Graph Traversals

- Depth-First Search
- Breadth-First Search
Exploring a Labyrinth Without Getting Lost

• A depth-first search (DFS) in an undirected graph G is like wandering in a labyrinth with a string and a can of red paint without getting lost.

• We start at vertex \(s \), tying the end of our string to the point and painting \(s \) “visited”. Next we label \(s \) as our current vertex called \(u \).

• Now we travel along an arbitrary edge \((u,v)\).

• If edge \((u,v)\) leads us to an already visited vertex \(v \) we return to \(u \).

• If vertex \(v \) is unvisited, we unroll our string and move to \(v \), paint \(v \) “visited”, set \(v \) as our current vertex, and repeat the previous steps.

• Eventually, we will get to a point where all incident edges on \(u \) lead to visited vertices. We then backtrack by unrolling our string to a previously visited vertex \(v \). Then \(v \) becomes our current vertex and we repeat the previous steps.
Exploring a Labyrinth Without Getting Lost (cont.)

- Then, if we all incident edges on v lead to visited vertices, we backtrack as we did before. We continue to backtrack along the path we have traveled, finding and exploring unexplored edges, and repeating the procedure.

- When we backtrack to vertex s and there are no more unexplored edges incident on s, we have finished our DFS search.
Algorithm DFS(\(v\));

Input: A vertex \(v\) in a graph

Output: A labeling of the edges as “discovery” edges and “backedges”

for each edge \(e\) incident on \(v\) do

if edge \(e\) is unexplored then

let \(w\) be the other endpoint of \(e\)

if vertex \(w\) is unexplored then

label \(e\) as a discovery edge

recursively call \(\text{DFS}(w)\)

else

label \(e\) as a backedge
Graph Traversals
Depth-First Search (cont.)

e)

```
A      B      C      D
E      F      G      H
I      J      K      L
M      N      O      P
```

f)

```
A      B      C      D
E      F      G      H
I      J      K      L
M      N      O      P
```
DFS Properties

- Proposition 9.12: Let G be an undirected graph on which a DFS traversal starting at a vertex s has been performed. Then:
 1) The traversal visits all vertices in the connected component of s
 2) The discovery edges form a spanning tree of the connected component of s

- Justification of 1):
 - Let’s use a contradiction argument: suppose there is at least one vertex v not visited and let w be the first unvisited vertex on some path from s to v.
 - Because w was the first unvisited vertex on the path, there is a neighbor u that has been visited.
 - But when we visited u we must have looked at edge(u, w). Therefore w must have been visited.
 - and justification

- Justification of 2):
 - We only mark edges from when we go to unvisited vertices. So we never form a cycle of discovery edges, i.e. discovery edges form a tree.
 - This is a spanning tree because DFS visits each vertex in the connected component of s
Running Time Analysis

• Remember:
 - DFS is called on each vertex exactly once.
 - For every edge is examined exactly twice, once from each of its vertices

• For n_s vertices and m_s edges in the connected component of the vertex s, a DFS starting at s runs in $O(n_s + m_s)$ time if:
 - The graph is represented in a data structure, like the adjacency list, where vertex and edge methods take constant time
 - Marking the vertex as explored and testing to see if a vertex has been explored takes $O(1)$
 - We have a way of systematically considering the edges incident on the current vertex so we do not examine the same edge twice.
Marking Vertices

• Let’s look at ways to mark vertices in a way that satisfies the above condition.

• Extend vertex positions to store a variable for marking

• Use a hash table mechanism which satisfies the above condition is the probabilistic sense, because it supports the mark and test operations in $O(1)$ expected time
The Template Method Pattern

- the **template method** pattern provides a *generic computation mechanism* that can be specialized by redefining certain steps

- to apply this pattern, we design a class that
 - implements the **skeleton** of an algorithm
 - invokes auxiliary methods that can be redefined by its subclasses to perform useful computations

Benefits
- makes the correctness of the specialized computations rely on that of the skeleton algorithm
- demonstrates the power of class inheritance
- provides code reuse
- encourages the development of generic code

Examples
- *generic traversal of a binary tree* (which includes preorder, inorder, and postorder) and its applications
- *generic depth-first search of an undirected graph* and its applications
Generic Depth First Search

```java
public abstract class DFS {
    protected Object dfsVisit(Vertex v) {
        protectedInspectableGraph graph;
        protected Object visitResult;
        initResult();
        startVisit(v);
        mark(v);
        for (Enumeration inEdges = graph.incidentEdges(v);
            inEdges.hasMoreElements();) {
            Edge nextEdge = (Edge) inEdges.nextElement();
            if (!isMarked(nextEdge)) { // found an unexplored edge
                mark(nextEdge);
                Vertex w = graph.opposite(v, nextEdge);
                if (!isMarked(w)) { // discovery edge
                    mark(nextEdge);
                    traverseDiscovery(nextEdge, v);
                    if (!isDone())
                        visitResult = dfsVisit(w); }
                else // back edge
                    traverseBack(nextEdge, v); }
        }
        finishVisit(v);
        return result();
    }
}
```
Auxiliary Methods of the Generic DFS

```java
public Object execute(InspectableGraph g, Vertex start, Object info) {
    graph = g;
    return null;
}

protected void initResult() {}

protected void startVisit(Vertex v) {}

protected void traverseDiscovery(Edge e, Vertex from) {}

protected void traverseBack(Edge e, Vertex from) {}

protected boolean isDone() { return false; }

protected void finishVisit(Vertex v) {}

protected Object result() { return new Object(); }
```
Specializing the Generic DFS

