadcasting a large message as follows:

i)  Break the message into p parts.

ii) Do a one-to-all personalized communication from the source to each of the other processors.

iii) Do an all-to-all broadcast operation.

Time for a one-to-all personalized communication is approximately t_s log p + t_w m.

Time for all to all broadcast is identical.

Total time is 2(t_s log p + t_w m).

1 point for each of the three expressions.

(c) (3 points) The parallel runtime of an algorithm is tcn2/4 + tw(n/p) log p. The serial runtime of the algo​rithm is tcn2. What is the maximum speedup for this parallel algorithm?

Writing down the expression for speedup S and examining the expression as n becomes large or p becomes large, we see that the maximum speedup is 4.

3 points for the correct answer.

4.(5 + 5 points)

 a. Consider the code being executed by two processors:


p = s


p++


lock s_lock


s = p


unlock s_lock

Is it safe? Justify your answer.

No, it is not safe since there is a race between the read and write on variable s.

5 points for correct justification.

b. Consider two threads exchanging variables d1 and d2 with locks l1 and l2 associated with them and local variables temp1 and temp2.

Thread T1: lock l1


temp1 = d1


lock l2


d2 = temp1


unlock l2


unlock l1

Thread T2: lock l2


temp2 = d2


lock l1


d1 = temp2


unlock l1


unlock l2

Is the code safe? Justify.

No, there is a potential deadlock. Thread T1 can get lock on l1 and wait on l2, thread T2 can get lock on l2 and wait on l1.

5 points for correct justification.

5. (5 + 5 points):

Consider the problem of multiplying two n x n matrices. The parallel runtime of an algorithm for this problem is given by n3/p + n2p. If you have a machine that has a constant memory per processor, derive an expression for the speedup of this formulation as a function of p while scaling the problem at the limit of memory.

Constant memory per processor implies that n^2 grows linearly in p.

Substituting this in the expression for speedup, we have S ~ 1/sqrt(p).

3 points for identifying constraint, 2 points for the correct speedup.

Consider the same problem, except, this time, you are given a constraint on the parallel time of the algorithm (i.e., there is a real-time constraint on the runtime). What is the best possible speedup as a function of p in this case (note: you might have to use judicious approximations here).

Constant parallel time indicates that n^3 / p is a constant.

Substituting this in the expression for speedup, we have S ~ 1/p^{2/3}

3 points for identifying constraint, 2 points for the correct speedup.

6. (a) (5 points) Consider the problem of computing the minimum spanning tree of a graph. You are told that the parallel time of a reduction (minimum) on integers is given by p(tc + tw) on p processors (i.e., the time taken to compute the minimum of p numbers, one on each processor is given by p(tc+tw)). What is the parallel runtime of computing MST on such a machine?

There are n iterations in MST. In each iteration, we compute a local minimum of a sublist of size n/p followed by a global min. This is followed by a broadcast of the global min and a local update.

The time for these over n iterations is approximately:

((n/p) t_c + p(t_c + t_w) + (t_s + t_w) log p)

5 points for correct expression.

b) (5 points) You can multiply two dense matrices of size n x n in time O(log n) using n3/log n processors. Using this parallel algorithm, compute the parallel runtime of computing all pairs shortest path based on log n matrix multiplications (with appropriate MIN/ADD substitution for computing shortest paths).

There are log n matrix multiplications, each multiplication can be performed in log n time. Therefore, the parallel runtime is O(log^2 n).

5 points for correct expression.

7. (a) (6 points) Consider the problem of sorting a list of n numbers. Initially, all numbers are at processor 0. The processor computes a pivot and splits the list into two parts. One part is sent to processor p/2 and the other part is retained at processor 0. Each of these processors at the next stage repeats this process until the leaf level processors have n/p elements. These elements are then sorted using serial quicksort. Assume best case pivot selection, what is the parallel runtime of this formulation?

At each step, the partitioning step takes time t_c n (for a list of size n, this size halves down the tree).

One partial list is communicated to another processor in time t_s + t_w n/2 (ideal pivot selection results in half list).

This is repeated log p time after which each processor has a list of size n/p, which it sorts locally.

The total time is the sum of these times, which is approximately,

2t_c n + t_s log p + t_w n + t_c (n/p) log (n/p)

(the last term is the local sort).

2 points for local (final) sort expression, 4 points for the rest.

(b) (4 points) What is the isoefficiency of this formulation?

The serial complexity is n log n. Comparing this complexity to each term in pT_p (with T_p) given above, we have the isoefficiency due to t_c and t_w terms as:

n log n ~ np, or p~log n.

Therefore,

W ~ n log n ~ p2^p.

4 points for the correct expression.

8. (5 + 5 points)

Consider the single-source shortest path algorithm with a 1-D cyclic partitioning of the adjacency matrix (as opposed to a 1-D block mapping). What is the parallel runtime of this formulation?

The time is identical to the block mapping, i.e.,

T_p = t_c n^2/p + n log p.

5 points for correct expression.

What is the serial runtime of the matrix-multiplication based all-pairs shortest path algorithm? If the parallel time for multiplying two n x n matrices on p processors is given by O(n3 /p + n2),  what is the isoefficiency of this formulation (with respect to the optimal serial algorithm).

T_p = (n^3/p + n^2) log n (there are log n total matrix products).

The formulation is not scalable since the isoefficiency does not exist (this can also be inferred from the fact that the algorithm is based on a sub-optimal serial formulation.

