
ODE Ordinary Di�erential

Equations

Copyright (C) 1991, 1992, 1993, 1994, 1995 by the Computational Science Education Project

This electronic book is copyrighted, and protected by the copyright laws of the United States.
This (and all associated documents in the system) must contain the above copyright notice.
If this electronic book is used anywhere other than the project's original system, CSEP must
be noti�ed in writing (email is acceptable) and the copyright notice must remain intact.

1 Introduction

Historically, di�erential equations have originated in chemistry, physics, and engineering.
More recently they have also arisen in models in medicine, biology, anthropology, and the
like. In this chapter we restrict our attention to ordinary di�erential equations; a discussion
of partial di�erential equations is a much more complicated issue and is given elsewhere in
the book. We focus on initial value problems and present some of the more commonly used
methods for solving such problems numerically. References are given where these methods
have been implemented in quality software that is available on netlib using anonymous ftp.

1.1 Some Elements of the Theory

A di�erential equation is an equation involving an unknown function and one or more of its
derivatives. The equation is an ordinary di�erential equation (ODE) if the unknown function
depends on only one independent variable. Some examples of ODEs follow:

du

dt
= F (t)G(u); the growth equation; (1)

d2�

dt2
+
g

l
sin(�) = F (t); the pendulum equation; (2)

d2y

dt2
+ "(y2 + 1)

dy

dt
+ y = 0; the van der Pol equation; (3)

L
d2Q

dt2
+R

dQ

dt
+
Q

C
= E(t); the LCR oscillator equation; (4)

2

dp

dt
= �2a(t)p+ b(t)2

u(t)
p2 � v(t); a Riccati equation: (5)

In (1{5) t is the independent variable; the dependent variables are u; �; y;Q, and p, respec-
tively.

In what follows we will frequently use the notation _y to represent dy=dt, �y to represent
d2y=dt2, y(3) to represent d3y=dt3, and, in general, y(n) to represent dny=dtn.

The order of a di�erential equation is the order of the highest derivative appearing in the
equation. Equations (2), (3), and (4) are second order equations and (1) and (5) are �rst
order equations.

A solution of a general di�erential equation of the nth order,

f(t; y; _y; : : : ; y(n)) = 0; (6)

is a real-valued function y(t) de�ned over some interval I having the following properties: 1)
y(t) and its �rst n derivatives exist for all t in I, so y(t) and its �rst n� 1 derivatives must
be continuous in I, and 2) y(t) satis�es the di�erential equation for all t in I.

Example 1 Two di�erential equations and their solutions.

a) The function,

y(t) =
3

4
(1 + t2) +

5

1 + t2
;

is a solution to the di�erential equation

1

t
_y +

2

1 + t2
y = 3:

b) The function

y(t) = c1e
�2t + c2e

�3t +
1

2
e2t; �1 < t <1; (7)

where c1 and c2 are arbitrary constants, is a solution to the di�erential equation

�y + 5 _y + 6y = 10e2t:

In this case, y(t) is also referred to as a general solution because all solutions to the di�erential
equation can be represented in this form for appropriate choices of the constants c1 and c2.
The function y(t) = 1

2e
2t is a particular solution because it contains no arbitrary constants.

Introduction 3

With a di�erential equation, we can associate initial conditions or boundary conditions,
auxiliary conditions on the unknown function and its derivatives. If these conditions are
speci�ed at a single value of the independent variable, they are referred to as initial condi-
tions and the combination of the di�erential equation and an appropriate number of initial
conditions is called an initial value problem (IVP). If these conditions are speci�ed at more
than one value of the independent variable, they are referred to as boundary conditions and
the combination of the di�erential equation and the boundary conditions is called a boundary
value problem (BVP).

Example 2 Two examples of IVPs.

a) The logistic equation,

_p = ap� bp2;

with initial condition p(t0) = p0; for p0 = 10 the solution is

p(t) =
10a

10b+ (a� 10b)e�a(t�t0)
:

b) The mass-spring system equation,

�x+ (a=m) _x+ (k=m)x = g + (F (t)=m);

with the initial conditions x(0) = x0, _x(0) = v0; for m = 10, k = 140, a = 90, F (t) = 5 sin(t),
x0 = 0, v0 = �1, the solution is

x(t) =
1

500
(�90e�2t + 99e�7t + 13 sin t� 9 cos t):

Example 3 Two examples of BVPs.

a) The di�erential equation,

�y + 9y = sin t;

with the boundary conditions y(0) = 1, _y(2�) = �1; the solution y(t) = 1
8 sin t+cos 3t+sin3t.

b) The di�erential equation,

�y + �2y = 0;

with boundary conditions y(0) = 2; y(1) = �2; the solution is y(t) = 2 cos �t+ c sin �t, for c
an arbitrary constant.

4

An nth-order di�erential equation is said to be linear if it can be written in the form

an(t)y
(n) + an�1(t)y

(n�1) + : : :+ a1 _y + a0(t)y = h(t): (8)

A nonlinear di�erential equation is simply one that is not linear. As examples, (4) is linear
while (2), (3), and (5) are nonlinear. Equation (1) is linear when G(u) is a linear function
of u; otherwise, it is nonlinear. Di�erential equations arising from �rst principle models are
generally nonlinear. Nonlinear equations do not usually yield to analytical approaches and
computational methods are called for.

Linear equations constitute a highly important class of di�erential equations in physics
and engineering and are used in idealized models of such phenomena as mechanical vibra-
tions, electrical circuits, planetary motions, etc. An important property of linear equations
is that of superposition: To illustrate the superposition principle, consider the following IVP:

�y = g(t); y(0) = �; _y(0) = �: (9)

The data for this problem are fg(t); �; �g. If y1(t) is a solution with data fg1; �1; �1g, and
y2(t) is a solution with data fg2; �2; �2g, then the principle states that c1y1(t) + c2y2(t) is a
solution for the data fc1g1+ c2g2; c1�1+ c2�2; c1�1+ c2�2g. This idea extends readily to nth
order di�erential equations. In practice, superposition permits us to decompose a problem
with complicated data into simpler parts, to solve each problem separately, and then to
combine these solutions to �nd the solution to the original problem.

Example 4 An illustration of superposition.

To solve the IVP,

�y + 6 _y + 9y = 4e�3t;

y(0) = 1; _y(0) = 0;

we solve the following two problems:

�y + 6 _y + 9y = 0;

y(0) = 1; _y(0) = 0;

a homogeneous equation with the original initial conditions, and

�y + 6 _y + 9y = 4e�3t;

y(0) = 0; _y(0) = 0;

an inhomogeneous equation with zero initial conditions. The solution to the �rst problem is

y1(t) =
1

4
e�3t +

3

4
te�3t;

Introduction 5

and the second is

y2(t) = 2t2e�3t:

So, the solution to the original problem is the sum

y(t) = y1(t) + y2(t) = 1
4
e�3t + 3

4
te�3t + 2t2e�3t:

A solution, y(t), of a di�erential equation is said to be stable if any other solution whose
initial data is su�ciently close to that of y(t) remains in a \tube" enclosing y(t); if the
solution is not stable, it is said to be unstable. If the diameter of the tube approaches zero
as t becomes large, then y(t) is said to be asymptotically stable.

In elementary treatments of di�erential equations it is assumed that the initial value prob-
lem has a unique solution that exists throughout the interval of interest and which can be
obtained by analytical techniques. However, many of the di�erential equations encountered
in practice cannot be solve explicitly, so we are led to methods for obtaining approximations
to solutions. Such solutions are usually called numerical solutions. Matters are also compli-
cated by the fact that solutions can fail to exist over the desired interval of interest. Even
more troublesome are problems with more than one solution.

Example 5 Some examples of di�culties in solving IVPs.

a) The di�erential equation,

_y = et
2

;

does not have a solution that can be expressed in terms of elementary functions.
b) The IVP,

_y = 1 + y2; y(0) = 0;

has the solution y(t) = tan t which exists on the interval 0 � t � 1 but does not exist on the
interval 0 � t � �=2.
c) The IVP,

_y =
q
j1� y2j; y(0) = 1;

does not have a unique solution. In fact, it is not di�cult to show that:
1) y(t) = 1 is a solution on any interval containing t = 0;
2) y(t) = cosh(t) is a solution on any interval 0 � t � b for any b > 0;
3) y(t) = cos(t) is a solution on �� � t � 0 and this is the largest such

interval on which cos(t) is a solution.

6

2 Systems of Di�erential Equations

Suppose we want to solve the system of �rst order ODEs,

_Y = F(t;Y); Y(a) = A: (10)

Here Y and A are n-vectors and F is a nonlinear vector-valued function on R�Rn:

Y =

2
666664

Y1

Y2

: : :

Yn

3
777775 ; A =

2
666664

A1

A2

: : :

An

3
777775 ; F =

2
666664

F1(t; Y1; Y2; : : : ; Yn)

F2(t; Y1; Y2; : : : ; Yn)

� � �
Fn(t; Y1; Y2; : : : ; Yn)

3
777775 : (11)

To insure existence and uniqueness of a solution to (10) and hence establish e�ective numeri-
cal procedures, we require that F(t;Y) and @F=@Y be continuous in the box B : jt�aj � �,
kY �Ak � � where � and � are positive numbers and k k is the vector Euclidean norm. If
kF(t;Y)k � M for all (t;Y) in B and if h is the smaller of � and �=M , then the IVP (10)
has a unique solution for jt� aj � h. Weaker conditions do exist, but these will su�ce for
our purposes. For a more detailed discussion of existence and uniqueness issues, consult any
good text on di�erential equations, such as [1, 2, 3].

Most computer codes for solving IVPs accept problems in the form (10). However,
problems often arise in di�erent forms. For example, one is often interested in solving the
second order equation,

�y = g(t; y; _y); (12)

with initial conditions y(a) = A1, _y(a) = A2. Here there is one unknown function y(t) from
which we can, in principle, obtain _y(t). A new problem can be formed that involves two
unknown quantities, Y1(t) and Y2(t), but which is in the form (10). The idea is to identify
independently y(t) by Y1(t) and _y(t) by Y2(t). Some manipulation then shows that Y1(t) and
Y2(t) satisfy the system,

_Y1 = Y2; (13)

_Y2 = g(t; Y1; Y2); (14)

with

Y1(a) = A1; Y2(a) = A2: (15)

Then y(t) = Y1(t) is the solution of the original problem. This can be put into the form (10)
by de�ning

Y =

2
4 y

_y

3
5 ; F =

2
4 Y2

g(t; Y1; Y2)

3
5 ; A =

2
4 A1

A2

3
5 :

More generally, an nth order equation in one unknown,

Systems of Di�erential Equations 7

y(n) = g(t; y; _y; : : : ; y(n�1)); (16)

y(t0) = A1; _y(t0) = A2; : : : ; y
(n�1) = An;

can be put into the form (10) via

Y =

2
666666664

y

_y

: : :

y(n�2)

y(n�1)

3
777777775
; F =

2
666666664

Y2

Y3

: : :

Yn

g(t; Y1; Y2; : : : ; Yn)

3
777777775
; A =

2
666664

A1

A2

: : :

An

3
777775 :

The general procedure here is to introduce unknowns to handle derivatives up to one less
than the highest appearing in the equation.

Example 6 Conversion of a higher-order system to an equivalent system of �rst order equa-
tions.