• class FindPath specializes DFS to return a path from vertex start to vertex target.

```java
public class FindPath extends DFS {
    protected Sequence path;
    protected boolean done;
    protected Vertex target;

    public Object execute(InspectableGraph g, Vertex start, Object info) {
        super.execute(g, start, info);
        path = new NodeSequence();
        done = false;
        target = (Vertex) info;
        dfsVisit(start);
        return path.elements();
    }

    protected void startVisit(Vertex v) {
        path.insertFirst(v);
        if (v == target) { done = true; }
    }

    protected void finishVisit(Vertex v) {
        if (!done) path.remove(path.first());
    }

    protected boolean isDone() { return done; }
}
```
Other Specializations of the Generic DFS

- **FindAllVertices** specializes DFS to return an enumeration of the vertices in the connected component containing the start vertex.

```java
class FindAllVerticesDFS extends DFS {
    protected Sequence vertices;
    public Object execute(InspectableGraph g, Vertex start, Object info) {
        super.execute(g, start, info);
        vertices = new NodeSequence();
        dfsVisit(start);
        return vertices.elements();
    }

    public void startVisit(Vertex v) {
        vertices.insertLast(v);
    }
}
```
More Specializations of the Generic DFS

- **ConnectivityTest** uses a specialized DFS to test if a graph is connected.

```java
public class ConnectivityTest {
    protected static DFS tester = new FindAllVerticesDFS();
    public static boolean isConnected(InspectableGraph g) {
        if (g.numVertices() == 0) return true; //empty is connected
        Vertex start = (Vertex)g.vertices().nextElement();
        Enumeration compVerts =
            (Enumeration)tester.execute(g, start, null);
        // count how many elements are in the enumeration
        int count = 0;
        while (compVerts.hasMoreElements()) {
            compVerts.nextElement();
            count++;
        }
        if (count == g.numVertices()) return true;
        return false;
    }
}
```
Another Specialization of the Generic DFS

- **FindCycle** specializes **DFS** to determine if the connected component of the **start** vertex contains a **cycle**, and if so return it.

```java
public class FindCycleDFS extends DFS {
    protected Sequence path;
    protected boolean done;
    protected Vertex cycleStart;
    public Object execute(InspectableGraph g, Vertex start, Object info) {
        super.execute(g, start, info);
        path = new NodeSequence();
        done = false;
        dfsVisit(start);
        //copy the vertices up to cycleStart from the path to //the cycle sequence.
        Sequence theCycle = new NodeSequence();
        Enumeration pathVerts = path.elements();
```
while (pathVerts.hasMoreElements()) {
 Vertex v = (Vertex)pathVerts.nextElement();
 theCycle.insertFirst(v);
 if (v == cycleStart) {
 break;
 }
}
return theCycle.elements();
}
protected void startVisit(Vertex v) {
 path.insertFirst(v);
}
protected void finishVisit(Vertex v) {
 if (done) {
 path.remove(path.first());
 }
}
//When a back edge is found, the graph has a cycle
protected void traverseBack(Edge e, Vertex from) {
 Enumeration pathVerts = path.elements();
 cycleStart = graph.opposite(from, e);
 done = true;
}
protected boolean isDone() {
 return done;
}
Breadth-First Search

- Like DFS, a Breadth-First Search (BFS) traverses a connected component of a graph, and in doing so defines a spanning tree with several useful properties

- The starting vertex s has level 0, and, as in DFS, defines that point as an “anchor.”
- In the first round, the string is unrolled the length of one edge, and all of the edges that are only one edge away from the anchor are visited.
- These edges are placed into level 1
- In the second round, all the new edges that can be reached by unrolling the string 2 edges are visited and placed in level 2.
- This continues until every vertex has been assigned a level.
- The label of any vertex v corresponds to the length of the shortest path from s to v.
BFS - A Graphical Representation

a)

b)

c)
d)

Graph Traversals
More BFS
Algorithm BFS\((s) \):
Input: A vertex \(s \) in a graph
Output: A labeling of the edges as “discovery” edges and “cross edges”
initialize container \(L_0 \) to contain vertex \(s \)
\(i \leftarrow 0 \)
while \(L_i \) is not empty do
create container \(L_{i+1} \) to initially be empty
for each vertex \(v \) in \(L_i \) do
if edge \(e \) incident on \(v \) do
let \(w \) be the other endpoint of \(e \)
if vertex \(w \) is unexplored then
label \(e \) as a discovery edge
insert \(w \) into \(L_{i+1} \)
else
label \(e \) as a cross edge
\(i \leftarrow i + 1 \)
Properties of BFS

• **Proposition:** Let G be an undirected graph on which a BFS traversal starting at vertex s has been performed. Then
 - The traversal visits all vertices in the connected component of s.
 - The discovery-edges form a spanning tree T, which we call the BFS tree, of the connected component of s.
 - For each vertex v at level i, the path of the BFS tree T between s and v has i edges, and any other path of G between s and v has at least i edges.
 - If (u, v) is an edge that is not in the BFS tree, then the level numbers of u and v differ by at most one.

• **Proposition:** Let G be a graph with n vertices and m edges. A BFS traversal of G takes time $O(n + m)$. Also, there exist $O(n + m)$ time algorithms based on BFS for the following problems:
 - Testing whether G is connected.
 - Computing a spanning tree of G
 - Computing the connected components of G
 - Computing, for every vertex v of G, the minimum number of edges of any path between s and v.