CS514 Fall '00 Numerical Analysis Solution of Homework 1

1. Selected questions from text in Chapter 1

Problem 10:

(a) Cancellation error occurs if |x| is small. To avoid cancellation, one can use

$$f(x) = \frac{(1+x^2)-1}{\sqrt{1+x^2}+1} = \frac{x^2}{\sqrt{1+x^2}+1}$$

which requires only benign arithmetic operations.

(b)

$$(\text{cond } f)(x) = \left|\frac{xf'(x)}{f(x)}\right| = 1 + \frac{1}{\sqrt{1+x^2}} \le 2, \ \forall x \in \Re.$$

Therefore, f is well-conditioned.

(c) This shows a well-condition problem is solved by an *ill-conditioned* algorithm due to the occurrence of cancellation error.

Problem 11:

(i) Let $p_1 = x, \dots, p_k = fl(p_{k-1}x), \dots, p_n = fl(p_{n-1}x)$. Then, $p_2 = x^2(1 + \epsilon_2)$, $p_3 = x(x^2(1+\epsilon_2))(1+\epsilon_3) = x^3(1+\epsilon_2)(1+\epsilon_3), \dots, p_n = x^n(1+\epsilon_2)\dots(1+\epsilon_n),$ where ϵ_k <eps. Hence,

$$\left|\frac{p_n - x^n}{x^n}\right| = \left|(1 + \epsilon_2) \cdots (1 + \epsilon_n) - 1\right| \le (n - 1)\text{eps.}$$
(...) $e_1(n, n) = n(\ln x(1 + \epsilon_1))(1 + \epsilon_2)(1 + \epsilon_2) + 1 \le c$

(ii)
$$fl(x^n) = e^{n(\ln x(1+\epsilon_1))(1+\epsilon_2)}(1+\epsilon_3), |\epsilon_i| \le \text{eps. Thus,}$$

 $fl(x^n) \approx e^{n\ln x(1+\epsilon_1+\epsilon_2)}(1+\epsilon_3) = e^{n\ln x}e^{(\epsilon_1+\epsilon_2)n\ln x}(1+\epsilon_3)$
 $\approx x^n(1+(\epsilon_1+\epsilon_2)n\ln x+\epsilon_3),$
 $|\frac{fl(x^n)-x^n}{x^n}| \approx |(\epsilon_1+\epsilon_2)n\ln x+\epsilon_3| \le (2n|\ln x|+1)\text{eps.}$

Then, (i) is always better than (ii) if $|\ln x| > \frac{1}{2}$ and when $e^{-\frac{1}{2}} < x < e^{\frac{1}{2}}$, it is true if $n \leq \frac{2}{1-2|lnx|}$.

Problem 24: The functions are $\Re \to \Re$. The condition number, $(\text{cond } f)(x) = |\frac{xf'(x)}{f(x)}|$.

- (a) $(\text{cond } f)(x) = \left|\frac{1}{\ln x}\right|, x > 0$. When $x \to 1$, $(\text{cond } f)(x) \to \infty$. Thus, it is *ill-conditioned* when x is near 1.
- (b) $(\text{cond } f)(x) = |x \tan x|, |x| < \frac{\pi}{2}$. When $|x| \to \frac{\pi}{2}, |x \tan x| \to \infty$. Thus, it is *ill-conditioned* when |x| approaches $\frac{\pi}{2}$.

(c) (cond f) $(x) = \left|\frac{x}{\sin^{-1}x\sqrt{1-x^2}}\right|, |x| < 1$. When $x \to 1$, (cond f) $(x) \to \infty$. Thus, it is *ill-conditioned* when |x| is near 1.