Consider the simpli�ed equations of planetary motion,

�r � r(_�) = �K

r2
;

r�� + 2 _� _r = 0;

with the initial conditions r(0) = r0, _r(0) = _r0, �(0) = �0, and _�(0) = _�0. Letting Y1 = r,
Y2 = _r, Y3 = �, and Y4 = _�, we derive the equivalent �rst order system,

_Y1 = Y2;

_Y2 = Y1Y4 � K

Y 2
1

;

_Y3 = Y4;

_Y4 = �2Y4Y2
Y1

;

with initial conditions Y1(0) = r0, Y2(0) = _r0, Y3(0) = �0, and Y4(0) = _�0.
This is the usual way to go from a higher order system to a system of �rst order equations,

but there are many other ways to do it; see Exercise 1.3 and Example 7.

8

Example 7 A nonstandard way to convert a second-order ODE to an equivalent system of
�rst order ODEs.

The following problem arises in the study of nonlinear mechanics:

�y + g(y) _y + y = 0:

The change of variables, Y1 = y; Y2 = _y, yields the system

_Y1 = Y2;
_Y2 = �g(Y1)Y2 � Y1:

However, in many problems the function g(x) is simple in form, but only smooth in pieces.
If we have an analytical expression for an inde�nite integral G(x) of the function g(x), that
is d=dx(G(x)) = g(x), then we note that

�y + g(y(t)) _y(t) + y(t) =
d

dt
[_y(t)G(y(t))] + y(t):

So we use the change of variables suggested by Lienard,

Y1(t) = y(t); Y2(t) = _y(t) +G(y(t));

to get the system

_Y1 = Y2 �G(Y1);
_Y2 = �Y1:

This system has smoother functions than the standard system making it easier to solve
numerically.

See exercise set 1.

2.1 Numerical Solution Methods

We begin with numerical methods for solving a scalar version of (10), i.e., the case for n = 1:

_y = f(t; y); y(a) = A: (17)

The methods we develop for solving (17) can easily be extended to systems of �rst order
di�erential equations and to higher order di�erential equations. The methods are referred to
as discrete variable methods and generate a sequence of approximate values for y(t); y1; y2,
y3; � � � ; at points t1; t2; t3; � � � . No attempt is made to approximate the exact solution, y(t),

Systems of Di�erential Equations 9

over a continuous range of the independent variable t. In our development, we will assume a
constant spacing h between t points. In realistic implementations of these methods, however,
h is chosen to satisfy a user-speci�ed accuracy request. The expression y(ti) will always be
used to denote the solution to (17) at t = ti, and yi will always be used for an approximation
to y(ti).

Errors enter into the numerical solution of IVPs from two sources. The �rst is discretiza-
tion error and depends on the method being used. The second is computational error which
includes such things as roundo� error, the error in evaluating implicit formulas, etc. In
general, roundo� error can be controlled by carrying enough signi�cant �gures in the com-
putation. The control of other computational errors again depends on the method being
used.

There are two measures of discretization error commonly used in discussing the accuracy
of numerical methods for solving IVPs. The �rst is true or global error. For any t = ti+1,
global error is simply the di�erence between the true solution and our numerical approxima-
tion to it:

ei+1 = y(ti+1)� yi+1: (18)

Even though this is the error in which we are usually interested, it is a relatively di�cult
and expensive to estimate. The other measure of error is local error. It is the error incurred
in taking a single step using a numerical method. If we let u(t) be the solution to the IVP,

_u = f(t; u); u(ti) = yi; (19)

then the local error at t = ti+1 is given by

di+1 = u(ti+1)� yi+1: (20)

Most codes for solving IVPs estimate the local error at each step and attempt to adjust h
accordingly. Control of local error controls global error indirectly; this, of course, depends
on the stability of the problem itself. Most problems are at least moderately stable, and the
global error is comparable to the error tolerance. Also, the cost of estimating global error is
twice or more the cost of the integration itself.

Local and global errors at t = ti+1 are illustrated graphically in Figure 1.

2.2 One-Step Methods

A di�erential equation has no \memory". That is, the values of y(t) for t before ti do not
directly a�ect the values of y(t) for t after ti. Some numerical methods have memory, and
some do not. We shall �rst describe a class of methods known as one-step methods. They
have no memory; given yi there is a recipe for yi+1 that depends only on information at ti.

Suppose we want to approximate the solution to (17) on the interval [a; b]. Let the t
points be equally spaced; so for some positive integer n and h = (b � a)=n, ti = a + ih,
i = 0; 1; : : : ; n. If a < b, h is positive and we are integrating forward; if a > b, h is negative

10

A

t = a t = ti t = ti+1

t

yi

y (ti)
y(ti+1)

yi+1

u(ti+1)

l.e.
g.e.

y

●

●

●

●

●

●

Figure 1: Local error (l.e.) and global error (g.e.) at t = ti+1.

and we are integrating backwards. The latter case could occur if we were solving for the
initial point of a solution curve given the terminal point. A general one-step method can
then be written in the form

yi+1 = yi + h�(ti; yi); y0 = y(t0); (21)

where � is a function that characterizes our method. We seek accurate algorithms of the
form (21). By this we mean algorithms for which the true solution, y(t), almost satis�es
(21), i.e.,

y(ti+1) = y(ti) + h�(ti; y(ti)) + h�i (22)

with �i \small." The quantity h�i is called the local (truncation) error of the method. The
method (21) is said to be of order p if for all ti; a � ti � b, and for all su�ciently small h,
there are constants C and p such that

j�ij = Chp: (23)

This can be interpreted as meaning that j�ij goes to zero no slower than Chp. Hereafter,
we shall write terms like this as �i = O(hp). The constant C depends, in general, on the
solution y(t), its derivatives, and the length of the interval over which the solution is to be
found, but is independent of h.

Systems of Di�erential Equations 11

Note that, the order of our method is p even though the order of the local (truncation)
error is p+1, because these errors tend to accumulate as the integration proceeds. The order
of a method may be viewed as a measure of how fast the error in the computed solution
goes to zero at a �xed point t as more and more steps are taken, i.e., as h approaches zero.
Our goal is to �nd functions � that are inexpensive to evaluate, yet of as high order p as
possible. In what follows, di�erent � functions are displayed, giving rise to the Taylor series
methods and the Runge-Kutta methods.

2.2.1 Taylor Series Methods

Perhaps the simplest one-step methods of order p are based on Taylor series expansion of
the solution y(t). If y(p+1)(t) is continuous on [a; b], then Taylor's formula gives

y(ti+1) = y(ti) + h

"
_y(ti) + : : :+ y(p)(ti)

hp�1

p!

#
+ y(p+1)(�i)

hp+1

(p+ 1)!
; (24)

where ti � �i � ti+1. The continuity of y(p+1)(t) implies that it is bounded on [a; b] and so

yp+1(�i)
hp+1

(p + 1)!
= O(hp+1) = hO(hp): (25)

Using the fact that _y = f(t; y), (24) can be written in the form

y(ti+1) = y(ti) + h

"
f(ti; y(ti)) + : : :+ f (p�1)(ti; y(ti))

h(p�1)

p!

#
+ hO(hp); (26)

where the total derivatives of f are de�ned recursively by

f (1)(t; y) = ft(t; y) + fy(t; y)f(t; y);

f (k)(t; y) = f
(k�1)
t (t; y) + f (k�1)y (t; y)f(t; y); k = 2; 3; � � � :

Comparison of (22) and (26) shows that to obtain a method of order p, we can let

�(t; y(ti)) = f(ti; y(ti)) + : : :+ f (p�1)(ti; y(ti))
hp�1

p!
: (27)

This choice leads to a family of methods known as the Taylor series methods, given in the
following algorithm.

Algorithm 2.1 Taylor series algorithm

To obtain an approximate solution of order p to the IVP (17) on [a; b], let h = (b� a)=n
and generate the sequences

yi+1 = yi + h

"
f(ti; yi) + : : :+ f (p�1)(ti; yi)

hp�1

p!

#
;

ti+1 = ti + h; i = 0; 1; : : : ; n� 1; (28)

12

where t0 = a; and y0 = A.

Example 8 The Euler method.

The Taylor method of order p = 1 is known as Euler's method:

yi+1 = yi + hf(ti; yi);

ti+1 = ti + h: (29)

To illustrate it, we approximate the solution to the IVP,

_y = y; y(0) = 1;

at t = 1:0 with step h = 0:25. Here f(t; y) = y, so (29) simpli�es to

yi+1 = yi + 0:25yi;

ti+1 = ti + h:

Starting with t0 = 0:0 and y0 = 1:0, we compute, truncating results to four decimal places:

y1 = y0 + 0:25y0 = (1:0) + (0:25)(1:0) = 1:25;

t1 = t0 + h = 0:0 + (0:25) = 0:25;

y2 = y1 + 0:25y1 = (1:25) + (0:25)(1:25) = 1:5625;

t2 = t1 + h = 0:25 + (0:25) = 0:50;

y3 = (1:5625) + (0:25)(1:5625) = 1:9531;

t3 = t2 + h = 0:50 + (0:25) = 0:75;

y4 = (1:9531) + (0:25)(1:9531) = 2:4414;

t4 = t3 + h = 0:75 + (0:25) = 1:00:

The exact solution is y(t) = et, so y(1) = 2:7183, correct to four decimal places, and the
magnitude of the true or global error in our approximation is jy4 � y(1)j = 0:2768. The
approximate and exact solutions are represented graphically below in Figure 2, where the
approximating values y1; y2; y3, and y4 have been joined by straight line segments.

If we are willing to do more work, we can obtain the results given in Table 1.
We note from the last column of Table 1 that jyn� ej = O(h); in fact, for n � 16, jyn� ej =
1:3h. This is consistent with the fact that Euler's method is of order p = 1.

Systems of Di�erential Equations 13

●

●

●

●

●

0.50 1.25-0.25

1.5

3.0

0.0

y

t

Figure 2: Plot of the Euler solution and exact solution to _y = y, y(0) = 1.

n h = 1=n yn jyn � ej (yn � e)=h

8 0.12500e+00 2.56578 0.15e+00 0.12e+01

16 0.62500e-01 2.63793 0.80e-01 0.13e+01

32 0.31250e-01 2.67699 0.41e-01 0.13e+01

64 0.15625e-01 2.69735 0.21e-01 0.13e+01

128 0.78125e-02 2.70774 0.11e-01 0.13e+01

Table 1: Approximate solution to _y = y, y(0) = 1 at t = 1 for small h using Euler's method.

n h = 1=n yn jyn � ej (yn � e)=h2

4 0.25000e+00 2.69486 0.23e-01 0.37e+00

8 0.12500e+00 2.71184 0.64e-02 0.41e+00

16 0.62500e-01 2.71659 0.17e-02 0.43e+00

32 0.31250e-01 2.71785 0.43e-03 0.44e+00

64 0.15625e-01 2.71817 0.11e-03 0.45e+00

128 0.78125e-02 2.71825 0.27e-04 0.45e+00

Table 2: Approximate solution to _y = y, y(0) = 1 at t = 1 for small h using the Taylor series
algorithm of order 2.