3 points for correct expression, 2 points for isoefficiency.

9. (8 + 2 points)

Consider the Global Round Robin and Asynchronous Round Robin strategies when the amount of data that must be transferred to exchange W units of work is log W. What are the isoefficiencies of the two schemes?

T_o = t_{comm} V(p) log W.

For GRR, V(P) = p.


T_o = log W . p . log W.


Equating T_o and W, we have the isoefficiency as W ~ p log^2 p.


However, the contention term still dominates, therefore the total isoefficiency is still


W ~ p^2 log p.

For ARR, V(p) = p^2.


T_o = log W . p^2 log W.


Equating T_o and W, we have the isoefficiency as W ~ p^2 log^2 p.

4 points for each analysis.

Consider a best-first tree search formulation in which the cost of expanding a node is 70 microseconds and the time for a lock-insert-unlock is 30 microseconds. What is the maximum speedup for this formulation?

70/30 , or 2.33

2 points for correct answer.

10. (5 + 5 points):

The longest common sub-sequence problem is analyzed for two sequences of length n. If the two sequences are of length n and m (where m << n), what is the best runtime of the parallel formulation using p processors in a block 1-D partitioning in terms of m and n?

The concurrency is within a diagonal and the size of the diagonal is m (since m is smaller).

Therefore, we partition along the smaller (m) dimension.

The time using a block 1-D mapping is given by:

T_p = t_c nm/p + t_s n + t_w nm.

3 points for analysis, 2 points for expression.

Would this runtime change if you were to partition the table along the other dimension (other, as determined by your answer to the previous part of the question). Justify by analysis.

Yes. In fact, if n/p > m, partitioning along the longer (n) dimension leads to primarily sequential execution, with the time approaching t_c nm.

4 points for observation about serialization if partitioned along longer dimension, 1 point for expression.

Qualifier Questions (60 mins)

1. (7+3 points)

a) We noted that the parallel formulation of the longest-common-subsequence problem has an upper bound of 0.5 on its efficiency. It is possible to use an alternate mapping to achieve higher efficiency for this problem. Derive a formulation that does not suffer from this upper bound, and give the run time of this formulation. 

We can use a cyclic (or block cyclic) mapping. In a cyclic mapping of columns to processors, processing the first p diagonals take time p (t_c + t_s + t_w). Processing the next p diagonals takes time 2p (t_c + t_s + t_w), since some of the processors now compute two entries in the table. Processing the next p diagonals takes time 3p (t_c + t_s + t_w), and so on. The total time is twice the time to process the first n diagonals, which is:

T_p = p (t_c + t_s + t_w) Sum (from i = 1 to n/p) i.

Or

T_p = (t_c + t_s + t_w) n^p / p + (t_c + t_s + t_w) n.

(also see solution to problem 12.3 of the text).

4 points for correct algorithm, 3 points for correct expressions.

b) What is the major drawback of Dijkstra’s parallel all-pairs shortest path algorithm?

It can only use n processors (limited concurrency).

3 points for correct answer.

2.  (8 points) Consider the problem of dynamic load balancing in a p processor system. We have seen that the global round robin scheme worked best in terms of number of messages but suffers from contention overheads. Assume a system in which all processors have access to a single synchronized clock. Assume furthermore that the clock returns a single integer (perhaps the number of seconds since a predefined start point). In a new load balancing scheme, each processor makes a call to the clock function and generates a request for processor (clock() % p) when it becomes idle. What is the iso-efficiency of this scheme in the worst case?

Since work requests arrive after random time intervals, in the worst case, this scheme has the same load balancing characteristics as the random polling scheme. Therefore, its isoefficiency is identical to RP for communication overhead, i.e., p log^2 p. However, if there is contention on the clock, the isoefficiency becomes p^2 log^2p, since the above work requests would have to be processed in time W/p.

5 points for identifying similarity to random polling. 3 points for expressions.

b) (2 points) Comment on the performance of this scheme with respect to the GRR scheme with contention for the counter.

The communication overhead of the above scheme is worse. If there is contention at the clock, this scheme is worse for contention as well.

2 points for correct answer.

3. (8 + 2 points)

Consider the message passing parallel formulation of quicksort on p processors. Assume that you have a pivot selection strategy that guarantees that neither of the two sub-lists of a list of length m are shorter than log m. With this pivot selection strategy, what is the worst-case parallel runtime of sorting n entries on p processors?

After log p steps, the largest list, in the worst case, is approximately of size

(n – log p log n).

Note that this is roughly O(n).

The communication at each step is  t_s + t_w n.

Partitioning the list at each step takes time O(n).

Therefore, the total time is, approximately,

T_p = t_c n log p + t_s log p + t_w n log p + t_c n log n.

The last term is the local sort at the processor with the longest list. Note that this does not yield any speedup!

6 points for first part, 2 points for serial sort expression at the end.

Is the performance of the above quicksort formulation the same on a hypercube as it is on a mesh? If so, justify, if not, why not? (no points without correct reasoning).

No, the data exchange operation is bandwidth sensitive.

2 points for correct justification.







2 (10 points) (2.5 + 2.5 + 2.5 + 2.5 points)


�














For each of the task dependency graphs above, what is:





(i) Maximum degree of concurrency





8 8 8 2





(ii) Critical path length





4 4 7 8





Maximum achievable speedup





15/4 15/4 14/7 15/8





Minimum number of processors for achieving maximum speedup.





8 8 3 2




















