CS514 Fall '00 Numerical Analysis (Sketched) Solution of Homework 2

1. Questions from text in Chapter 2

Problem 2:

- (a) $||f \hat{f}||_{\infty} = \max_{1 \le i \le N} |f(t_i) c|| = \max\{||c 1, y c||\}$. Minimize this and get $\hat{f} = \frac{y+1}{2}$.
- (b) $||f f'||_2 = [(N 1)(c 1)^2 + (c y)^2]$. When $c = \frac{N 1 + y}{N}$, it has a minimum. So, $f' = c = \frac{N - 1 + y}{N}$.
- (c) When N approaches to ∞ , \hat{f} still is $\frac{y+1}{2}$ but $f' \to 1$.

Problem 7:

- (i) $\pi_1 = \frac{1}{1+t}$ and $\pi_2 = \frac{1}{(1+t)^2}$. Then, $a_{11} = (\pi_1, \pi_1)$, $a_{12} = (\pi_1, \pi_2) = a_{21}$, and $a_{22} = (\pi_2, \pi_2)$. Also, $b_1 = (\pi_1, f)$ and $b_2 = (\pi_2, f)$. Note, $(u, v) = \int uv$. After calculations, $a_{11} = \frac{1}{2}$, $a_{12} = a21 = \frac{3}{8}$, $a_{22} = \frac{7}{24}$, $b_1 = 0.4634$, and $b_2 = 0.3526$. Note, the hint will be needed when calculating b_i 's. Then, find A^{-1} and $\|A^{-1}\|_i nfty$. $\operatorname{cond}_{\infty} = \|A\|_{\infty} \|A^{-1}\|_{\infty} = 147$
- (ii) $t = 0, f(0) \psi(0) = -0.0486; t = 1, f(1) \psi(1) \approx 0.0156;$ and $t = 2, f(2) \psi(2) \approx -0.0347;$

Problem 10:

(a) $(\pi_i, \pi_j) = \int \pi_i \pi_j d\lambda$. Since equally weight, $(\pi_i, \pi_j) = \int_0^\infty e^{-it} e^{-jt} dt = \frac{1}{i+j}$. Also, $(\pi_i, f) = \int_0^\infty e^{-it} dt = \frac{1-e^{-i}}{i}$. Let $a_{ij} = (\pi_i, \pi_j)$ and $b_i = (\pi_i, f)$. Then the normal equations are as: $\begin{pmatrix} \frac{1}{1+1} & \frac{1}{1+2} & \cdots & \frac{1}{1+n} \\ \frac{1}{2+1} & \frac{1}{2+2} & \cdots & \frac{1}{2+n} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{1}{n+1} & \frac{1}{n+2} & \cdots & \frac{1}{n+n} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \cdots \\ c_n \end{pmatrix} = \begin{pmatrix} \frac{1-e^{-1}}{1} \\ \frac{1-e^{-2}}{2} \\ \cdots \\ \frac{1-e^{-n}}{n} \end{pmatrix}$. The Hilbert matrix is $h_{ij} = \frac{1}{i+j-1}$. (b) Plots.

Problem 17:

(a) $B_0^n(t) = (1-0)^n = 1$. Note that, t = 0 is the zero of multiplicity j of $B_j^n(t)$. Therefore, the claim is proved.

;

