CS514 Fall '00 Numerical Analysis Homework 1 Due date: Sept 12, 2000 (before class)

- 1. Answer the following questions from your text in Chapter 1: Problems: 10, 11, 24, 25, 31, 41.
- 2. (a) Show that the following three schemes can be used to recursively generate the sequence $\{\frac{1}{2^n}\}_{n=0}^{\infty}$.
 - (1) $r_n = (\frac{1}{2})r_{n-1}$, for $n = 1, 2, \cdots$.
 - (2) $p_n = (\frac{\tilde{3}}{2})p_{n-1} (\frac{1}{2})p_{n-2}$, for $n = 2, 3, \cdots$.
 - (3) $p_n = (\frac{5}{2})q_{n-1} q_{n-2}$, for $n = 2, 3, \cdots$.
 - (b) Use MATLAB to generate the first ten numerical approximations to the sequence $\{x_n\} = \{\frac{1}{2^n}\}$ using the schemes in (a):
 - For (1) $r_0 = 0.994$,
 - For (2) $p_0 = 1$ and $p_1 = 0.497$,
 - For (3) $q_0 = 1$ and $_1 = 0.497$.

Produce the numerical results to two tables: one for approximation values and the other for errors. The table formats are as:

Table 1. For approximation values

	n	x	r		р	 q
Table :	1 2. For err	\dots rors, $ x_n $ -	 $-r_n , x_n $	 $-p_n , a$	\dots and $ x_n $	$ $ $-q_n $
	n	x-r		х-р		x-q
	1 		 			

- (c) Use MATLAB to plot the errors of the three schemes and indicate which scheme is stable or unstable.
- 3. (a) Consider the evaluation of $I_n = \int_0^1 x^n e^{x-1} dx$, for some n > 1. Note that $I_1 = \frac{1}{e} \approx 0.3678794$. Please show that I_n can be evaluated recursively by

$$I_n = 1 - nI_{n-1}$$

(b) Use MATLAB to evaluate I_{12} , output the results to a table,

n	In
1	

plot the result, and discuss its condition (ill-condition or well-condition).

(c) Above method seems ill-conditioned, how to improve it? Also, write a MATLAB program to output the results in a table (i.e. record each iteration result to the table) and plot it. Discuss why the new method is better.