(d) (cond
$$f$$
) $(x) = \left|\frac{x}{(1+x^2)\sin^{-1}(\frac{x}{\sqrt{1+x^2}})}\right| < 1$. It is always well conditioned

Problem 25:

- (a) $(\text{cond } f)(x) = |\frac{1}{n}| \le 1$, where x > 0 and n > 0. f is well conditioned for all x.
- (b) $(\text{cond } f)(x) = |\frac{x}{\sqrt{x^2 1}}|, x > 1$. When $x \to 1$, $(\text{cond } f)(x) \to \infty$. Thus, it is *ill-conditioned* when x approaches 1 and *well conditioned* as $x \to \infty$.
- (c) Let $\vec{x} = [x_1, x_2]$.

First, consider each components, x_1 and x_2 .

$$(\text{cond } f)(x_1) = \frac{x_1^2}{x_1^2 + x_2^2} < 1$$
$$(\text{cond } f)(x_2) = \frac{x_2^2}{x_1^2 + x_2^2} < 1$$

Thus, f is well conditioned for any x_1 and x_2 .

Second, use the *global* definition of the condition number.

$$(\text{cond } f)(\vec{x}) = \frac{\|\vec{x}\|_2 \|f'(\vec{x})\|_2}{|f(\vec{x})|} = 1.$$

The norm used here is Euclidean Norm. Similar result for the condition number can be obtained with other norms.

(d) First, consider each components, x_1 and x_2 .

$$(\text{cond } f)(x_1) = |\frac{x_1}{x_1 + x_2}|$$

 $(\text{cond } f)(x_2) = |\frac{x_2}{x_1 + x_2}|$

f will be *ill conditioned* if $|x_1 + X_2|$ is very small but $|x_1|$ and $|x_2|$ are not. This is due to the cancellation error.

Second, use the *global* definition of the condition number.

$$(\text{cond } f)(\vec{x}) = \frac{\|\vec{x}\|_* \|f'(\vec{x})\|_*}{|f(\vec{x})|} \\ = \frac{\|\vec{x}\|_* \|[1,1]\|_*}{|x_1+x_2|}.$$

The norm can be any norm.

Problem 31: $m_1 = \max_{\mu} \sum_{\nu} |a_{\nu\mu}|.$

$$(\|A\|_{1} \leq m_{1}) \text{ Let } x \neq 0, \\ \|Ax\|_{1} = \sum_{\nu} |\sum_{\mu} a_{\nu\mu} x_{mu}| \leq \sum_{\nu} \sum_{\mu} |a_{\nu\mu}| |x_{mu}| (\text{triangle ineuqality}) \\ = \sum_{\mu} |x_{mu}| \sum_{\nu} |a_{\nu\mu}| \leq \|x\|_{1} m_{1}. \\ \text{So, } \frac{\|Ax\|_{1}}{\|x\|_{1}} \leq m_{1}. \\ \text{Hence, } \max_{x\neq 0} \frac{\|Ax\|_{1}}{\|x\|_{1}} \leq m_{1}. \\ \text{Therefore, } \|A\|_{1} \leq m_{1}.$$

Figure 1: The plots for two condition numbers

$$\begin{aligned} (\|A\|_{1} \geq m_{1}) & \text{Let } p \text{ with } \sum_{\nu} |a_{\nu p}| = \max_{\mu} \sum_{\nu} |a_{\nu \mu}|. \\ & \text{Consider } y \neq 0, \, y_{j} = \begin{cases} 1 & j = p \\ 0 & j \neq p \end{cases}. \\ & \text{Then } \|y\|_{1} = 1. \\ & \text{Now, } \|Ay\|_{1} = \sum_{\nu} |\sum_{\mu} a_{\nu \mu} x_{mu}| = \sum_{nu} |a_{\nu p}| = \max_{\mu} \sum_{\nu} |a_{\nu \mu}| \\ & = \|y\|_{1} \max_{\mu} \sum_{\nu} |a_{\nu \mu}|. \\ & \text{Hence, } \|A\|_{1} \geq \frac{\|Ay\|_{1}}{\|y\|_{1}} = \max_{\mu} \sum_{\nu} |a_{\nu \mu}| = m_{1}. \\ & \text{Therefore, } \|A\|_{1} \geq m_{1}. \end{aligned}$$

From above, we conclude $||A||_1 = m_1$.