14

If we repeat the above calculations using a Taylor method of order 2, we obtain

yi+1 = yi + h(yi +
h

2
yi);

ti+1 = ti + h;

and the results in Table 2. From Table 2, we see that for n � 16, jyn � ej = 0:45h2.
What would happen if we were to increase the order even more? For p = 3 and p = 4

the formulas become

For p = 3; yi+1 = yi(1 + h +
h2

2
+
h3

6
);

For p = 4; yi+1 = yi(1 + h +
h2

2
+
h3

6
+
h4

24
);

and we obtain using h = 0:25 the results that appear in Table 3. Note that the same order
of accuracy is obtained for p = 4 with h = 0:25 as for p = 2 and h = 7:8125 � 10�3. Of
course, higher total derivatives f (n) are easy to compute for f(t; y) = y.

Taylor series methods can be quite e�ective if the total derivatives of f are not too di�cult
to evaluate. Software packages are available that perform exact di�erentiation, facilitating
their use (ADIFOR, MAPLE, MATHEMATICA, etc.). However, most of today's software
packages for solving IVPs do not employ Taylor series methods.

See exercise set 2.

2.2.2 Runge-Kutta Methods

Runge-Kutta methods are designed to approximate Taylor series methods, but have the
advantage of not requiring explicit evaluations of the derivatives of f(t; y). The basic idea is
to use a linear combination of values of f(t; y) to approximate y(t). This linear combination
is matched up as closely as possibly with a Taylor series for y(t) to obtain methods of the
highest possible order p. Euler's method is an example using one function evaluation.

order y4 jy4 � ej
3 2.71683 0.14e-02

4 2.71821 0.72e-04

Table 3: Approximate solution to _y = y, y(0) = 1 at t = 1 for h = 0:25 using the Taylor
series algorithms of orders 3 and 4.

Systems of Di�erential Equations 15

We illustrate the development of Runge-Kutta formulas by deriving a method using two
evaluations of f(t; y) per step; the technique employed in the derivation extends easily to
the development of all Runge-Kutta type formulas. Given values ti, yi, choose values t̂i, ŷi
and constants �1, �2 so as to match

yi+1 = yi + h
h
�1f(ti; yi) + �2f(t̂i; ŷi)

i
(30)

with the Taylor expansion,

y(ti+1) = yi +

"
f(ti; yi) + f (1)(ti; yi)

h

2
+ f (2)(ti; yi)

h2

6
: : :

#
; (31)

as closely as possible. In what follows all arguments of f and its derivatives will be suppressed
when they are evaluated at (ti; yi). It will also be convenient to express t̂i, ŷi as

t̂i = ti + h�i;

ŷi = yi + �2hf(ti; yi):

So the object is to match

R = �1f + �2f(ti + �1h; yi + �2hf)

= (�1 + �2)f + �2h(�2ffy + �1ft) +
�2h

2

2
(�2

2f
2fyy + 2�1�2ffty + �2

1ftt)

+O(h3) (32)

with the Taylor expansion

T = f +
h

2
f (1) +

h2

6
f (2) +O(h3)

= f +
h

2
(ffy + ft) +

h2

6
(f2fyy + 2ffty + ftt + ftfy + ff2y) +O(h3): (33)

Equating coe�cients of like powers of h in the above expressions for R and T , we are able
to obtain agreement in terms involving h0 and h1:

h0 : � + �2 = 1;

h1 : �2�2 = �2�1 =
1

2
:

If we choose �2 =
, an arbitrary parameter, these equations can be solved exactly to give

�2 =
;

�1 = 1 �
;

�1 = �2 =
1

2

;
 6= 0:

16

Combining all of this gives a one-step method of order p = 2 if
 6= 0 and f is su�ciently
smooth. We state this in the following algorithm.

Algorithm 2.2 Runge-Kutta algorithm of order 2.

To obtain an approximate solution of order p = 2 to the IVP (17), let h = (b� a)=n and
generate the sequences

yi+1 = yi + h

"
(1�
)f(ti; yi) +
f(ti +

h

2

; yi +

h

2

f(ti; yi))

#
;

ti+1 = ti + h; i = 0; 1; : : : ; n� 1; (34)

where
 6= 0, t0 = a, y0 = A.
Euler's method is the special case,
 = 0, and has order 1; the improved Euler method

has
 = 1=2 and the Euler-Cauchy method has
 = 1.

Example 9 An illustration of the Euler-Cauchy method.

Approximate the solution to _y = y2 + 1, y(0) = 0 at t = 0:1; 0:2; : : : ; 1:0 using the Euler-
Cauchy method with h = 0:1. The recurrence relation for yi+1 is

yi+1 = yi + hf(ti +
h

2
; yi +

h

2
f(ti; yi))

= yi + h

"
1 + (yi +

h

2
(1 + y2i))

2

#
;

and the resulting approximations are given in Table 4. The IVP has the solution y(t) = tan t.
The approximate and exact solutions are represented graphically in Figure 3 where the
approximating values yi; i = 0; 1; : : : ; 10 have been joined by straight line segments.

If we increase n and tabulate the solution at t = 1:0, we obtain the results in Table 5,
and we see that the error, jyn � tan(1:0)j � 1:7h2 as h approaches zero.

A basic assumption in the derivation of the family of Runge-Kutta formulas (34) was
that the solution y(t) had three continuous derivatives. What if a formula of order 2 is used
to solve an initial value problem whose solution has only two continuous derivatives, but not
three. Examination of the local truncation error shows that the formula is then of order 1 and
convergence is O(h) and not O(h2). The point here is that higher order procedures can be
used on problems whose solutions are not su�ciently smooth, but their rate of convergence
may be reduced.

Systems of Di�erential Equations 17

ti yi jyi � tan(ti)j
0.0 0.00000 0.00e+00

0.1 0.10025 0.85e-04

0.2 0.20252 0.19e-03

0.3 0.30900 0.33e-03

0.4 0.42224 0.56e-03

0.5 0.54539 0.92e-03

0.6 0.68263 0.15e-03

0.7 0.83977 0.25e-02

0.8 1.02534 0.43e-02

0.9 1.25256 0.76e-02

1.0 1.54327 0.14e-01

Table 4: Approximate solution to _y = y2 + 1, y(0) = 0, using the Euler-Cauchy method.

0.0 0.5 1.0 1.5
t

0.0

0.5

1.0

1.5

2.0

y

Figure 3: Analytical solution y(t) = tan t vs. numerical solution given at t = 0:0; 0:1; : : : ; 1:0,
as in Table 5.

18

n h = 1=n yn jyn � tan(1)j jyn � tan(1)j=h
10 0.10e+00 1.54327 0.14e-01 0.14e+01

100 0.10e-01 1.55724 0.17e-03 0.17e+01

1000 0.10e-02 1.55741 0.17e-03 0.17e+01

Table 5: Approximate solutions to _y = y2 + 1, y(0) = 0 at t = 1 for small h using the
Euler-Cauchy method.

Example 10 An IVP whose solution is not smooth.

A common example of problems whose solutions will not be smooth are those where the
coe�cients have a jump discontinuity at some point in the range of integration. In solving
such problems numerically, integration should not be performed across the discontinuity. For
example, suppose we are solving the problem

�y + y = f(t); 0 � t � 2;

y(0) = 0; _y(0) = 1;

f(t) =

8<
: 1; for 0 � t � 1;

0; for 1 � t � 2:

A good procedure would be to integrate from t = 0 to t = 1 and then from t = 1 to t = 2.
On each subinterval, the di�erential equation has smooth solutions and convergence rates
will be as advertised.

A major limitation of Runge-Kutta formulas is the amount of work required; work is
measured in terms of the number of times the function f is evaluated. For higher order
formulas, the work goes up dramatically; p evaluations per step lead to procedures of order
p for p = 1; 2; 3, and 4, but not for 5; 6 evaluations are required for a formula of order 5, 7
for order 6, 9 for order 7, 11 for order 8, etc. For this reason, fourth order procedures are
quite common. As in the second order case where the parameter
 was arbitrary, there is a
family of fourth order formulas that depend on several parameters. One choice leads to the
so-called classical formulas.

Algorithm 2.3 Classical Runge-Kutta Formulas

To obtain an approximate solution of order p = 4 to the IVP (17) on [a; b], let h = (b�a)=n
and generate the sequences

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4);

ti+1 = ti + h; i = 0; 1; : : : ; n� 1; (35)

Systems of Di�erential Equations 19

where

k1 = f(ti; yi);

k2 = f(ti + h=2; yi + (h=2)k1);

k3 = f(ti + h=2; yi + (h=2)k2);

k4 = f(ti + h; yi + hk3);

and t0 = a, y0 = A.
As we pointed out earlier, the methods developed extend readily to systems of �rst order

IVPs of the form (10). As an illustration, the formulas (35) in the case of an n-dimensional
system become

Yi+1 = Yi +
h

6
(K1 + 2K2 + 2K3 +K4);

ti+1 = ti + h; i = 0; 1; : : : ; n� 1; (36)

where

K1 = F(ti;Yi);

K2 = F(ti +
h

2
;Yi +

h

2
K1);

K3 = F(ti +
h

2
;Yi +

h

2
K2);

K4 = F(ti + h;Yi + hK3):

20

Example 11 Classical Runge-Kutta method applied to a system of IVPs.

Consider the system of �rst order IVPs,

_Y1 = Y2;
_Y2 = Y1 + t;

Y1(0) = 1; Y2(0) = 1;

where, in terms of our previous notation,

Y =

2
4 Y1

Y2

3
5 ; F =

2
4 F1

F2

3
5 =

2
4 Y2

Y1 + t

3
5 ; A =

2
4 1

1

3
5 :

So,

K1 = F(t;Y) =

2
4 Y2

Y1 + t

3
5 ;

which implies that

Y + (h=2)K1 =

2
4 Y1

Y2

3
5+ (h=2)

2
4 Y2

Y1 + t

3
5 =

2
4 Y1 + (h=2)Y2

Y2 + (h=2)(Y1 + t)

3
5 ;

and therefore

K2 = F(t+ (h=2);Y + (h=2)K1) =

2
4 Y2 + (h=2)(Y1 + t)

Y1 + (h=2)Y2 + t+ (h=2)

3
5 ;

etc. At the (i + 1)st step, the values of t; Y1, and Y2 are assumed to be evaluated at the
(ti;Yi).

See exercise set 3.

2.2.3 Some Implementation Issues

A too small value of h means that we are doing unnecessary computation that could lead
to roundo� error (error induced because the arithmetic is not exact); a too large value of h
means that we are probably not meeting the desired accuracy requirements (errors induced
by discretization). Although we will not develop the details here, something can be said
about the qualitative behavior of global error as a function of h for a one-step method of

Systems of Di�erential Equations 21

h

E
rr

or

h

Figure 4: Qualitative behavior of absolute error at a �xed point as a function of the step
size h.

order p. If the error in evaluating �(ti; yi) is "i with j"ij � " for all i and the error in forming
h�(ti; yi) is �i with j�ij � � for all i, then it can be shown that

jy(ti)� yij � jy(t0)� y0jeL(b�a) + eL(b�a)

L

Chp

2
+ "+

�

h

!
; (37)

where C and L are constants depending on y and its derivatives. A graph of (37) has the
qualitative behavior shown in Figure 3.

As we said earlier, most codes estimate local error at each step and attempt to adjust
h accordingly. A widely used procedure for estimating local error follows. Suppose we have
computed approximations of order p and p+1 at ti+1, y

p
i+1 and y

p+1
i+1 respectively. Then using

(20), the local error in the pth order approximation can be written as

di+1 = u(ti+1)� ypi+1 = [u(ti+1)� yp+1i+1] + [yp+1i+1 � ypi+1]: (38)

If h is su�ciently small, the term [u(ti+1) � yp+1i+1] can be neglected and we can use the
computed value [yp+1i+1 � ypi+1] as an estimate of the error in the pth order formula. This sort
of approximation has been validated by extensive numerical experimentation over the years.

