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CS514 Fall '00

Numerical Analysis

Solution of Homework 1

1. Selected questions from text in Chapter 1

Problem 10:

(a) Cancellation error occurs if jxj is small. To aviod cancellation, one can use

f(x) = (1+x2)�1p
1+x2+1

= x2p
1+x2+1

which requires only benign arithmetic operations.

(b)

(cond f)(x) = jxf
0(x)

f(x) j = 1 + 1p
1+x2

� 2, 8x 2 <.

Therefore, f is well-conditioned.

(c) This shows a well-condition problem is solved by an ill-conditioned algorithm

due to the occurrence of cancellation error.

Problem 11:

(i) Let p1 = x; � � � ; pk = fl(pk�1x); � � � ; pn = fl(pn�1x). Then, p2 = x2(1 + �2),

p3 = x(x2(1 + �2))(1 + �3) = x3(1 + �2)(1 + �3), � � �, pn = xn(1 + �2) � � � (1 + �n),

where �k <eps. Hence,

jpn�x
n

xn
j = j(1 + �2) � � � (1 + �n)� 1j � (n� 1)eps.

(ii) fl(xn) = en(lnx(1+�1))(1+�2)(1 + �3); j�ij � eps. Thus,

fl(xn) � en lnx(1+�1+�2)(1 + �3) = en lnxe(�1+�2)n lnx(1 + �3)

� xn(1 + (�1 + �2)n lnx+ �3);

jfl(x
n)�xn
xn

j � j(�1 + �2)n lnx+ �3j � (2nj lnxj+ 1)eps.

Then, (i) is always better than (ii) if j lnxj > 1
2 and when e�

1

2 < x < e
1

2 , it is

true if n � 2
1�2jlnxj .

Problem 24: The functions are < ! <. The condition number, (cond f)(x) = jxf
0(x)

f(x) j.

(a) (cond f)(x) = j 1
lnx j; x > 0. When x ! 1, (cond f)(x) ! 1. Thus, it is

ill-conditioned when x is near 1.

(b) (cond f)(x) = jx tan xj, jxj < �
2 . When jxj ! �

2 , jx tan xj ! 1. Thus, it is

ill-conditioned when jxj approaches �
2 .
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(c) (cond f)(x) = j x

sin�1 x
p
1�x2 j, jxj < 1. When x! 1, (cond f)(x)!1. Thus, it

is ill-conditioned when jxj is near 1.

(d) (cond f)(x) = j x
(1+x2) sin�1( xp

1+x2
)
j < 1. It is always well conditioned.

Problem 25:

(a) (cond f)(x) = j 1
n
j � 1, where x > 0 and n > 0. f is well conditioned for all x.

(b) (cond f)(x) = j xp
x2�1

j, x > 1. When x ! 1, (cond f)(x) ! 1. Thus, it is

ill-conditioned when x approaches 1 and well conditioned as x!1.

(c) Let ~x = [x1; x2].

First, consider each components, x1 and x2.

(cond f)(x1) =
x2
1

x2
1
+x2

2

< 1

(cond f)(x2) =
x2
2

x2
1
+x2

2

< 1

Thus, f is well conditioned for any x1 and x2.

Second, use the global de�nition of the condition number.

(cond f)(~x) = k~xk2kf 0(~x)k2
jf(~x)j = 1.

The norm used here is Euclidean Norm. Similar result for the condition number

can be obtained with other norms.

(d) First, consider each components, x1 and x2.

(cond f)(x1) = j x1
x1+x2

j

(cond f)(x2) = j x2
x1+x2

j

f will be ill conditioned if jx1 +X2j is very small but jx1j and jx2j are not. This

is due to the cancellation error.

Second, use the global de�nition of the condition number.

(cond f)(~x) = k~xk�kf 0(~x)k�
jf(~x)j

= k~xk�k[1;1]k�
jx1+x2j .

The norm can be any norm.

