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1 Introduction

Partial di�erential equations are at the foundation of much of computational science. Most
physical phenomena depend in complex ways on space and time. Examples include uid
ow, heat transfer, nuclear and chemical and reactions and population dynamics. Computa-
tional scientists often seek to gain understanding of such phenomena by casting fundamental
principles, such as conservation of mass, momentum and energy in the form of mathematical
models of the underlying physical phenomena. Usually a mathematical model requires more
than one independent variable to characterize the state of the physical system. For exam-
ple, to describe a general uid ow usually requires that the physical variables of interest,
say pressure, density and velocity, be dependent on time and three space variables. If a
mathematical model involves more than one independent and if at least one of the physical
variables of interest is nonconstant with respect to space or time, then the mathematical
model will involve a partial di�erential equation (PDE).

This chapter is not intended to be a complete discussion of partial di�erential equations.
Instead, its aim is to serve as an introduction to a minimal amount of terminology from the
�eld of PDEs, followed by some examples of issues that are likely to confront a computational
scientist. Thus, the emphasis will be placed on

� Notation and Terminology

� Introduction to the Finite Di�erence Method

� Selected Numerical Algorithms for Solving Finite Di�erence Equations

� Performance Programming and Algorithm to Architecture Mapping
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2 Basic De�nitions

In mathematical terms, a partial di�erential equation (PDE) is any equation involving a
function of more than one independent variable and at least one partial derivative of that
function. The order of a PDE is the order of the highest order derivative that appears in
the PDE. The principal part of a PDE is the collection of terms in the PDE containing
derivatives of order equal to the order of the PDE. The following example illustrates these
de�nitions and introduces the two most common notations for expressing partial derivatives.

Example 1 An illustration of a PDE with subscript notation.

If u = u(x; y) is a function of the two independent variables x and y, then

@u

@x
+

@u

@y
+ u = 0 (1)

is a PDE of �rst order whose principal part is

@u

@x
+

@u

@y
: (2)

Using subscript notation a more compact way to express this PDE is

ux + uy + u = 0; (3)

in which case we would say that the principal part is ux + uy.

A PDE in u is classi�ed as linear if all of the terms involving u and any of its deriva-
tives can be expressed as a linear combination in which the coe�cients of the u-terms are
independent of u. In a linear PDE, the coe�cients can depend at most on the independent
variables.

Example 2 An illustration of a linear and a nonlinear PDE.

If u = u(x; y) is a function of the two independent variables x and y, then

uxx + 3uxy + uyy + ux � u = ex�y (4)

is a linear (constant coe�cient) PDE.
The PDE

sin(xy)uxx + 3x2uxy + uyy + ux � u = 0 (5)
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is a linear (variable coe�cient) PDE.
The PDE

uxx + 3uxy + uyy + u2x � u = ex�y (6)

is nonlinear.

The distinction between linear and nonlinear PDEs is extremely important in computa-
tional science. Many linear PDE problems can be solved exactly using techniques such as
separation of variables, superposition, Fourier series, Laplace transform and Fourier trans-
form. Exact solutions are valuable in a computational setting because they can be used to
assist the computational scientist in the often di�cult exercise of code validation. Generally,
nonlinear PDEs do not yield to analytical solution approaches. Since most leading edge work
in computational science involves nonlinear PDEs, a great deal of e�ort is directed toward
obtaining numerical solutions. Whenever possible, computational scientists draw from the
�eld of linear PDEs for guidance and insight in developing numerical methods for the more
di�cult nonlinear PDEs.

3 Classi�cation of Linear PDEs in Two Independent

Variables

In addition to the distinction between linear and nonlinear PDEs, it is important for the
computational scientist to know that there are di�erent classes of PDEs. Just as di�erent
solution techniques are called for in the linear versus the nonlinear case, di�erent numerical
methods are required for the di�erent classes of PDEs, whether the PDE is linear or nonlinear.
The need for this specialization in numerical approach is rooted in the physics from which
the di�erent classes of PDEs arise. By analogy with the conic sections (ellipse, parabola

and hyperbola) partial di�erential equations have been classi�ed as elliptic, parabolic and
hyperbolic. Just as an ellipse is a smooth, rounded object, solutions to elliptic equations tend
to be quite smooth. Elliptic equations generally arise from a physical problem that involves
a di�usion process that has reached equilibrium, a steady state temperature distribution, for
example. The hyperbola is the disconnected conic section. By analogy, hyperbolic equations
are able to support solutions with discontinuities, for example a shock wave. Hyperbolic
PDEs usually arise in connection with mechanical oscillators, such as a vibrating string,
or in convection driven transport problems. Mathematically, parabolic PDEs serve as a
transition from the hyperbolic PDEs to the elliptic PDEs. Physically, parabolic PDEs tend
to arise in time dependent di�usion problems, such as the transient ow of heat in accordance
with Fourier's law of heat conduction.