2.2.4 The Codes RKSUITE

RKSUITE is an excellent collection of codes based on Runge-Kutta methods for the nu-
merical solution of an IVP for a �rst order system of ODEs and is available in the public

22

domain. It supersedes some very widely used codes written by the authors and their coau-
thors, namely the RKF45 code and its descendant DDERKF in the SLATEC library and
DO2PAF and associated codes in the NAG Fortran library. RKSUITE is written in stan-
dard FORTRAN 77 and is distributed in source form. The advanced algorithms provide
more functionality than is found in earlier codes, including new more e�cient formulas,
interpolation, automatic selection of the initial step size, a sti�ness diagnostic, and global
error assessment. The advanced software design includes a novel interface permitting both
interval- and step-oriented solutions and is highly portable. The documentation includes
detailed instructions for the e�ective use of the codes, a collection of templates illustrating
the use of the codes for common tasks, output from running the templates in a number of
variations, and comprehensive instructions for installing the codes.

RKSUITE implements three Runge-Kutta pairs: (2,3), (4,5), and (7,8). The (4,5) pair,
for example, uses both a 4th and a 5th order approximation to estimate the error in the
4th order formula; using extrapolation, it then produces a formula of order 5. Similarly, the
(2,3) pair produces a formula of order 3 and the (7,8) pair a formula of order 8.

The documentation for RKSUITE provided in RKSUITE.DOC is especially recommended.
It is fairly short, carefully written document, explaining some of the internal workings of the
suit of codes. The reader should pay particular attention to the description of error control
and the e�ect on delivered accuracy. The documentation also contains an excellent set of
references that describe the formulas and algorithms used in RKSUITE; references are also
included that describe the design, implementation and testing of codes based on explicit
Runge-Kutta formulas. The current code was written by R. Brankin (NAG). I. Gladwell
(SMU) and L. Shampine (SMU) [7].

A copy of RKSUITE, together with sample drivers, can be obtained from \netlib" using
anonymous ftp as follows:

� ftp netlib.att.com (login as anonymous and use your e-mail address as password)

� bin (set binary transfer mode)

� cd netlib/ode/rksuite (change to directory containing VODE codes)

� mget * (gets the compressed vode �le)

� quit (exits ftp)

� uncompress *.Z (uncompress �le *)

The �le \templates" contains sample drivers for the codes in rksuite.

For a complete listing of what is available from \netlib", mail netlib @ornl.gov and
type send index in the body of your message. The Internet address \netlib@ornl.gov" refers
to a gateway machine at Oak Ridge National Laboratory in Oak Ridge, Tennessee. This
address should be understood on all major networks.

Systems of Di�erential Equations 23

2.2.5 RKSUITE Example

An important equation of nonlinear mechanics is van der Pol's equation,

�y + "(y2 � 1) _y + y = 0; (39)

for " > 0. For any initial conditions, the solution of this equation converges to a unique
periodic solution, called a stable limit cycle. The code below used RKSUITE to solve this
problem with " = 1, y(0) = 1, _y(0) = 0 for 0 � t � 12. The code is followed by a tabulation
of the solution at t = 1; 2; : : : ; 12 and a plot of the solution in the phase plane: _y vs: y.

To put this problem in a form suitable for RKSUITE, we let Y1 = y, Y2 = _y to obtain
the equivalent system:

_Y1 = Y2;
_Y2 = �"(Y 2

1 � 1)Y2 � Y1;

Y1(0) = 1; Y2(0) = 0:

The system of ODEs is implemented in the subroutine F. The code uses the (4,5) Runge-
Kutta pair.

C Example to illustrate RKSUITE: the van der Pol equation

C

C .. Parameters ..

INTEGER NEQ, LENWRK, METHOD

PARAMETER (NEQ=2,LENWRK=32*NEQ,METHOD=2)

C .. Local Scalars ..

DOUBLE PRECISION HNEXT, HSTART, T, TEND, TINC, TLAST,

& TOL, TSTART, TWANT, WASTE

INTEGER L, NOUT, STPCST, STPSOK, TOTF, UFLAG

LOGICAL ERRASS, MESAGE

C .. Local Arrays ..

DOUBLE PRECISION THRES(NEQ), WORK(LENWRK), Y(NEQ), YMAX(NEQ),

& YP(NEQ), YSTART(NEQ)

C .. External Subroutines ..

EXTERNAL F, SETUP, STAT, UT

C .. Executable Statements ..

C

C Set the initial conditions. Take TEND well past the last

C output point, TLAST. When this is possible, and it usually

C is, it's good practice.

C

TSTART = 0.0D0

24

YSTART(1) = 1.0D0

YSTART(2) = 0.0D0

TLAST = 12.0D0

TEND = TLAST +1.0D0

C

C Initialize output.

C

WRITE (*,'(A,I10)') 'Solution with METHOD = ', METHOD

WRITE (*,'(/A/)') ' t y dy/dt'

WRITE (*,'(1X,F6.3,3X,F9.4,3X,F9.4)') TSTART, YSTART(1),

& YSTART(2)

C

C Set error control parameters.

C

TOL = 5.0D-5

DO 20 L = 1, NEQ

THRES(L) = 1.0D-5

20 CONTINUE

C

C Call the setup routine. Because messages are requested, MESAGE = .TRUE.,

C there is no need later to test values of flags and print out explanations.

C In this variant no error assessment is done, so ERRASS is set .FALSE..

C By setting HSTART to zero, the code is told to find a starting (initial)

C step size automatically .

C

MESAGE = .TRUE.

ERRASS = .FALSE.

HSTART = 0.0D0

CALL SETUP(NEQ,TSTART,YSTART,TEND,TOL,THRES,METHOD,'Usual Task',

& ERRASS,HSTART,WORK,LENWRK,MESAGE)

C

C Compute answers at NOUT equally spaced output points. It is good

C practice to code the calculation of TWANT so that the last value

C is exactly TLAST.

C

NOUT = 12

TINC = (TLAST-TSTART)/NOUT

C

DO 40 L = 1, NOUT

TWANT = TLAST + (L-NOUT)*TINC

CALL UT(F,TWANT,T,Y,YP,YMAX,WORK,UFLAG)

C

Systems of Di�erential Equations 25

IF (UFLAG.GT.2) GO TO 60

C

C Success. T = TWANT. Output computed and true solution components.

C

WRITE (*,'(1X,F6.3,3X,F9.4,3X,F9.4)') T, Y(1), Y(2)

40 CONTINUE

C

C The integration is complete or has failed in a way reported in a

C message to the standard output channel.

C

60 CONTINUE

C

C YMAX(L) is the largest magnitude computed for the solution component

C Y(L) in the course of the integration from TSTART to the last T. It

C is used to decide whether THRES(L) is reasonable and to select a new

C THRES(L) if it is not.

C

WRITE (*,'(A/)') ' YMAX(L) '

DO 80 L = 1, NEQ

WRITE (*,'(13X,1PE8.2)') YMAX(L)

80 CONTINUE

C

C The subroutine STAT is used to obtain some information about the progress

C of the integration. TOTF is the total number of calls to F made so far

C in the integration; it is a machine-independent measure of work. At present

C the integration is finished, so the value printed out refers to the overall

C cost of the integration.

C

CALL STAT(TOTF,STPCST,WASTE,STPSOK,HNEXT)

WRITE (*,'(/A,I10)')

& ' The cost of the integration in evaluations of F is', TOTF

C

STOP

END

C

SUBROUTINE F(T,Y,YP)

C .. Scalar Arguments ..

DOUBLE PRECISION T, EPS

PARAMETER (EPS=1.0D0)

C .. Array Arguments ..

DOUBLE PRECISION Y(*), YP(*)

C .. Executable Statements ..

26

YP(1) = Y(2)

YP(2) = - EPS * (Y(1)**2 - 1.0D0) * Y(2) -Y(1)

RETURN

END

t y dy/dt

.000 1.0000 .0000

1.000 .4976 -1.0442

2.000 -1.1962 -1.8675

3.000 -1.7280 .4147

4.000 -.9569 1.1587

5.000 .9870 2.6183

6.000 1.9549 -.3356

7.000 1.3093 -.9156

8.000 -.1653 -2.3296

9.000 -2.0004 -.1947

10.000 -1.5820 .7342

11.000 -.4910 1.6547

12.000 1.7471 1.4651

YMAX(L)

2.00E+00

2.67E+00

See exercise set 4.

2.3 Multi-Step Methods

The Taylor Series and explicit Runge-Kutta methods that we have discussed so far have no
memory: the value of y(t) for t before ti do not directly a�ect the values of y(t) for t after
ti. Other methods take advantage of previously computed solution values and are referred
to as multistep methods. The Adam's formulas for non-sti� problems and the Backward
Di�erentiation Formulas for sti� problems furnish important and widely-used examples of
multi-step methods.

Systems of Di�erential Equations 27

y

y●

–3 –2 –1 0 1 2 3
–4

–2

0

2

4

Figure 5: The van der Pol equation: �y + (y2 � 1) _y + y = 0, where y(0) = 1 and _y(0) = 0.

2.3.1 The Adams-Bashforth and Adams-Moulton Formulas

On reaching a mesh point ti with approximate solution yi �= y(ti), there are (usually) available
approximate solutions yi+1�j �= y(ti+1�j) for j = 2; 3; : : : ; p. From the di�erential equation
itself, approximations to the derivatives _y(ti+1�j) can be obtained from

_yi+1�j = f(ti+1�j ; y(ti+1�j)) �= f(ti+1�j ; yi+1�j) = fi+1�j : (40)

This information can be exploited for solution values prior to the current point ti by using
the integrated form of the di�erential equation:

y(ti+1) = y(ti) +
Z ti+1

ti
_y(t)dt = y(ti) +

Z ti+1

ti
f(t; y(t))dt: (41)

The Adams Bashforth formula of order p is obtained by integrating the polynomial P (t) that
interpolates fi+1�j at ti+1�j for j = 1; 2; : : : ; p, in place of f :

yi+1 = yi + h
pX

j=1

�p;jfi+1�j : (42)

Formula (42) involves only one evaluation of f per step. An attractive feature of the ap-
proach is the underlying polynomial approximation P (t) to _y(t) because it can be used to

28

approximate y(t) between mesh points:

y(t) �= yi +
Z t

ti
P (t)dt: (43)

The lowest order Adams-Bashforth formula arises from interpolating the single value
fi = f(ti; yi) by P (t). The interpolating polynomial is constant so its integration from ti to
ti+1 results in hf(ti; yi) and the �rst order Adams-Bashforth formula (AB1):

yi+1 = yi + hf(ti; yi): (44)

This is just the familiar forward Euler formula. For constant step size h, the second order
Adams-Bashforth formula (AB2) is also easily found to be

yi+1 = yi + h[(3=2)f(ti; yi)� (1=2)f(ti�1; yi�1)]: (45)

The implicit Adams-Moulton formulas arises when the polynomial P (t) interpolates
fi+1�j for j = 0; 1; : : : ; p � 1:

yi+1 = yi + h
p�1X
j=1

�̂p;jfi+1�j : (46)

When j = p�1, the right hand side contains the term fi+1 = f(ti+1; yi+1), and we see that yi+1
is de�ned only implicitly by this formula. The solution is accomplished by �rst \predicting"
the result using the explicit Adams-Bashforth formula (42), and then \correcting" it using
the implicit formula (46); we then proceed by \simple" or \functional" iteration. If L is a
bound on j@f=@yj and the step size h is small enough so that for some constant �,

jh�̂k;0jL � � < 1;

then (46) has a unique solution yi+1 and the error is decreased by a factor of � at each
iteration. For \small" step sizes h, the iteration converges very quickly.