- (b) At t = 1, we can have similar property. $B_n^n(t) = i^n(1-1)^0 = 1$, and for $j = 0, 1, \dots, n, \frac{d^r}{dt^r} B_j^n(t)|_{t=1} = 0, r = 0, 1, \dots, n j 1; \frac{d^{n-j}}{dtn-j} B_j^n(t)|_{t=1} \neq 0.$ Since $B_j^n(t) = B_{n-j}^n(1-t)$, one can derive properties at t = 1 by setting $B_{n-j}^n(t)$ at t = 0.
- (c) plots.
- (d) If not, there exist constants c_0, \dots, c_n which are not all 0 such that $0 = \sum_{i=0}^n c_i B_i^n(t)$. Then, $0 = \sum_{i=0}^n c_i B_i^n(t) = c_0 + \left[\sum_{i=0}^1 c_i \begin{pmatrix} n \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}\right] t + \dots + \left[\sum_{i=0}^n c_i \begin{pmatrix} n \\ n \end{pmatrix} \begin{pmatrix} n \\ n \end{pmatrix}\right] t^n$. This implies $c_0 = c_1 = \dots = c_n = 0$. A contradiction.
- (e) $\sum_{0}^{n} B_{i}^{n}(t) = (t+1-t)^{n} = 1.$
- **Problem 18:** Since $\{\pi_j\}_{j=1}^n$ is linear dependent, $\exists i$ such that $\pi_i = \sum_{j=1, j \neq i}^n c_j \pi_j$. Then, $a_{1i} = (\pi_1, \pi_i) = \int \pi_1 \pi_i = \sum_{j=1, j \neq i}^n c_j a_{1j}, a_{2i} = (\pi_2, \pi_i) = \sum_{j=1, j \neq i}^n c_j a_{2j}, \cdots, a_{ni} = (\pi_n, \pi_i) = \sum_{j=1, j \neq i}^n c_j a_{nj}$. Then, ith column of matrix A is a linear combination of the other columns of A. Therefore, A is singular.
- **Problem 30** $f(x) p_2(f; x) = (x x_0)(x x_1)(x x_2)\frac{f'''(\xi)}{6}$ and $||f p_2(f; .)||_{\infty} \le \frac{M_3}{9\sqrt{3}}h^3$, $M_3 = ||f'''||_{\infty}$. Bring $x_0 = 10$, $x_1 = 11$, and $x_2 = 12$ into the error function. Then, $||f - p_2(f; .)|| \le |(11.1 - 10)(11.1 - 11)(11.1 - 12)\frac{f'''(\xi)}{6}| \le 3.3 \times 10^{-5}$, where $f'''(x) = 2x^{-3}$. Also, since $f(10) \le f(x)$, for x = 10, 11, 12, the relative error will be $\le \frac{3.3 \times 10^{-5}}{f(10)}$.
- **Problem 32** $f(x) = \frac{1}{x}$, then $f'(x) = -x^{-2}$ and $f''(x) = 2x^{-3}$. $x_0 = 1$, $f(x_0) = f(1) = 1$; $x_1 = 2, f(x_1) = f(2) = \frac{1}{2}$. Then, $p_1(f;x) = f(x_0)\frac{x-x_1}{x_0-x_1} + f_1(x_1)\frac{x-x_0}{x_1-x_0} = \frac{1}{2}(x-1) - (x-2) = \frac{3}{2} - \frac{1}{2}x$. Then, $f(x) - p_1(f;x) = \frac{1}{x} - \frac{3}{2} - \frac{1}{2}x = (x-x_0)(x-x_1)\frac{f''(\xi(x))}{2}$. Then, $(x-1)(x-2)\frac{1}{\xi^3(x)} = \frac{1}{2x}(x-1)(x-2)$. So, $\xi(x) = \sqrt[3]{2x}$. Therefore, max = $\sqrt[3]{4}$ and min = $\sqrt[3]{2}$.
- $\begin{aligned} \mathbf{Problem 38} \quad f(x) &= \int_{5}^{\infty} \frac{e^{-t}}{t-x} dt. \ f^{(n)}(x) = (-1)^{n} n! \int_{5}^{\infty} \frac{e^{-t}}{(t-x)^{n+1}} dt. \ \text{And}, \|f-p_{n-1}(f;x)\|_{\infty} \leq \\ & \frac{\|f^{(n)}(x)\|_{\infty}}{n!} \frac{1}{2^{n-1}}. \ \text{Then}, \ \|f-p_{n-1}(f;x)\|_{\infty} \leq \frac{1}{2^{n-1}} \|\int_{5}^{\infty} \frac{e^{-t}}{(t-x)^{n+1}} dt \|_{\infty}. \ \text{Since} \ -1 \leq x \leq \\ & 1, \ \|f-p_{n-1}(f;x)\|_{\infty} \leq \frac{1}{2^{n-1}} \int_{5}^{\infty} \frac{e^{-t}}{(t-1)^{n+1}} dt. \ \text{Also, since} \ t \geq 5, \ \|f-p_{n-1}(f;x)\|_{\infty} \leq \\ & \frac{1}{2^{n-1}} \int_{5}^{\infty} \frac{e^{-t}}{(5-1)^{n+1}} dt \leq \frac{1}{2^{3n+1}e^5}. \end{aligned}$
- **Problem 46** Let $T_n = \cos(n\theta)$. Since x = T(x), $\cos \theta = \cos n\theta$, where $0 \le \theta \le \pi$. Therefore, $\cos \theta - \cos n\theta = 0$. Solve this equation and discuss and count the possible toor for this equation.

Problem 51

(i) [0, 1, 1, 1, 2, 2]f = 30

(ii) From (eq. 2.68), $[0, 1, 1, 1, 2, 2]f = \frac{1}{5!}f^{(5)}(\xi)$. Also, $f^{(5)}(x) = 7 \times 6 \times 5 \times 4 \times 3x^2$. Hence, $\xi = \sqrt{\frac{10}{7}}$.

Problem 56

(a) $p_3(f;x) = 5 + (-2)(x-0) + (x-0)(x-1) + \frac{1}{4}(x-0)(x-1)(x-3) = \frac{1}{4}x^3 - \frac{9}{4}x + 5.$ (b) Set $p'_3(f;x) = 0$ and then get the min location of $x = \sqrt{3}$.

Problem 58

(a) $p(x) = 1 + (x-0) + (-2)(x-0)(x-1) + \frac{2}{3}(x-1)^2(x-0) + \frac{-5}{36}(x-3)(x-1)^2(x-0) = 1 + \frac{49}{12}x + \frac{-155}{36}x^2 + \frac{49}{36}x^3 + \frac{-5}{36}x^4$. Then $p(2) = \frac{11}{18}$. (b) $|f - p| = |(x - 0)(x - 1)^2(x - 3)^2 \frac{f^{(5)}(\xi)}{5!}| |f - p| \le |(x - 0)(x - 1)^2(x - 3)^2 \frac{M}{5!}|$.

Since x = 2, $|f - p| \le \frac{M}{20}$.