Problem 31: m1 = max�
P

� ja��j.

(kAk1 � m1) Let x 6= 0,

kAxk1 =
P

� j
P

� a��xmuj �
P

�

P
� ja��jjxmuj(triangle ineuqality)

=
P

� jxmuj
P

� ja��j � kxk1m1.

So, kAxk1
kxk1 � m1.

Hence, maxx6=0
kAxk1
kxk1 � m1.

Therefore, kAk1 � m1.
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Figure 1: The plots for two condition numbers

(kAk1 � m1) Let p with
P

� ja�pj = max�
P

� ja��j.

Consider y 6= 0, yj =

(
1 j = p

0 j 6= p
.

Then kyk1 = 1.

Now, kAyk1 =
P

� j
P

� a��xmuj =
P

nu ja�pj = max�
P

� ja��j

= kyk1 max�
P

� ja��j.

Hence, kAk1 �
kAyk1
kyk1 = max�

P
� ja��j = m1.

Therefore, kAk1 � m1.

From above, we conclude kAk1 = m1.

Problem 41

(a) f(x) = 1 � e�x, for 0 � x � 1. Then, f 0(x) = e�x. So, if x = 0, f(0) = 0 and

(cond f)(x)=f 0(0) = 1. If x 6= 0, (cond f)(x) = x
ex�1 = x

x+x2

2!
+��� � 1.

(b) fA(x) = [1� e�x(1 + �1)](1 + �2), j�ij <eps, i = 1; 2.

Then, fA(x) = 1� e�x � �1e
�x + �2(1� e�x).

Set fA(x) = f(xA), then xA = x� �1 + �2(e
x � 1).

Note: during the calculation, we ignore O(eps2).

Therefore, jx� xAj = j�1 � �2(e
x � 1)j � eps + (ex � 1)eps = exeps,

jx�xAj
jxj � ex

x
eps,

(cond A)(x) = ex

x
.

(c) Figure 1 shows the plots for two condition numbers. f is uniformly well con-

ditioned on [0,1]. But, the algorithm is ill conditioned when x is small due to

cancellation error.

2. (a) Show that the following three schemes can be used to recursively generate the se-
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quence f 1
2n g

1
n=0.

(1) rn = (12)rn�1, for n = 1; 2; � � �.

sol: This is trivial.

(2) pn = (32 )pn�1 � (12 )pn�2, for n = 2; 3; � � �.

sol: Let pn = A 1
2n +B. Then, consider

pn = 3
2pn�1 �

1
2pn�2

pn = 3
2(A

1
2n�1 +B)� 1

2(A
1

2n�2 +B)

pn = A( 1
2n ) +B

Set A = 1 and B = 0, the proof is done.

(3) qn = (52 )qn�1 � qn�2, for n = 2; 3; � � �.

sol: omitted since the proof is similar as(2).

(b) Use MATLAB to generate the �rst ten numerical approximations to the sequence

fxng = f 1
2n g using the schemes in (a):

For (1) r0 = 0:994,

For (2) p0 = 1 and p1 = 0:497,

For (3) q0 = 1 and q1 = 0:497.

Produce the numerical results to two tables: one for approximation values and the

other for errors. The table formats are as:

Table 1. For approximation values

-----------------------------------------------

n | x | r | p | q

-----------------------------------------------

1 | | | |

... | ... | ... | ... | ...

Table 2. For errors, jxn � rnj; jxn � pnj, and jxn � qnj

-----------------------------------------------

n | x-r | x-p | x-q

-----------------------------------------------

1 | | |

... | ... | ... | ...