Note that for a formula of order p, both the Adams-Bashforth and Adams-Moulton
formulas interpolate the function f on p t-points. The t-points overlap and are illustrated
graphically below in Figure 7.

The lowest order Adams-Moulton formula involves interpolating the single value fi+1 =
f(xi+1; yi+1) and an easy calculation leads to the formula

yi+1 = yi + hf(ti+1; yi+1); (47)

which de�nes yi+1 implicitly. The resulting formula is called the backward Euler formula.
From its de�nition it is clear that it has the same accuracy as the forward Euler method;
its advantage is vastly superior stability. The second order Adams-Moulton method also

Systems of Di�erential Equations 29

● ●

●

●ti+1-p ti+1-(p-1) ti+1-2 ti+1-1 ti+1- 0

● ● ● ●

Adams-Moulton

Adams-Bashforth

= ti+2-p = t i-1 = t i = t i+1

Figure 6: t-points at which order p Adams-Bashforth and Adams-Moulton formulas inter-
polate f.

does not use previously computed solution values; it is called the trapezoidal rule because it
generalizes the trapezoidal rule for integrals to di�erential equations:

yi+1 = yi +
h

2
[f(ti+1; yi+1) + f(ti; yi)] : (48)

The third order formula is more typical because it does involve a previously computed value.
When the step size is a constant h, it is

yi+1 = yi + h [(5=12)f(ti+1; yi+1) + (8=12)f(ti; yi)� (1=12)f(ti�1; yi�1)] : (49)

The Adams-Moulton formula of order p is more accurate than the Adams-Bashforth formula
of the same order, so that it can use a larger step size; the Adams-Moulton formula is also
more stable. A modern code based on such methods is more complex than a Runge-Kutta
code because it must cope with the di�culties of starting the integration and changing the
step size. With enough \memorized" values, however, we can use whatever order formula we
wish in the step from ti. Modern Adams codes attempt to select the most e�cient formula
at each step as well as to choose an optimal step size h to achieve a user-speci�ed accuracy.

Some general rules-of-thumb about how to choose between Runge-Kutta methods and
Adams methods for solving nonsti� problems are given below:

� Generally, Adams methods are superior if output at many points is needed.

� If function evaluations are expensive, Adams methods are preferred.

� If function evaluations are inexpensive and moderate accuracy is required, Runge-
Kutta methods are generally best.

� If storage is at a premium, Runge-Kutta methods win.

� If accuracy over a wide range of tolerances is needed, the variable order Adams methods
will outperform the �xed order Runge-Kutta methods.

30

Recent developments in Runge-Kutta methods have shifted these boundaries somewhat;
RKSUITE, for example, has an interpolation capability that makes it more e�cient than
the previous generation of Runge-Kutta codes and the (7,8) solution pair is very e�cient at
stringent error tolerances.

An excellent discussion of Adams methods as well as a widely used suite of codes is given
by Shampine and Gordon in [4]. Gear's test [5] presents a variety of methods, and is a
primary source about the solution of sti� problems to be discussed in the next section.

2.3.2 Sti� Problems: Backward Di�erentiation Formulas

A problem is sti� if the numerical solution has its step size limited more severely by the
stability of the numerical technique than by the accuracy of the technique. Frequently, these
problems occur in systems of di�erential equations that involve several components that are
decaying at widely di�ering rates. The reader is encouraged to consult the excellent survey
article [6] by Shampine and Gear, \A User's View of Solving Sti� Ordinary Di�erential
Equations."

A simple scalar example of sti�ness is given by C.W. Gear [5]:

_y = � [y � F (t)] + _F (t); �� 0; (50)

where F (t) is a smooth, slowly varying function. The solution,

y = [y0 � F (0)] e�t + F (t); (51)

has a component [y0 � F (0)] e�t that will be insigni�cant compared to F (t) for t su�ciently
large. The numerical method, however, will always have its step size h limited by the
magnitude of �h for the entire integration.

Example 12 Gear's example.

In Gear's example above, choose F (t) = t. In Table 7 we tabulate the cost of integrating
the IVP,

_y = �(y � t) + 1; 0 � t � 10; y(0) = 1;

using RKSUITE for � = �10;�20;�30;�100. The solution is y(t) = e�t + t. Relative and
absolute error tolerances were taken to be 10�6.

Note that the smaller the solution component e�t becomes, the harder RKSUITE works.
Using a code designed speci�cally for sti� problems such as the code VODE presented in the
next section, the number of function evaluations would have been approximately 120 for the
range of �-values considered.

Systems of Di�erential Equations 31

� Number of function

evaluations

-10 339

-20 583

-30 849

-100 2528

Table 6: Solution of a sti� IVP using RKSUITE.

A class of multi-step formulas which are highly e�ective in solving sti� problems are
based on numerical di�erentiation. Again, we start by interpolating the previously computed
solution values yi; yi�1; : : : ; yi�p as well as the new one yi+1 by a polynomial P (t). The
derivative of the solution at ti+1 is then approximated by _P (ti+1). The approximation is
related to the di�erential equation by insisting that it satisfy the di�erential equation at
ti+1:

_P (ti+1) = f(ti+1; P (ti+1)) = f(ti+1; yi+1):

Substituting for _P (ti+1) in this equation, we obtain the family of backward di�erentiation
formulas, the BDFs:

��0yi+1 + ��1yi + : : :+ ��pyi+1�p = hf(ti+1; yi+1): (52)

These formulas were popularized by Gear, and are sometimes known as Gear's formulas.
They are implicit like the Adams-Moulton formulas, but not as accurate for formulas of the
same order and not stable for orders 7 and up. However, at the orders for which the formulas
are stable, they are much more stable than the Adams-Moulton formulas. The formulas
(52) cannot be evaluated by simple iteration because this restricts the step size just as much
as stability does for much less stable formulas. In practice, a modi�ed Newton iteration
(Linear Algebra Chapter) is used to solve the nonlinear algebraic equations for yi+1; this
requires approximating partial derivatives and solving systems of linear equations.

As with Adams formulas, modern codes based on the BDFs vary the formula (the order
used) as well as the step size. The solution of problems that are quite sti� are completely
impractical with a method intended for non-sti� problems, such as an explicit Runge-Kutta
method or an Adams-Moulton method evaluated by simple iteration

The simplest BDF is when P (t) is the straight line interpolating yi+1 and yi. The deriva-
tive at ti+1 is the constant slope of this line and setting it to f(ti+1; yi+1) results in

yi+1 � yi
h

= f(ti+1; yi+1): (53)

Once again we have derived the backward Euler formula! Although this case results in a
one-step formula, the higher order BDFs do involve previously computed solution values.

32

For example, when the step size is a constant h, the backward di�erentiation formula of
order two is

yi+1 = (4=3)yi � (1=3)yi�1 + h(2=3)f(ti+1; yi+1): (54)

A code providing a highly e�cient implementation of the Adam's formulas and the BDF
formulas is given in the next section.

2.3.3 The Code VODE

VODE is a relatively new initial value ODE solver for sti� and non sti� problems and
was written by P.N. Brown (LLNL), G.D. Byrne (currently at SMU), and A.C. Hindmarsh
(LLNL). It uses variable coe�cient Adams-Moulton and Backward Di�erentiation Formula
(BDF) methods. The initial step size is selected internally and a method of order 1 is used
to start the integration; the order is increased as su�cient data become available. The
setting, MF = 10, is used to request a solution using the Adams method and setting of MF
= 21; 22; 24, or 25 requests the BDF method. A copy of the code may be obtained from
\netlib" as follows:

� ftp netlib.att.com (login as anonymous and use your e-mail address as password)

� bin (set binary transfer mode)

� cd netlib/ode (change to directory containing VODE codes)

� get vode.f.Z (gets the compressed vode �le)

� quit (exits ftp)

� uncompress *.Z (uncompress �le *)

The reader should consult the SIAM article [8] for a discussion of VODE. The article also
contains a couple of interesting test cases and a good set of references for further reading.
The code itself is well documented; leading comments contain a sample driver and details
about the code input and output parameters.

2.3.4 VODE Example

The following IVP due to Robertson (1966) arises in the study of chemical kinetics:

_Y1 = �0:04Y1 + 104Y2Y3;
_Y2 = 0:04Y1 � 104Y2Y3 � 3 � 107Y 2

2 ;
_Y3 = 3 � 107Y 2

2 ;

Y1(0) = 1; Y2(0) = 0; Y3(0) = 0:

The problem is sti� and the code below uses VODE to solve it on the interval, 0 � t � 4�1010.
For an explanation of the various input parameters, see the prologue to VODE. Since the

Systems of Di�erential Equations 33

solution of a linear system is required in the BDF method, the Jacobian of F must be
available. VODE allows the Jacobian to be supplied by the user (MF = 21 or 24) or to
be generated internally by the code (MF = 22 or 25). It is always preferable to supply the
Jacobian if possible. Since

F =

2
664

�0:04Y1 + 104Y2Y3

0:04Y1 � 104Y2Y3 � 3� 107Y 2
2

3� 107Y 2
2

3
775 ;

the Jacobian is

J = (@Fi=@Yj) =

2
664
�0:04 104Y3 104Y2

0:04 �104Y3 � 6 � 107Y2 �104Y2
0 6 � 107Y2 0

3
775 :

F is implemented in the subroutine FEX and J in the subroutine JEX. We note that although
the Jacobian was not di�cult to calculate here, it can be tedious in many applications;
modern symbolic packages, such as MAPLE, MATHEMATICA, etc. make it easier to supply
J.

The code is followed by two tabulations of the solution at t = 4�10�1, 4�100, 4� 101; : : :,
4�1010: the �rst for a supplied Jacobian (MF=21) and the second for an internally generated
Jacobian (MF=22). Both methods produce acceptably accurate solutions, but more work
is required for the internally-generated Jacobian case. The quantity SUM = Y1 + Y2 + Y3 is
also printed out. Since _Y1(t) + _Y2(t) + _Y3(t) = 0, SUM should have the value \1." Note that
this condition is necessary for accuracy, but not for su�cient. The output is followed by a
combined plot of Y1(t), Y2(t), and Y3(t) vs. t for 0 � t � 4� 1010.

C Example to illustrate VODE: a problem from chemical kinetics

C

C The following code is set up to use VODE to solve the following

C problem:

C

C dy1/dt = -.04*y1 + 1.e4*y2*y3

C dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*y2**2

C dy3/dt = 3.e7*y2**2

C

C on the interval from t = 0.0 to t = 4.e10, with initial conditions

C y1 = 1.0, y2 = y3 = 0. The problem is stiff.

C

C The code uses MF = 21 (the Jacobian is supplied) and the results

C are printed at t = .4, 4., ..., 4.e10. The values ITOL = 2 is

C used, with ATOL much smaller for y2 than y1 or y3 because

34

10
–5

10
0

10
5

10
10

10
15

t

10
–15

10
–10

10
–5

10
0

y’

y1’
y2’
y3’

Figure 7: Output from the VODE solution to Robertson's chemical kinetics problem.