In the linear PDE of second order in two variables,

auxx + 2buxy + cuyy + dux + euy + fu = g; (7)
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if uxx is formally replaced by �2, uxy by ��, uyy by �2, ux by � and uy by �, then associated
with equation (7) is a polynomial of degree two in � and �

P (�; �) = a�2 + 2b�� + c�2 + d� + e� + j: (8)

The mathematical nature of the solutions of equation (7) are largely determined by the
algebraic properties of the polynomial P (�; �). In turn, the computational strategy that
one selects to numerically solve (7) is strongly inuenced by the mathematical nature of the
solution. Thus, before embarking on a quantitative analysis of a partial di�erential equation
of the form (7), it is important that a computational scientist have an idea of the qualitative
nature of the solution. Much of this qualitative understanding of the solution can be obtained
via the following classi�cation scheme. P(a,b) and along with it, the PDE (7) is classi�ed as
hyperbolic, parabolic, or elliptic according as its discriminant, b2 � ac, is positive, zero, or
negative. Note that the type of equation (7) is determined solely by its principal part (the
terms involving the highest-order derivatives of u) and that the type will generally change
with position in the xy-plane unless a,b, and c are constants.

Example 3 A brief introduction to an elliptic, parabolic, and hyperbolic equations.

Laplace's equation,

uxx + uyy = 0; (9)

is elliptic since the discriminant, b2 � ac = 02 � 1 � 1 = �1, is negative. Laplace's equation
occurs in numerous physically based simulation models and is usually associated with a dif-
fusive or dispersive process in which the state variable, u(x; y) is in an equilibrium condition.
For example, u(x; y) could represent an equilibrium temperature in a two dimensional ther-
modynamic model based on Fick's Law. Of interest to the computational scientist is the fact
that solutions of Laplace's equation, and elliptic equations in general, can support large gra-
dients only in response to external stresses manifested as a source/sink term (g in equation
(7)) or as an abrupt change in type of or value of a boundary condition. Almost invariably
the computational analysis of an elliptic equation reduces to a linear algebra problem of
solving a system of diagonally dominant linear equations. Armed with this knowledge, the
computational scientist has apriori knowledge of the types of algorithms and architectures
that may provide an e�cient numerical solution of an elliptic equation of the form (7).

The di�usion equation,

ut � uxx = 0; (10)

for u(x; t) is parabolic since the discriminant, b2 � ac = 02 � (�1) � (0) = 0. The di�u-
sion equation arises in diverse settings, but most often in connection with a transient ow
problem in which the ow is down gradient of some state variable u. In the setting of heat
ow, the di�usion equation (sometimes called the heat equation) could be used to model a
thermodynamics problem in which transient heat ow is occurring in one space dimension.
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Similar to the elliptic case, parabolic equations generally have very smooth solutions. How-
ever, parabolic equations often exhibit solutions with evolving regions of high gradient. Most
numerical methods for dealing with parabolic equations involve approximating the solution
at successive time steps, with each approximation requiring the solution of a system of linear
equations. For these types of computational problems, it is often useful to employ some
matrix factorization method in conjunction with a dynamic gridding algorithm. Multispace
generalizations of this example problem can be solved e�ciently on vector architectures using
ADI methods or on parallel architectures with some divide and conquer strategies.

The one dimensional wave equation,

uxx � utt = 0; (11)

has discriminant b2 � ac = 02 � (1)(1) = 1 so it is classi�ed as hyperbolic. This type of
equation arises in many �elds ranging from elasticity and acoustics to atmospheric science
and hydraulics. Of interest to the computational scientist is the knowledge that solutions to
linear hyperbolic equations can be only as smooth as their boundary and initial conditions
are. Moreover, any sharp fronts or peaks in the solution are persistent and can reect o� of
boundaries. For a nonlinear hyperbolic PDE, even smooth boundary and initial conditions
can give rise to nonsmooth or even discontinuous solutions. Of the three types of PDEs
discussed in this example, hyperbolic equations are generally the most challenging to the
computational scientist. Since explicit time stepping methods are usually called for to nu-
merically solve hyperbolic PDEs, the computational scientist must be aware of important
algorithm stability issues. Explicit algorithms give excellent performance rates on vector and
SIMD architectures.