Answer: The tables are as followings:
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Table 1.

n | x | r | p | q

----|---------------|---------------|---------------|--------------

1 | 1.0000000000 | 0.9940000000 | 1.0000000000 | 1.0000000000

2 | 0.5000000000 | 0.4970000000 | 0.4970000000 | 0.4970000000

3 | 0.2500000000 | 0.2485000000 | 0.2455000000 | 0.2425000000

4 | 0.1250000000 | 0.1242500000 | 0.1197500000 | 0.1092500000

5 | 0.0625000000 | 0.0621250000 | 0.0568750000 | 0.0306250000

6 | 0.0312500000 | 0.0310625000 | 0.0254375000 | -0.0326875000

7 | 0.0156250000 | 0.0155312500 | 0.0097187500 | -0.1123437500

8 | 0.0078125000 | 0.0077656250 | 0.0018593750 | -0.2481718750

9 | 0.0039062500 | 0.0038828125 | -0.0020703125 | -0.5080859375

10 | 0.0019531250 | 0.0019414062 | -0.0040351562 | -1.0220429688

11 | 0.0009765625 | 0.0009707031 | -0.0050175781 | -2.0470214844

Table 2.

n | x-r | x-p | x-q

----|---------------|---------------|--------------

1 | 0.0060000000 | 0.0000000000 | 0.0000000000

2 | 0.0030000000 | 0.0030000000 | 0.0030000000

3 | 0.0015000000 | 0.0045000000 | 0.0075000000

4 | 0.0007500000 | 0.0052500000 | 0.0157500000

5 | 0.0003750000 | 0.0056250000 | 0.0318750000

6 | 0.0001875000 | 0.0058125000 | 0.0639375000

7 | 0.0000937500 | 0.0059062500 | 0.1279687500

8 | 0.0000468750 | 0.0059531250 | 0.2559843750

9 | 0.0000234375 | 0.0059765625 | 0.5119921875

10 | 0.0000117188 | 0.0059882812 | 1.0239960938

11 | 0.0000058594 | 0.0059941406 | 2.0479980469

(c) Use MATLAB to plot the errors of the three schemes and indicate which scheme is

stable or unstable.

Answer: The plots are given in Figure 2. Scheme(3) is more unstable than the

other two. Scheme(1) is most stable.
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Figure 2: The plots for three schemes

3. (a) Consider the evaluation of In =
R 1
0 xnex�1dx, for some n > 1. Note that I1 = 1

e
�

0:3678794. Please show that In can be evaluated recursively by

In = 1� nIn�1.

Answer: Use intergration by parts,
R
f 0g = fg �

R
fg0 to show. (Let f 0 = xx�1dx

and g = xn.)

(b) Use MATLAB to evaluate I12, output the results to a table,

---------------

n | In

1 |

... | ...

plot the result, and discuss its condition (ill-condition or well-condition).

Answer: The table is as:

n | In

----|----------------

1 | 0.3678794000

2 | 0.2642412000

3 | 0.2072764000
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Figure 3: The plots for �rst method

4 | 0.1708944000

5 | 0.1455280000

6 | 0.1268320000

7 | 0.1121760000

8 | 0.1025920000

9 | 0.0766720000

10 | 0.2332799999

11 | -1.5660799991

12 | 19.7929599890

The plot is as Figure 3. It shows that it is ill conditioned.

(c) Above method seems ill-conditioned, how to improve it? Also, write a MATLAB

program to output the results in a table (i.e. record each iteration result to the

table) and plot it. Discuss why the new method is better.

Answer: Use backward analysis instead. Let

In�1 =
1�In
n

Since In =
R 1
0 xnex�1dx �

R 1
0 xndx = 1

n�1 and I23 �
1
24 � 0:0437 � � �, we may start

from I23 = 0. One may select a di�erent start point. The result table is as:

n | In

----|----------------

23 | 0.0000000000

22 | 0.0434782609

21 | 0.0434782609

20 | 0.0455486542
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Figure 4: The plots for new method

19 | 0.0477225673

18 | 0.0501198649

17 | 0.0527711186

16 | 0.0557193460

15 | 0.0590175409

14 | 0.0627321639

13 | 0.0669477026

12 | 0.0717732536

The plot in Figure 4 shows it is well conditioned.
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