C y2 has much smaller values

C

C At the end of the run, statistical quantities of interest are

C printed. For a complete description of all input and output

C quantities, see the comments in the beginning of the code VODE.

C

EXTERNAL FEX, JEX

DOUBLE PRECISION ATOL, RPAR, RTOL, RWORK, T, TOUT, Y

DIMENSION Y(3), ATOL(3), RWORK(67), IWORK(33)

C

C Set initial conditions and control parameters.

C

NEQ = 3

Y(1) = 1.0D0

Y(2) = 0.0D0

Y(3) = 0.0D0

T = 0.0D0

TOUT = 0.4D0

C

ITASK = 1

ISTATE = 1

Systems of Di�erential Equations 35

IOPT = 0

LRW = 67

LIW = 33

MF = 21

C

C Set error control parameters.

C

ITOL = 2

RTOL = 1.D-4

ATOL(1) = 1.D-8

ATOL(2) = 1.D-14

ATOL(3) = 1.D-6

C

C Initialize output.

C

SUM = Y(1) + Y(2) + Y(3)

WRITE(6,20)T,Y(1),Y(2),Y(3),SUM

20 FORMAT(' t =',1PD10.2,' y =',3D14.6,' sum =',1PD10.2)

C

C Solution.

C

DO 40 IOUT = 1,12

CALL DVODE(FEX,NEQ,Y,T,TOUT,ITOL,RTOL,ATOL,ITASK,ISTATE,

1 IOPT,RWORK,LRW,IWORK,LIW,JEX,MF,RPAR,IPAR)

SUM = Y(1) + Y(2) + Y(3)

WRITE(6,20)T,Y(1),Y(2),Y(3),SUM

IF (ISTATE .LT. 0) GO TO 80

40 TOUT = TOUT*10.

WRITE(6,60) IWORK(11),IWORK(12),IWORK(13),IWORK(19),

1 IWORK(20),IWORK(21),IWORK(22)

60 FORMAT(/' No. steps =',I4,' No. f-s =',I4,

1 ' No. J-s =',I4,' No. LU-s =',I4/

2 ' No. nonlinear iterations =',I4/

3 ' No. nonlinear convergence failures =',I4/

4 ' No. error test failures =',I4/)

STOP

80 WRITE(6,90)ISTATE

90 FORMAT(///' Error halt.. ISTATE =',I3)

STOP

END

C

C

36

SUBROUTINE FEX (NEQ, T, Y, YDOT, RPAR, IPAR)

DOUBLE PRECISION RPAR, T, Y, YDOT

DIMENSION Y(NEQ), YDOT(NEQ)

YDOT(1) = -4.0D-2*Y(1) + 1.0D4*Y(2)*Y(3)

YDOT(3) = 3.0D7*Y(2)*Y(2)

YDOT(2) = -YDOT(1) - YDOT(3)

RETURN

END

C

SUBROUTINE JEX (NEQ, T, Y, ML, MU, PD, NRPD, RPAR, IPAR)

DOUBLE PRECISION PD, RPAR, T, Y

DIMENSION Y(NEQ), PD(NRPD,NEQ)

PD(1,1) = -4.0D-2

PD(1,2) = 1.0D4*Y(3)

PD(1,3) = 1.0D4*Y(2)

PD(2,1) = 4.0D-2

PD(2,3) = -PD(1,3)

PD(3,2) = 6.0D7*Y(2)

PD(2,2) = -PD(1,2) - PD(3,2)

RETURN

END

VODE output for user supplied Jacobian (MF = 21).

t = 0.00D+00 y = 1.000000D+00 0.000000D+00 0.000000D+00 sum = 1.00D+00

t = 4.00D-01 y = 9.851641D-01 3.386242D-05 1.480205D-02 sum = 1.00D+00

t = 4.00D+00 y = 9.055097D-01 2.240338D-05 9.446793D-02 sum = 1.00D+00

t = 4.00D+01 y = 7.157956D-01 9.183493D-06 2.841952D-01 sum = 1.00D+00

t = 4.00D+02 y = 4.505029D-01 3.222678D-06 5.494939D-01 sum = 1.00D+00

t = 4.00D+03 y = 1.831963D-01 8.942025D-07 8.168028D-01 sum = 1.00D+00

t = 4.00D+04 y = 3.899263D-02 1.622200D-07 9.610072D-01 sum = 1.00D+00

t = 4.00D+05 y = 4.936230D-03 1.984192D-08 9.950638D-01 sum = 1.00D+00

t = 4.00D+06 y = 5.169361D-04 2.068797D-09 9.994831D-01 sum = 1.00D+00

t = 4.00D+07 y = 5.202403D-05 2.081068D-10 9.999480D-01 sum = 1.00D+00

t = 4.00D+08 y = 5.214998D-06 2.086010D-11 9.999948D-01 sum = 1.00D+00

t = 4.00D+09 y = 5.204478D-07 2.081792D-12 9.999995D-01 sum = 1.00D+00

t = 4.00D+10 y = 5.373726D-08 2.149490D-13 9.999999D-01 sum = 1.00D+00

No. steps = 559 No. f-s = 852 No. J-s = 11 No. LU-s = 112

No. nonlinear iterations = 816

No. nonlinear convergence failures = 0

Exercises 37

No. error test failures = 25

VODE output for internally generated Jacobian (MF=22).

t = 0.00D+00 y = 1.000000D+00 0.000000D+00 0.000000D+00 sum = 1.00D+00

t = 4.00D-01 y = 9.851641D-01 3.386242D-05 1.480205D-02 sum = 1.00D+00

t = 4.00D+00 y = 9.055097D-01 2.240338D-05 9.446793D-02 sum = 1.00D+00

t = 4.00D+01 y = 7.157944D-01 9.183473D-06 2.841964D-01 sum = 1.00D+00

t = 4.00D+02 y = 4.505138D-01 3.223026D-06 5.494830D-01 sum = 1.00D+00

t = 4.00D+03 y = 1.832254D-01 8.943769D-07 8.167737D-01 sum = 1.00D+00

t = 4.00D+04 y = 3.898040D-02 1.621635D-07 9.610194D-01 sum = 1.00D+00

t = 4.00D+05 y = 4.937593D-03 1.984717D-08 9.950624D-01 sum = 1.00D+00

t = 4.00D+06 y = 5.167596D-04 2.068094D-09 9.994832D-01 sum = 1.00D+00

t = 4.00D+07 y = 5.201559D-05 2.080730D-10 9.999480D-01 sum = 1.00D+00

t = 4.00D+08 y = 5.188591D-06 2.075447D-11 9.999948D-01 sum = 1.00D+00

t = 4.00D+09 y = 5.197009D-07 2.078805D-12 9.999995D-01 sum = 1.00D+00

t = 4.00D+10 y = 5.966719D-08 2.386688D-13 9.999999D-01 sum = 1.00D+00

No. steps = 573 No. f-s = 859 No. J-s = 12 No. LU-s = 127

No. nonlinear iterations = 856

No. nonlinear convergence failures = 0

No. error test failures = 39

See exercise sets 5 and 6.

3 Exercises

Exercises to Illustrate the Theory of ODEs

| Exercise Set 1

38

1.1 Write down an equivalent �rst order system of di�erential equations for each of the
following higher order equations:

a) �y = f(t; y):

b) �x+ x = f(t; x):

c) �� + (g=l) sin � = F (t):

d) �x+ "(x2 � 1) _x+ x = 0:

e) L �Q+ r _Q+Q=C = E(t):

f) x(4) + et _x� tx = cos t:

g) m�x = X(t; x; y; z; _x; _y; _z);

m�y = Y (t; x; y; z; _x; _y; _z);

m�z = Z(t; x; y; z; _x; _y; _z):

h) u(6) + u _u = et:

Exercises 39

1.2 Put each of the following IVPs in the form (10):

a) �y + 4 _y + 8y = sin t; y(0) = 1; _y(0) = 0:

b) �y + _y = log t; y(1) = 0; _y(1) = �1:
c) z(3) � �z sin t� 2 _z cos t+ z sin t = log t;

z(1) = A1; _z(1) = A2; �z(1) = A3:

d) �s+ 0:042 _s + 0:961s = _� + 0:063�;

�u+ 0:087 _u = _s+ 0:025s;

_v = 0:873(u � v); _w = 0:433(v � w);

_x = 0:058(w � x); _� = �0:396(x � 47:6);

s(0) = _s(0) = _u(0) = �(0) = 0; u(0) = 50; v(0) = w(0) = x(0) = 75:

1.3 Consider the following systems of equations:

a) _Y1 = Y2; _Y2 = �t2Y1 � tY2:

b) _Y1 = e�t
2=2Y2; _Y2 = �t2et2=2Y1:

c) _Y1 = � t

2
Y1 + Y2; _Y2 =

1

2
� 3t2

4

!
Y1 � t

2
Y2:

Verify for each system that Y1(t) = y(t), where y(t) satis�es the second order equation

�y + t _y(t) + t2y(t) = 0: (55)

1.4 In Example 5c, show that the quantity j@f=@yj is not bounded as y approaches 1; hence,
the corresponding solution may fail to exist or not be unique. What is the situation in 5b?

Exercises to Illustrate Taylor Series Methods

| Exercise Set 2

2.1 Use the Taylor series algorithm of orders p = 1 (Euler's method) and p = 2 with h = 0:1
to compute an approximate solution at t = 0:5 to each of the following IVPs. In each case

40

�nd the exact solution and compare it with your numerical result.

a) _y = 2y � 1; y(0) = 1:

b) _y = y � t; y(0) = 2:

c) _y � y = sin 2t; y(0) = 0:

d) _y = y2 � 3y + 2; y(0) = 2:

e) _y = 1 + y2; y(0) = 0:

f) _y + ty2 = 0; y(0) = 2:

g) _y = t; y(0) = 0:

h) _y = �y; y(0) = 1:

i) _y = t=y; y(0) = 1:

j) _y = y(1� y); y(0) = 2:

2.2 For the linear equation, _y = P1(t)y + Q1(t), show that the derivatives needed in the
Taylor series algorithm can be obtained from the recursion,

y(r) = Pr(t)y +Qr(t); (56)

where

Pr(t) = _Pr�1(t) + P1(t)Pr�1(t) ;

Qr(t) = _Qr�1(t) +Q1(t)Pr�1(t); r = 2; 3; � � � :
2.3 Apply the method of Exercise 2.2 to obtain a third order Taylor series formula to
approximate the solution to the IVP

_y = ty + 1; y(0) = 0: (57)

Implement your formula by using a step size of h = 0:25 to approximate y(1).

2.4 Approximate Dawson's integral, e�t
2 R t

0 e
�s2ds, on the interval [0:0; 0:5] using the Taylor

series algorithms of orders p = 1; 2; 3 with h = 0:1. Dawson's integral is the solution to the
IVP,

_y = 1 � 2ty; y(0) = 0; (58)

and its values at t = 0:1; 0:2; 0:3; 0:4, and 0:5, correct to �ve decimal places, appear in Table
7.