Problem 41

- (a) $f(x) = 1 e^{-x}$, for $0 \le x \le 1$. Then, $f'(x) = e^{-x}$. So, if x = 0, f(0) = 0 and (cond f)(x) = f'(0) = 1. If $x \ne 0$, $(\text{cond } f)(x) = \frac{x}{e^x 1} = \frac{x}{x + \frac{x^2}{2!} + \dots} \le 1$.
- (b) $f_A(x) = [1 e^{-x}(1 + \epsilon_1)](1 + \epsilon_2), |\epsilon_i| < \text{eps, } i = 1, 2.$ Then, $f_A(x) = 1 - e^{-x} - \epsilon_1 e^{-x} + \epsilon_2(1 - e^{-x}).$ Set $f_A(x) = f(x_A)$, then $x_A = x - \epsilon_1 + \epsilon_2(e^x - 1).$ Note: during the calculation, we ignore $O(\text{eps}^2).$ Therefore, $|x - x_A| = |\epsilon_1 - \epsilon_2(e^x - 1)| \le \text{eps} + (e^x - 1)\text{eps} = e^x \text{eps},$ $\frac{|x - x_A|}{|x|} \le \frac{e^x}{x} \text{eps},$ $(\text{cond } A)(x) = \frac{e^x}{x}.$
- (c) Figure 1 shows the plots for two condition numbers. f is uniformly well conditioned on [0,1]. But, the algorithm is *ill conditioned* when x is small due to cancellation error.
- 2. (a) Show that the following three schemes can be used to recursively generate the se-

quence $\left\{\frac{1}{2^n}\right\}_{n=0}^{\infty}$.

- (1) $r_n = (\frac{1}{2})r_{n-1}$, for $n = 1, 2, \cdots$. sol: This is trivial.
- (2) $p_n = (\frac{3}{2})p_{n-1} (\frac{1}{2})p_{n-2}$, for $n = 2, 3, \cdots$. sol: Let $p_n = A\frac{1}{2^n} + B$. Then, consider $p_n = \frac{3}{2}p_{n-1} - \frac{1}{2}p_{n-2}$ $p_n = \frac{3}{2}(A\frac{1}{2^{n-1}} + B) - \frac{1}{2}(A\frac{1}{2^{n-2}} + B)$ $p_n = A(\frac{1}{2^n}) + B$ Set A = 1 and B = 0, the proof is done.
- (3) $q_n = (\frac{5}{2})q_{n-1} q_{n-2}$, for $n = 2, 3, \cdots$. sol: omitted since the proof is similar as(2).
- (b) Use MATLAB to generate the first ten numerical approximations to the sequence $\{x_n\} = \{\frac{1}{2^n}\}$ using the schemes in (a):
 - For (1) $r_0 = 0.994$,
 - For (2) $p_0 = 1$ and $p_1 = 0.497$,
 - For (3) $q_0 = 1$ and $q_1 = 0.497$.

Produce the numerical results to two tables: one for approximation values and the other for errors. The table formats are as:

Table 1. For approximation values

	n	x	r	I	р	l q	
Table :	1 2. For err	\ldots cors, $ x_n $	$ \\ \\ -r_n , x$	$ $. $ $ $\dot{r}_n - p_n ,$	\dots and $ x_n$	 $ $ \dots $ $ $-q_n $	
	n	x-r		x-p	I	x-q	
	1						

Answer: The tables are as followings:

Table 1.