4 Equations with n Independent Variables

Many problems encountered in computational science involve several space variables and
possibly a time variable. As indicated in Example 3, it is important for the computational
scientist to be aware of the type of equation under consideration. Although the clear tri-
chotomy of types of section 2 is not maintained in this setting, it is still possible to identify
equations of elliptic, parabolic and hyperbolic types. The remarks of section 2 regarding
algorithms and architectures for problems involving two variables apply equally well to their
n-variable counterparts.

A general linear PDE of order two in n variables has the form

nX
i;j=1

aijuxixj +
nX

i=1

biuxi + cu = d: (12)

If uxixj = uxjxi, then the principal part of equation (12) can always be arranged so that
aij = aji; thus, the n � n matrix A = [aij] can be assumed symmetric. In linear algebra it
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is shown that every real, symmetric n � n matrix has n real eigenvalues. These eigenvalues
are the (possibly repeated) zeros of an nth-degree polynomial in �, det(A � �I), where I
is the n � n identity matrix. Let P denote the number of positive eigenvalues, and Z the
number of zero eigenvalues (i.e., the multiplicity of the eigenvalue zero), of the matrix A.
Then equation (12)is:

hyperbolic if Z = 0 and P = 1 or Z = 0 and P = n� 1

parabolic if Z > 0 (equivalently, if detA = 0)

elliptic if Z = 0 and P = n or Z = 0 and P = 0

ultrahyperbolic if Z = 0 and 1 < P < n� 1

If any of the aij is nonconstant, the type of equation (12) can vary with position.

Example 4 An illustration of the matrix of a PDE.

For the PDE 3ux1x1 + ux2x2 + 4ux2x3 + 4ux3x3 = 0 the matrix A is

2
64 3 0 0
0 1 2
0 2 4

3
75 : (13)

5 Classi�cation Of First Order Systems

In addition to the second order equations of the type discussed in sections 2{3, systems of
�rst order equations are also frequently encountered in computational science.

Example 5 An illustration of systems of �rst order partial di�erential equations.

The current i = i(x; t) and voltage v = v(x; t) at position x and time t in a transmission
line satisfy the �rst order equations

@i

@x
+ C

@v

@t
= �Gv; @v

@x
+ L

@i

@t
= �Ri (14)

where R, L, C and G denote, respectively, resistance, inductance, capacitance and leakage
conductance per unit length of transmission line.
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(b) The �rst order system

(�v)x + �t = 0

vvx + vt = �1

�
Px

vpx + p = �pvx

governs the one dimensional ow of an ideal gas with velocity v = v(x; t), density � = �(x; t)
and pressure p = p(x; t).  is a physical constant determined by the speci�c heat of the gas.

Problems such as these present computational scientists with systems of �rst order partial
di�erential equations. The general quasilinear system of n �rst order partial di�erential
equations in two independent variables has the form

nX
j=1

aij
@uj

@x
+

nX
j=1

bij
@uj

@t
= ci i = 1; 2; : : : ; n ; (15)

where aij , bij and cij may depend on x; t; u1; u2; : : : ; un. If each aij and bij is independent of
u1; u2; : : : ; un, the system (15) is called almost linear. If, in addition, each ci depends linearly
on u1; u2; : : : ; un,

ci =
nX

j=1

rijuj + Si; (16)

with rij and S functions of at most x and t, the system is said to be linear. If ci = 0 for
i = 1; 2; : : : ; n, the system is called homogeneous. If C;G;R and L depend at most on x and
t the transmission line equations are linear. The ideal gas equations are quasilinear.

In terms of the n � n matrices A = [aij] ;B = [bij] and the column vectors u =

[u1; u2; : : : ; un]
T ; c = [c1; c2; : : : ; cn]

T , the system of equations (15) can be written as

Aux +But = c (17)

Example 6 Matrix expression of transmission line equations.

To express the transmission line equations in the matrix notation of equation (17), in-
troduce the notation

u =

"
i
v

#
;A =

"
1 0
0 1

#
;B =

"
0 C
L 0

#
; c =

"
�Gv
�Ri

#
: (18)

In most applications the matrixB is nonsingular. In all that follows we assume this to be
the case; therefore, we take det(B) 6= 0. Associated with the system (11) is a characteristic

polynomial de�ned by
F (�) = det(A� �B): (19)
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Since A and B are n � n matrices and det(B) 6= 0, the polynomial F has degree n.
If F (�) has n distinct real zeros, we classify the �rst order system (17) as hyperbolic.