2.5 Consider the IVP
_y = �2y; y(0) = 1: (59)

a) Solve the problem analytically to �nd y(1).
b) Write a computer program that implements the Taylor series algorithm of order p = 2 for
this problem. Let your program begin with a �xed step size h = 1=n and repeatedly halve h

Exercises 41

t y(t)

0.1 0.09934

0.2 0.19475

0.3 0.28263

0.4 0.35994

0.5 0.42444

Table 7: Dawsons integral.

until a given accuracy, say 10�� , is achieved; i.e., continue to halve until jy(1)� ynj < 10��.
Let � = 3 and start with n = 2.
c) Repeat (b) using Taylor algorithms of orders p = 3 and p = 4 and note the di�erence in
the �nal values as p increases for �xed n. This example points out that the Taylor algorithms
can be quite e�ective when the derivatives are easy to evaluate.

2.6 (Optional) Use MAPLE or MATHEMATICA (or a comparable symbolic package) to
derive Taylor formulas of the indicated order p for the following IVPs:

a) _y = 1 � 2ty; y(0) = 0; p = 4:

b) _y = 2ty2; y(0) = 0:5; p = 3:

c) _y = cos t sin y; y(0) = 1; p = 3:

Exercises to Illustrate Runge-Kutta Methods

| Exercise Set 3

3.1 Derive the expansion (32) in the text (Hint: Proceed by a succession of one-variable
expansions, e.g.,

f(t+�; y + �) = f(t; y + �) + ft(t; y + �)�+ � � �
= f(t; y) + fy(t; y)� + ft(t; y)�+ fty(t; y)��+ � � � :

3.2 Write out the system of equations (36) as in Example 11 for each of the following IVPs.

a) _Y1 = Y2; _Y2 = Y1; Y1(0) = 1; Y2(0) = 0:

b) _Y1 = �4Y1 � Y2; _Y2 = Y1 � 2Y2; Y1(0) = 0; Y2(0) = �1:
c) �y + t _y = sin t; y(0) = 0; _y(0) = �2:
d) �y + y = ln t; y(1) = 0; _y(1) = �1:

3.3 Approximate the solution to the following IVPs at t = 0:3 using the Euler-Cauchy
method with step size h = 0:1. Do your calculations by hand and round all results to four

42

decimal places. Compare your numerical results with the true solutions at t = 0:1; 0:2, and
0:3

a) _y = y; y(0) = 1:

b) _y = t� y; y(0) = 0:

c) _y = 1 + y2; y(0) = 0:

d) _y = �y + t+ 4; y(0) = 2:

e) _y = 4t
y
� ty; y(0) = 3:

f) �y � 3 _y + 2y = e�t; y(1) = 0; _y(1) = 0:

g) �y + 4 _y + 8y = sin t; y(0) = 1; _y(0) = 0:

h) �y + y = sin t; y(0) = 0; _y(0) = 2:

3.4Write a computer program to use the Euler method (29), the Euler-Cauchy method (34)
with
 = 1, and the classical Runge-Kutta method (35) to approximate the solutions to the
IVPs in Exercise 3.3 at t = 0:1; 0:2; and 0:3. Compare your numerical results with the exact
solution at the indicated t points.

3.5Write a computer program to use the classical Runge-Kutta method (35) to approximate
the solution to the IVP in Example 11 at t = 0:1, 0:2, : : :, 1:0. Use a step size h = 0:1.
Compare your numerical results with the exact solution at the indicated t points.

3.6 Consider the problem,
_y = 2jtjy; y(�1) = 1=e; (60)

on the interval [�1; 1]. Find the analytical solution y(t) and show that _y(t) is continuous
on [�1; 1], but �y(t) is not. Study the behavior of the error in Euler's method at some �xed
points on [�1; 1] as h! 0.

3.7When f(t; y) depends only on t, show that the classical fourth order Runge-Kutta formula
(35) reduces to Simpson's rule

Z a+h

a
f(t)dt =

h

b
[f(a) + 4f(a+

h

2
) + f(a+ h)]: (61)

What is the order of Simpsons's rule; i.e., what is the highest degree polynomial P (t) that
the rule integrates exactly? To what quadrature rule does the Runge-Kutta method of order
2 correspond when
 = 1

2? When
 = 1?

Exercises 43

Exercises Using the Code RKSUITE

| Exercise Set 4

4.1 To explore the various options in RKSUITE, compile and run the 6 codes contained in
the �le \templates;" the �le appears in compressed form as \templates.Z." The �le templates
also contains output from the 6 codes, including data for all solution pairs: (2,3), (4,5), and
(7,8).

4.2 Using the classical Runge-Kutta method (35), approximate y(b) in each of the following
IVPs. Choose the step size h to achieve a relative error of 10�6, i.e., 6 signi�cant digits of
accuracy. The true solutions are given in each case for comparison.

a) _y = �1

2
y3; y(0) = 1; b = 3; y(t) =

1p
1 + t

:

b) _y = �2ty2; y(0) = 1; b = 1; y(t) =
1

1 + t2
:

c) _y =
1

4
y(1� y

20
); y(0) = 1; b = 5; y(t) =

20

1 + 19e�t=4
:

d) _y = 100(sin t� y); y(0) = 0; b = 1;

y(t) =
102(e�100t� cos t) + 104 sin t

104 + 1
:

e) _y =
15 cos t

y
; y(0) = 2; b =

�

4
; y(t) =

p
3 sin 10t + 4:

4.3 Repeat Exercise 4.2 using RKSUITE with TOL= 10�6, THRES(1)= 1, and METHOD=
2. Are the actual errors within the requested tolerance? Which problems needed the most
time, i.e., required the most number of function evaluations? Why? How does the amount
of work compare in each case with that of using the classical Runge-Kutta formula (See
Exercise 4.2)?

4.4 Use RKSUITE to approximate the solution to the sample problem in Sec. 2.5 for values
of " 6= 1, say " = 0:5; 5:0; 10:0; 100:0, etc. Use \xmgr" to display your results in the phase
plane for each value of ". What happens as " becomes \large"?

4.5 Use RKSUITE to approximate the solution to the following IVPs:

a) _y = 1 + y2; y(0) = 0; 0 � t � 2:

b) _y =
q
j1� y2j; y(0) = 1; 0 � t � 10:

c) _y =
q
j1� y2j; y(0) = 1 + "; 0 � t � 10:

where " is on the order of unit roundo� on your machine.
Contrast your result with what you obtained in b.

44

4.6 Consider the IVP

y(3) � �y sin t� 2 _y cos t+ y sin t = log t;

y(1) = A1; _y(1) = A2; �y(1) = A3:

Show that the solution, y(t), satis�es the two integral relations:

�y(t)� _y(t) sin t� y(t) cos t = c2 + t ln t� t (62)

and

_y(t)� y(t) sin t = c1 + c2t+
1

2
t2 ln t� 3

4
t2: (63)

Find c1; c2 in terms of A1; A2, and A3. Use RKSUITE to approximate the solution to this
problem and monitor the accuracy of your solution by seeing how well the integral relations
are satis�ed. Note that if the integral relations are satis�ed, the numerical solution may or
may not be accurate, but if they are not satis�ed, the numerical solution must be inaccurate.

4.7 Use RKSUITE to approximate the solution to the IVP

_P (t) = 10�3P (t)
�
103(1� 0:3 cos

�t

6
)� P (t)

�
; P (0) = 250: (64)

Use \xmgr" to plot P (t) vs. t for 0 � t � 36.

4.8 The response of a motor controlled by a governor can be modeled by the following system
of di�erential equations:

�s+ 0:042 _s + 0:961s = _� + 0:063�;

�u+ 0:087 _u = _s+ 0:025s;

_v = 0:873(u � v);

_w = 0:433(v � w);

_x = 0:508(w � x);
_� = �0:396(x� 47:6):

The motor should approach a constant (steady state) speed as t ! 1. Assume that
s(0) = _s(0) = _u(0) = �(0) = 0, u(0) = 50, and v(0) = w(0) = x(0) = 75. Evaluate v(t) for
t = 0; 25; 50; 75; 100; 150; 200; 250; 300; 400; 500. What does limt!1 v(t) appear to be? You
can check this by calculating the exact steady state solution which occurs when all derivatives
are zero.

4.9 A simple model of the human heart beat gives

" _x = �(x3 �Ax+ c);

_c = x;

Exercises 45

where x(t) is the displacement from equilibrium of the muscle �ber, c(t) is the concentration
of a chemical control, " and A are positive constants. Assume " = 1:0, A = 3.

a) Calculate x(t) and c(t) for 0 � t � 12 starting with x(0) = 0:1, c(0) = 0:1. Use \xmgr"
to plot the output in the phase plane (x along the horizontal axis, c on the vertical). What
does the period appear to be?
b) Repeat with x(0) = 0:87, c(0) = 2:1.

4.10 In modeling circuits containing devices whose electrical properties are current depen-
dent, ODEs of the form

A(X) _X = F(t;X) (65)

occur. For the case where

A(X) =

2
6664
3 � X2

1

4 0 1� X2
3

8

0 4 1� X2
3

8

3 � X2
1

4 2 4� X2
3

8

3
7775 ;

F(t;X) =

2
664
30 cos t� 4X1 + 5X3

2X1 � 3X2

3X2 � 3X3

3
775 ;

X(0) =

2
664
0

0

0

3
775 ;

compute X(t), t = 0:4; 0:8; 1:2; : : : ; 16. Plot X1;X2(t);X3(t), over the interval 0 � t � 16 on
separate graphs using \xmgr." Use RKSUITE in conjunction with a linear system solver.

4.11 The orbit of the planet Mercury around the Sun can be represented as the solution to
the di�erential equation,

d2u

d�2
+ u =

�

h2
(1 + "u2); (66)

where u = 1=r and r denotes the distance from the Sun to Mercury. Here � is an angle
in the plane of the orbit, � is the gravitational constant, h is the angular momentum,
and " is a parameter determined by the e�ects of other planets on Mercury as well as the
Sun's oblateness, and a correction required by the general theory of relativity. To solve this
problem, we convert it to the �rst order system

dv

d�
= w;

dw

d�
= 1� v +
v2;

46

where v2 = h2(u=�) and
 = "(�2=h4).

To illustrate the phenomenon of precession, choose
 = 0, v(0) = 2, w(0) = 0, " = 0:01,
and integrate the system over several revolutions. Plot y = (1=v) sin � vs. x = (1=v) cos �
using \xmgr". The plot should show that Mercury moves on an ellipse that is slowly rotating
in the orbital plane. The points of closest approach to the Sun are called perihelia; the pre-
cession of these points is due to the perturbing nonlinearity in the di�erential equation. The
observed precession of the perihelion of Mercury could not be explained by Newtonian me-
chanics and remained a puzzle for many years. The closest agreement between observations
and the orbit modeled by the di�erential equation with " containing a relativistic correction
is one of the major experimental con�rmations of Einstein's theory of general relativity.

4.12 This exercise illustrates the shooting algorithm for solving

�y + p(t) _y + q(t)y = r(t); y(a) = A; y(b) = B: (67)

Geometrically, we seek a function y(t) that satis�es the di�erential equation and whose
graph passes through the points (a,A) and (b,B). Our approach is to determine _y(a), then
we would have an initial value problem and RKSUITE could be used to solve it. So, let
_y(a) = s and the task is to �nd s = s� so that the resulting solution, denoted by Y (t; s�),
satis�es Y (b; s�) = B. We seek a zero of the function,

u(s) = Y (b; s)�B: (68)

Step 1: Choose s = s1 and solve the di�erential equation with initial conditions y(a) = A1

and _y(a) = s1; denote the resulting solutions by Y (t; s1). If

u(s1) = Y (b; s1)�B = 0;

set s� = s1 and stop. The solution is y(t) = Y (t; s�).