	n	I	x	I	r	I	р	I	q
-		- - ·		- -		- -		-	
	1	I	1.000000000	I	0.9940000000	I	1.0000000000	I	1.0000000000
	2	I	0.500000000	I	0.4970000000	I	0.4970000000	I	0.4970000000
	3	I	0.2500000000	I	0.2485000000	I	0.2455000000	I	0.2425000000
	4	I	0.1250000000	I	0.1242500000	I	0.1197500000	I	0.1092500000
	5	I	0.0625000000	I	0.0621250000	I	0.0568750000	I	0.0306250000
	6	I	0.0312500000	I	0.0310625000	I	0.0254375000	I	-0.0326875000
	7	I	0.0156250000	I	0.0155312500	I	0.0097187500	I	-0.1123437500
	8	I	0.0078125000	I	0.0077656250	I	0.0018593750	I	-0.2481718750
	9	I	0.0039062500	I	0.0038828125	I	-0.0020703125	I	-0.5080859375
	10	I	0.0019531250	I	0.0019414062	I	-0.0040351562	I	-1.0220429688
	11	I	0.0009765625	I	0.0009707031	I	-0.0050175781	I	-2.0470214844

Table 2.

n	1	x-r		x-p		x-d
1	- I - I	0.0060000000	- -· 	0.0000000000	- - · 	0.00000000000000000
2	T	0.0030000000	1	0.0030000000	1	0.003000000
3	I	0.0015000000	I	0.0045000000	I	0.0075000000
4	I	0.0007500000	I	0.0052500000	I	0.0157500000
5	I	0.0003750000	I	0.0056250000	I	0.0318750000
6	I	0.0001875000	I	0.0058125000	I	0.0639375000
7	I	0.0000937500		0.0059062500	l	0.1279687500
8	I	0.0000468750		0.0059531250	l	0.2559843750
9	I	0.0000234375		0.0059765625	l	0.5119921875
10	I	0.0000117188		0.0059882812	l	1.0239960938
11	I	0.000058594	I	0.0059941406	I	2.0479980469

(c) Use MATLAB to plot the errors of the three schemes and indicate which scheme is stable or unstable.

Answer: The plots are given in Figure 2. Scheme(3) is more unstable than the other two. Scheme(1) is most stable.

Figure 2: The plots for three schemes

3. (a) Consider the evaluation of $I_n = \int_0^1 x^n e^{x-1} dx$, for some n > 1. Note that $I_1 = \frac{1}{e} \approx 0.3678794$. Please show that I_n can be evaluated recursively by

$$I_n = 1 - nI_{n-1}.$$

Answer: Use intergration by parts, $\int f'g = fg - \int fg'$ to show. (Let $f' = x^{x-1}dx$ and $g = x^n$.)

(b) Use MATLAB to evaluate I_{12} , output the results to a table,

n | In 1 | |

plot the result, and discuss its condition (ill-condition or well-condition).

Answer: The table is as:

n | In ----|-----1 | 0.3678794000 2 | 0.2642412000 3 | 0.2072764000

Figure 3: The plots for first method

- 4 | 0.1708944000
- 5 | 0.1455280000
- 6 | 0.1268320000
- 7 | 0.1121760000
- 8 | 0.1025920000
- 9 | 0.0766720000
- 10 | 0.2332799999
- 11 | -1.5660799991
- 12 | 19.7929599890

The plot is as Figure 3. It shows that it is *ill conditioned*.

(c) Above method seems ill-conditioned, how to improve it? Also, write a MATLAB program to output the results in a table (i.e. record each iteration result to the table) and plot it. Discuss why the new method is better.

Answer: Use backward analysis instead. Let

$$I_{n-1} = \frac{1 - I_n}{n}$$

Since $I_n = \int_0^1 x^n e^{x-1} dx \leq \int_0^1 x^n dx = \frac{1}{n-1}$ and $I_{23} \leq \frac{1}{24} \approx 0.0437 \cdots$, we may start from $I_{23} = 0$. One may select a different start point. The result table is as:

- n In
- 23 | 0.000000000
- 22 | 0.0434782609
- 21 | 0.0434782609
- 20 | 0.0455486542

Figure 4: The plots for new method

- 19 | 0.0477225673
- 18 | 0.0501198649
- 17 | 0.0527711186
- 16 | 0.0557193460
- 15 | 0.0590175409
- 14 | 0.0627321639
- 13 | 0.0669477026
- 12 | 0.0717732536

The plot in Figure 4 shows it is *well conditioned*.