The system is also called hyperbolic if F (�) has n real zeros and the generalized eigenvalue
problem (A � �B)u = 0 has n linearly independent solutions. If F (�) has no real zeros,
then (17) is called elliptic. If F (�) has n real zeros, but (A � �B)u = 0 does not have n
linearly independent solutions, then the system (11) is classi�ed as parabolic. An exhaustive
classi�cation cannot be carried out when F (�) has both real and complex zeros.

Example 7 An illustration that the transmission line equations are hyperbolic.

To classify the transmission line equations, we de�ne the characteristic polynomial

F (�) = det(A� �B) = det

""
1 0
0 1

#
� �

"
0 C
L 0

##
= 1� CL�2: (20)

Since the parameters C and L are positive, F (�) has the distinct real roots �1 =q
1=(CL); �2 =

q
1=(CL) . This shows that the transmission line equations are hyperbolic.

6 Well Posed PDE Problems

In the previous sections we saw some examples of partial di�erential equations. We now
consider some important issues regarding the formulation and solvability of PDE problems.
A solution to a PDE can be described as simply a function that reduces that PDE to an
identity on some region of the independent variables. In general, a PDE alone, without any
auxiliary boundary or initial conditions, will either have an in�nity of solutions, or have no
solution. Thus, in formulating a PDE problem there are three components: (i) the PDE;
(ii) the region of space-time on which the PDE is required to be satis�ed; (iii) the auxiliary
boundary and initial conditions to be met.

For a PDE based mathematical model of a physical system to give useful results, it is
generally necessary to formulate that model as what mathematicians call a well posed PDE
problem. A PDE problem is said to be well posed if

1. a solution to the problem exists

2. the solution is unique, and

3. the solution depends continuously on the problem data.

(In a PDE problem the problem data consists of the coe�cients in the PDE; the functions
appearing in boundary and initial conditions; and the region on which the PDE is required
to hold.)
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If one of these conditions is not satis�ed, the PDE problem is said to be ill-posed. In
practice, the question of whether a PDE problem is well posed can be di�cult to settle.
Roughly speaking the following guidelines apply:

� The auxiliary conditions imposed must not be too many or a solution will not exist.

� The auxiliary conditions imposed must not be too few or the solution will not be
unique.

� The kind of auxiliary conditions must be correctly matched to the type of the PDE or
the solution will not depend continuously on the data.

More speci�c guidelines can be stated for second order linear PDE problems.

� Well posed elliptic PDE problems usually take the form of a boundary value problem
(BVP) with the PDE required to hold on the interior of some region and the solution
required to satisfy a single boundary condition (BC) at each point on the boundary of
the region. Typical boundary conditions are:

{ Dirichlet BC - the solution value is speci�ed on the boundary

{ Neumann BC - the normal derivative of the solution is speci�ed on the boundary

{ Robin BC - a linear combination of the solution and its normal derivative is
speci�ed on the boundary.

The kind of boundary condition can vary from point to point on the boundary, but
at any given point only one BC can be speci�ed. Physically a Dirichlet BC usually
corresponds to setting the value of a �eld variable, such as temperature; a Neumann
BC usually speci�es a ux condition on the boundary; and a Robin BC typically
represents a radiation condition. When the region on which the PDE problem is posed
is unbounded, one or more of the above boundary conditions is usually replaced by a
growth condition that limits the behavior of the solution "at in�nity".

� Well posed parabolic PDE problems usually involve one or more spatial variables and a
time variable as well. Parabolic PDEmodels often arise in connection with evolutionary
systems in which the ux of some material quantity is "down gradient" with respect to
a �eld variable. Typically, a well posed parabolic problem requires the same boundary
conditions on the spatial variables as in the case of elliptic problems. In addition an
initial condition specifying the state of the system at time t = 0 is required. Thus, a
well posed second order parabolic PDE problem usually takes the form of and initial
boundary value problem (IBVP).

� Well posed, second order, hyperbolic PDE problems also require the same boundary
conditions as elliptic problems. Usually second order, hyperbolic PDE model arise in
connection with physical problems involving wave motion, vibration or oscillation. In
these problems, two initial conditions at time t = 0 are required (one to describe the
initial state of the system and another to describe the initial velocity).
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            uxx + uyy = 0

(0,0)

(a,b)

u(x,0) = x2

u(x,b) = x2 - b2

u(
0,

y)
 =

 -y
2

u(
a,

y)
 =

 a
2  - 

y2

Figure 1: Laplace's equation on the rectangular region 0 < x < a, 0 < y < b subject to the
Dirichlet boundary conditions described in Example 8.