Step 2: Choose s = s2 6= s1 and solve the di�erential equation with y(a) = A and _y(a) = s2;
denote the solution by Y (t; s2). If

u(s2) = Y (b; s2)�B = 0;

set s� = s2 and stop. The solution is y(t) = Y (t; s�).
Step 3. Calculate the values of s for which u(s) = 0:

s� = s1 � s1 � s2
u(s1)� u(s2)

u(s1): (69)

Note that, since our di�erential equation is linear, u(s) is a linear function of s.
Step 4. Solve the di�erential equations with y(a) = a, _y(a) = s� to get the desired solution.
The process is illustrated graphically in Figure 6.

Exercises 47

(a,A)

(b,B)

a b

Y(t; s1)
Y(t; s*)

Y(t; s2)
●

y

x

●

Figure 8: Graphic illustration of the shooting algorithm.

Use the shooting method to solve the following boundary value problems. Plot your
solutions:

a) �y +
2

t
_y + y = 0; y(1) = 1; y(2) = 5; answer y(1) = 10:241848:

b) �y + _y + ty = 0; y(0) = 1; y(1) = 0:

c) �y +
2

t
_y � 2

t2
y =

sin t

t2
; y(1) = 1; y(2) = 2:

d) �y + 4y = cos t; y(0) = 0; y(
�

4
) = 0:

e) �y +
p
t _y + y = et; y(0) = 0; y(1) = 0:

f) �y + 4ty + (4t2 + 2)y = 0; y(0) = 0; y(1) =
1

e
:

g) �y � 2t

1 � t2
_y +

12

1 � t2
y = 0; y(0) = 0; y(0:5) = 4:

4.13 Modify the algorithm in Exercise 4.11 to solve the problem

(t2 + 1)�y � 2y = 0; y(0) = 1; _y(1) = 2: (70)

4.14 Explain why the algorithm in Exercise 4.11 cannot be used to solve the boundary value
problem

�y + e�y = 0; y(0) = 0; y(1) = 0: (71)

48

Modify the algorithm to obtain an approximate solution to this problem.

4.15 The following di�erential equations arise in semi-conductor theory:

"2 _E = p� n+ 1;

" _p = pE � ";

" _n = �nE + ":

Typical side conditions are n(0) = p(0), p(1) = 0, n(1) = 1. For " = 1 �nd E(1) such that
n(0) = p(0). Print out your �nal value for E(1). What happens if " = 10�2?

Exercises to Illustrate the Code VODE

| Exercise Set 5

5.1 Use the code VODE with MF = 21 (BDF method) to solve the IVP

_y = �(y � F (t)) + _F (t); 0 � t � 10;

y(0) = 1;

for � = �10;�20;�30;�100; F (t) = t. Compare the amount of work that the code must do
(number of function evaluations) with that required by RKSUITE; use relative and absolute
error tolerances of 10�6. Plot your solution for the case � = �10.
5.2 Consider the van der Pol equation in relaxed oscillation:

�y + 1000(y2 � 1) _y + y; 0 � t � 3000;

y(0) = 2; _y(0) = 0.

The initial conditions are close to a limit cycle, and, in particular, to a slowly varying part
of the cycle. This strains step size selection algorithms because the solution is so easy to
approximate. With the parameter of 1000 the oscillations exhibits regions of very sharp
change where the step size must be small to resolve the solution and the problem is not sti�.
Elsewhere, the solution varies slowly and the problem is sti�; the problem is very stable here
and all nontrivial solutions tend to vary rapidly to the limit cycle. The limit cycle has a
period of about 1615.5 and the interval has been chosen to exhibit several of the internal
boundary layers (regions of sharp change).
a) Use VODE with MF = 21 (BDF method) to approximate the solution on 0 � t � 3000
and generate the plots y .vs. t, _y .vs. t, and _y .vs. y (phase plane). Identify the intervals
over which the problem appears to be sti�.
b) Use VODE with MF = 10 (Adams-Moulton method) to approximate the solution on
0 � t � 3000. What happens?
c) Repeat with RKSUITE.
This problem is very hard for a code intended for non-sti� problems as it changes type from
sti� to non-sti� and back as the integration proceeds.

Exercises 49

Miscellaneous Exercises

| Exercise Set 6

6.1 The following system has been used to study chemicals that are active in the atmosphere
ozone depletion cycle [14, pp 317]. It involves the rapid formation of chlorine atoms from
oxygen and hydrogen atoms and molecular chlorine:

Cl+H2
k1�! HCl+H k1 = 1:6� 10�14;

H + Cl2
k2�! HCl+ Cl k2 = 1:0 � 10�11;

H +O2
k3�! HO2 k3 = 3:6� 10�13;

Cl+O2
k4�! ClO2 k4 = 1:3 � 10�14;

Cl+ ClO2
k5�! Cl2+O2 k5 = 1:4 � 10�10:

There is a wide range of time constants in this problem that is typical of sti� ODEs. The
numerical stability of most methods will be limited by k1 and k4 relative to the method's
step size. Using the labeling

Y1 = Cl; Y2 = H2;

Y3 = Cl2; Y4 = HCl;

Y5 = H; Y6 = O2;

Y7 = HO2; Y8 = ClO2;

we arrive at the following set of ODE's:

_Y1 = �k1Y1Y2 + k2Y3Y5 � k4Y1Y6 � k5Y1Y8;
_Y2 = �k1Y1Y2;
_Y3 = �k2Y3Y5 + k5Y1Y8;
_Y4 = k1Y1Y2 + k2Y3Y5;
_Y5 = k1Y1Y2 � k2Y3Y5 � k3Y5Y6;
_Y6 = �k3Y5Y6 � k4Y1Y6 + k5Y1Y8;
_Y7 = k3Y5Y6;
_Y8 = k4Y1Y6 � k5Y1Y8:

For the initial conditions,

Y1(0) = 1:00 � 1014;

Y2(0) = 1:62 � 1018;

Y3(0) = 3:25 � 1016;

50

Y4(0) = 0:0;

Y5(0) = 0:0;

Y6(0) = 4:84 � 1018;

Y7(0) = 0:0;

Y8(0) = 0:0;

tabulate the solution at 2� 10�4 using both the Adams method (VODE with MF=10) and
the BDF method (VODE with MF=22, internally generated Jacobian). Obtain the elapsed
time for each solution. This problem would be classi�ed as mildly sti� and you should notice
a considerable di�erence in the elapsed solution times. For error tolerances use, ITOL=1,
RTOL=10�3, and ATOL=10�6.

6.2 Use an appropriate integration method (e.g., improved Euler) to determine the qualita-
tive behavior of each of the following dynamical systems. Plot your solutions.

a) Lorentz system:

_x = �(y � x);

_y = x(�� z)� y;

_z = xy � bz;

on the interval 0 � t � 200 with constants

� = 10:0; � = 28:0; b = 8=3:

Use the initial conditions

x(0) = �1:3560; y(0) = �2:492152; z(0) = 12:317410:

b) Francheschini system:

_y1 = �p1y1 + p2y2y3 + p2y4y5;

_y2 = �p3y2 + p4y1y3 + p4y6y7;

_y3 = �p5y3 + p6y1y7 � p7y1y2 +R;

_y4 = �p5y4 � p9y1y5;

_y5 = �y5 � p4y1y4;

_y6 = �p8y6 � p2y2y7;

_y7 = �p5y7 + p9y2y6 � p6y1y3;

on the interval 0 � t � 5, with p-parameter values of

p1 = 2:0; p2 = 8:94427; p3 = 9:0;

p4 = 6:70820; p5 = 5:0; p6 = 9:0;

p7 = 15:6524; p8 = 8:0; p9 = 2:23607;

Exercises 51

and R = 3:0. Use the initial conditions

y1(0) = �3:97427;
y2(0) = �0:338907;
y3(0) = 5:396108;

y4(0) = �1:29233;
y5(0) = 6:81998;

y6(0) = 0:625067;

y7(0) = 6:30711:

c) Rossler system:

_x = �(y + z);

_y = x+ ay;

_z = b+ z(x� c);

on the interval 0 � t � 200 with constants

a = 1=5; b = 1=5; c = 5:7:

Use the initial conditions

x(0) = �2:209787; y(0) = 1:353531; z(0) = 0:070299:

References

[1] D.A. Sanchez, R.C. Allen, Jr., and W.T. Kyner, Di�erential Equations. Addison-Wesley.
1988.

[2] W.E. Boyce and R.C. DiPrima, Elementary Di�erential Equations, 4th ed, Wiley, New
York, 1986.

[3] F. Brauer and J.A. Nohel, Ordinary Equations with Applications, Harper and Row,
New York, 1986.

[4] L.F. Sampine and M.K. Gordon, Computer Solution of Ordinary Di�erential Equations:
the Initial Value Problem, Freeman, 1975.

[5] C.W. Gear, Numerical Initial Value Problems in Ordinary Di�erential Equations, Pren-
tice Hall, 1971.

[6] L.F. Shampine and C.W. Gear, A Users view of Solving Sti� Ordinary Di�erential
Equations, SIAM Review, 21 (1979) pp. 1-17.

52

[7] R.W. Brankin, I. Gladwell, and L.F. Shampine, RKSUITE: a Suite of Runge-Kutta
Codes for the Initial Value Problem of ODEs. Softreport 92-S1, Department of Math-
ematics, Southern Methodist University, Dallas, TX, USA, 1992.

[8] P.N. Brown, G.D. Byrne, and A.C. Hindmarsh, VODE: a Variable-coe�cient ODE
Solver, SIAM J.Sci. Stat. Comput., Vol. 10, No. 5, pp. 1038-1051, Sept. 1989.

[9] J. Butcher The Numerical Analysis of Ordinary Di�erential Equations: Runge-Kutta
and General Linear Methods Wiley, 1987.

[10] G. Hall and J. Watt Modern Numerical Methods for Ordinary Di�erential Equations,
Clarendon Press, 1976.

[11] J. Lambert, Numerical Methods for Ordinary Di�erential Equations, Wiley, 1991.

[12] J. Lambert, S.P. Norseth, and C. Warner, Solving Ordinary Di�erential Equations I:
Nonsti� Problems, Springer-Verlag 1987.

[13] E. Hairer and G. Wanner, Solving Ordinary Di�erential Equations II: Sti� and
Di�erential-Algebraic Problems, Springer-Verlag, 1991.

[14] L.F. Shampine, Numerical Solution of Ordinary Di�erential Equations, Chapman &
Hall, 1994.

[15] D. Kahaner, C. Moler, and S. Nash, Numerical Methods and Software, Prentice-Hall,
1989.

[16] G. Forsythe, M. Malcolm, and C. Moler, Computer Methods for Mathematical Compu-
tations, Prentice-Hall, 1977.

[17] L. Shampine and R.C. Allen, Jr. Numerical Computing: An Introduction, Saunders,
1973.

[18] M. Abramowitz and I.E. Stegun, Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, Dover Publications, Inc., New York, 1977.

Acknowledgements

The author would like to express his appreciation to the following people for their assistance
in the preparation of this chapter: Larry Shampine (Southern Methodist University), Tom
Kyner (University of New Mexico), Kris Stewart (San Diego State University), and Dave
Zachmann (Colorado State University). Text material and examples were taken freely from
[1], Chapters 3 and 8.