A discussion of the well posedness of PDE problems involving systems of �rst order
equations requires an understanding of the characteristic curves associated with such systems.
Systems of �rst order equations are very important in the �eld of computational science, but
are not dealt with here, since the remainder of this chapter focus on second order PDEs.
To conclude this section, several examples of well posed and ill posed second order PDE
problems are presented.

Example 8 An illustration of Laplace's equation.

Laplace's equation on the rectangular region 0 < x < a; 0 < y < b, subject to the
Dirichlet boundary conditions

u(x; 0) = x2 u(x; b) = x2 � b2

u(0; y) = �y2 u(a; y) = a2 � y2
(21)

is well posed. For the case of these example boundary conditions, one can show that the
unique solution to this BVP is u(x; y) = x2�y2. If any one of the four boundary conditions is
deleted, then the problem becomes ill-posed, because is would then admit multiple solutions.
If a second, independent Dirichlet condition were added on any part of the boundary, the
problem would again be ill-posed, in this case due to lack of existence of a solution. More
generally, if two, independent boundary conditions are imposed on any part of the boundary
of the region, then the problem will fail to have a solution.
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Example 9 An illustration of an elliptic PDE.

To illustrate that boundary value problems, not initial value problems, are the appropriate
setting for elliptic PDE problems, we present the following example due to Hadamard. To
view this problem as an initial value problem, one should think of y as a time variable.
Consider the initial value problem

uxx + uyy = 0 �1 < x <1; y > 0

u(x; 0) = f(x) �1 < x <1
ux(x; 0) = g(x) �1 < x <1

For f = f1(x) = 0 and g = g1(x) = 0, it is clear that the corresponding solution to the above
initial value problem is u1(x; y) = 0. For the case f = f2(x) = 0 and g = g2(x) = n�1 sin(nx),
it is easy to verify that the corresponding solution is

u2(x; y) = n�2 sinh(ny) sin(nx): (22)

Observe that the functions f1 and f2 are identical and that

lim
n!1

jg1(x)� g2(x)j (23)

uniformly in x. Thus, we see that the data of the two problems, f1, g1 and f2, g2, can be
made arbitrarily close. But, if we compare the two solutions at x = �=2, then we obtain

ju1(�
2
; y)� u2(

�

2
; y)j = 1

n2 sinh(ny)
=

eny � e�ny

2n2
: (24)

For y positive, eny approaches in�nity faster than n2, as n goes to in�nity. Therefore, we
conclude that

lim
n!1

ju1(�
2
; y)� u2(

�

2
; y)j =1 (25)

illustrating that as the data for the two problems becomes more alike, the solutions become
increasingly di�erent. This is what is meant by failure of the solution to depend continuously
on the problem data.

Example 10 An illustration of an IBVP for the di�usion equation.

The following IBVP for the di�usion equation in one space variable is an example of a
well posed parabolic PDE problem for u = u(x; t).

ut � �uxx = 0 0 < x < L; t > 0

u(x; 0) = f(x) 0 < x < L

u(0; t) = 0 t > 0

u(L; t) = 0 t > 0
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One physical interpretation of this problem is that u(x; t) is the temperature at position
x and time t in a one dimensional heat conducting medium (say a metal rod, for example)
with thermal di�usivity �. The initial condition, u(x; 0) = f(x), speci�es the temperature
in the rod at the assigned time t = 0. The boundary conditions, u(0; t) = 0 and u(L; t) = 0
state that the ends of the rod are held at temperature zero for all time.

Simple problems such as this make excellent validation tools for the computational sci-
entist. Since the exact solution to this IBVP can be shown (by separation of variables and
Fourier series methods) to be

u(x; t) =
a0
2
+

1X
n=1

ane
�(n�

L
)2 sin

n�x

L
; (26)

where

an =
2

L

Z L

0
f(x) sin

n�x

L
dx: (27)

One can use this exact solution to test the results of a computer code.

Example 11 A classic example of an ill-posed parabolic PDE.

The classic example of an ill-posed parabolic PDE problem is the "backward-in-time heat
equation".

ut � �uxx = 0 0 < x < L; 0 < t < T

u(x; T ) = f(x) 0 < x < L

u(0; t) = 0 0 < t < T

u(L; t) = 0 0 < t < T

Here, if we think of u(x; t) as the temperature in a one dimensional heat conduction rod, the
condition u(x; T ) = f(x) can be thought of as giving the temperature distribution at some
speci�c time t = T . The PDE problem calls for using this information, together with the
heat balance equation and the boundary conditions to predict the temperature distribution
at some earlier time, sat t = 0. It can be shown (see Schaum's Outline of PDE, solved
problem 4.9) that if f(x) is not in�nitely continuously di�erentiable, then no solution to the
problem exists. If f(x) is in�nitely continuously di�erentiable, then it is shown that the
solution on 0 < t < T does not depend continuously on the data, namely f(x).

Example 12 An illustration of a second order hyperbolic PDE problems.

For second order hyperbolic PDE problems, the vibrating string is most frequently used as
an example of a well posed problem. Think of u(x; t) as representing the vertical displacement
at position x and time t of an ideal string which in static equilibrium occupies the horizontal
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            uxx - utt = 0

(0,0)

(1,T)

u(x,0) = 0

u(x,T) =   0

u(
0,

t)
 =

 0

u(
1,

t)
 =

 0

Figure 2: Ill-posed, second order hyperbolic PDE problem described in Example 13.

line joining x = 0 and x = L. Then the following IBVP models the movement of the string
subject to an initial displacement given by f(x) and an initial velocity given by g(x).

utt � c2uxx = 0 0 < x < L; t > 0

u(x; 0) = f(x) 0 < x < L

ut(x; 0) = g(x) 0 < x < L

u(0; t) = 0 t > 0

u(L; t) = 0 t > 0

Example 13 An example of an ill-posed, second order hyperbolic PDE problem.

A dramatic example of an ill-posed, second order hyperbolic PDE problem is given by the
following BVP for the one dimensional wave equation. It can be shown that if T is irrational,
then the only solution of this BVP for the wave equation is u identically zero; whereas if T
is rational, the problem has in�nitely many nontrivial solution. Thus the solution fails to
depend continuously on the data - namely on the size of the region on which the problem is
stated.

7 Exercises

Exercise 1 Describe where the PDE is hyperbolic, parabolic, or elliptic.

Describe the regions where the PDE is hyperbolic (h); parabolic (p) and elliptic (e):
(a) uxx � uxy � 2uyy = 0
(b) 2uxx + 4uxy + 3uyy + 7u = 0
(c) yuxx � 2uxy + exuyy � u = 3
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Exercise 2 Class�cation of the PDE.

Classify the the PDE 3ux1x1 + ux2x2 + 4ux2x3 + 4ux3x3 = 0 with the matrix

A =

2
64 3 0 0
0 1 2
0 2 4

3
75 : (28)

Exercise 3 The formulation of a PDE in regard to your area of specialization.

Formulate a well posed PDE problem that pertains to your area of specialization (e.g.
physics, engineering, atmoshpheric science, etc.) and discuss the physics connected with the
PDE problem.

Exercise 4 The construction of a program to solve an equation, the storage of the data, the

use of some visualization software.

With a = b = 1, write a program to evaluate the solution u(x; y) = x2�y2 on a 400�400
grid of points. Store these solution values in the HDF format of a Scienti�c Data Set (SDS).
Use the visualization package NCSA XImage to display the solution as a two dimensional
raster map.

Exercise 5 The determination of the initial and boundary conditions of the wave equation,

and plotting the results.

A solution to the wave equation uxx�utt = 0 is given by sin(x) sin(t) for 0 < x < p; t > 0.
What are the initial and boundary conditions that this solution obeys. Use the graphics
package xmgr to plot (on the same graph) the solution at times t = 0; �=2; �.

Exercise 6 Plot the solution of the di�usion equation.

The di�usion equation ut � uxx = 0 has solution

u(x; t) =
1p
4�t

e
�x2

4t : (29)

Use xmgr to plot this solution for �5 < x < 5 for t = :1, t = 1:1 and t = 2:1.

Exercise 7 A consideration of practical application leads to Laplace's equation, which re-

duces to an ODE.

Consider the steady state temperature in a circular gun barrel. Assuming radial sym-
metry, and no variation in temperature along the length of the barrel, leads to Laplace's
equation for temperature as a function of the radial distance r from the center of the barrel.
With temperature given by u = u(r) for r1 < r < r2, the Laplace PDE reduces to the ODE
(ru0)0 = 0.


