GRAPHS

• Definitions

• The Graph ADT

• Data structures for graphs
What is a Graph?

• A graph $G = (V, E)$ is composed of:

 V: set of *vertices*

 E: set of *edges* connecting the *vertices* in V

• An edge $e = (u, v)$ is a pair of *vertices*

• Example:

 $V = \{a, b, c, d, e\}$

 $E = \{(a, b), (a, c), (a, d), (b, e), (c, d), (c, e), (d, e)\}$
Applications

• electronic circuits

find the path of least resistance to CS16

• networks (roads, flights, communications)
mo’ better examples
A Spike Lee Joint Production

- scheduling (project planning)

A typical student day

wake up → eat → work → more cs16 → play → cs16 program → make cookies for cs16 HTA → sleep → dream of cs16 → cxhextris
Graph Terminology

- **adjacent vertices**: connected by an edge
- **degree (of a vertex)**: # of adjacent vertices
 \[\sum \text{deg}(v) = 2(\# \text{ edges}) \quad v \in V \]

- Since adjacent vertices each count the adjoining edge, it will be counted twice

path: sequence of vertices \(v_1, v_2, \ldots, v_k\) such that consecutive vertices \(v_i\) and \(v_{i+1}\) are adjacent.
More Graph Terminology

• **simple path**: no repeated vertices

- $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e$

• **cycle**: simple path, except that the last vertex is the same as the first vertex

- $a \rightarrow c \rightarrow d \rightarrow a$

- $b \rightarrow e \rightarrow c$
Even More Terminology

• **connected graph**: any two vertices are connected by some path

 ![Connected and Not Connected Graphs]

 - Connected
 - Not Connected

• **subgraph**: subset of vertices and edges forming a graph

• **connected component**: maximal connected subgraph. E.g., the graph below has 3 connected components.

 ![Connected Components Diagram]
¡Caramba! Another Terminology Slide!

- **(free) tree** - connected graph without cycles
- **forest** - collection of trees
Connectivity

Let \(n = \#\text{vertices} \)
\[m = \#\text{edges} \]

- complete graph - all pairs of vertices are adjacent

\[m = \frac{1}{2} \sum_{v \in V} \deg(v) = \frac{1}{2} \sum_{v \in V} (n - 1) = \frac{n(n-1)}{2} \]

• Each of the \(n \) vertices is incident to \(n - 1 \) edges, however, we would have counted each edge twice!!! Therefore, intuitively, \(m = \frac{n(n-1)}{2} \).

• Therefore, if a graph is not complete, \(m < \frac{n(n-1)}{2} \).
More Connectivity

\[n = \text{#vertices} \]
\[m = \text{#edges} \]

- For a tree \(m = n - 1 \)

\[n = 5 \]
\[m = 4 \]

- If \(m < n - 1 \), \(G \) is not connected

\[n = 5 \]
\[m = 3 \]
Spanning Tree

• A **spanning tree** of G is a subgraph which
 - is a tree
 - contains all vertices of G

• Failure on any edge disconnects system (least fault tolerant)
AT&T vs. RT&T

(Roberto Tamassia & Telephone)

- Roberto wants to call the TA’s to suggest an extension for the next program...

But Plant-Ops ‘accidentally’ cuts a phone cable!!!

- One fault will disconnect part of graph!!
- A cycle would be more fault tolerant and only requires n edges
Euler and the Bridges of Koenigsberg

Consider if you were a UPS driver, and you didn’t want to retrace your steps.

In 1736, Euler proved that this is not possible.
Graph Model (with parallel edges)

- Eulerian Tour: path that traverses every edge exactly once and returns to the first vertex
- Euler’s Theorem: A graph has a Eulerian Tour if and only if all vertices have even degree
- Do you find such ideas interesting?
- Would you enjoy spending a whole semester doing such proofs?

Well, look into CS22!
if you dare...
The Graph ADT

- The **Graph ADT** is a *positional container* whose positions are the vertices and the edges of the graph.

- **size()** Return the number of vertices plus the number of edges of G.
- **isEmpty()**
- **elements()**
- **positions()**
- **swap()**
- **replaceElement()**

Notation: Graph G; Vertices v, w; Edge e; Object o

- **numVertices()**
 Return the number of vertices of G.
- **numEdges()**
 Return the number of edges of G.
- **vertices()** Return an enumeration of the vertices of G.
- **edges()** Return an enumeration of the edges of G.
The Graph ADT (contd.)

- directedEdges()
 Return an enumeration of all directed edges in G.

- undirectedEdges()
 Return an enumeration of all undirected edges in G.

- incidentEdges(v)
 Return an enumeration of all edges incident on v.

- inIncidentEdges(v)
 Return an enumeration of all the incoming edges to v.

- outIncidentEdges(v)
 Return an enumeration of all the outgoing edges from v.

- opposite(v, e)
 Return an endpoint of e distinct from v.

- degree(v)
 Return the degree of v.

- inDegree(v)
 Return the in-degree of v.

- outDegree(v)
 Return the out-degree of v.
More Methods ...

- **adjacentVertices(ν)**
 Return an enumeration of the vertices adjacent to ν.

- **inAdjacentVertices(ν)**
 Return an enumeration of the vertices adjacent to ν along incoming edges.

- **outAdjacentVertices(ν)**
 Return an enumeration of the vertices adjacent to ν along outgoing edges.

- **areAdjacent(ν, w)**
 Return whether vertices ν and w are adjacent.

- **endVertices(e)**
 Return an array of size 2 storing the end vertices of e.

- **origin(e)**
 Return the end vertex from which e leaves.

- **destination(e)**
 Return the end vertex at which e arrives.

- **isDirected(e)**
 Return true iff e is directed.
Update Methods

- **makeUndirected**(*e*)
 Set *e* to be an undirected edge.

- **reverseDirection**(*e*)
 Switch the origin and destination vertices of *e*.

- **setDirectionFrom**(*e*, *v*)
 Sets the direction of *e* away from *v*, one of its end vertices.

- **setDirectionTo**(*e*, *v*)
 Sets the direction of *e* toward *v*, one of its end vertices.

- **insertEdge**(*v*, *w*, *o*)
 Insert and return an undirected edge between *v* and *w*, storing *o* at this position.

- **insertDirectedEdge**(*v*, *w*, *o*)
 Insert and return a directed edge between *v* and *w*, storing *o* at this position.

- **insertVertex**(*o*)
 Insert and return a new (isolated) vertex storing *o* at this position.

- **removeEdge**(*e*)
 Remove edge *e*.
Data Structures for Graphs

• A Graph! How can we represent it?

• To start with, we store the vertices and the edges into two containers, and we store with each edge object references to its endvertices

• Additional structures can be used to perform efficiently the methods of the Graph ADT
Edge List

- The **edge list** structure simply stores the vertices and the edges into unsorted sequences.
- Easy to implement.
- Finding the edges incident on a given vertex is inefficient since it requires examining the entire edge sequence.
Performance of the Edge List Structure

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>size, isEmpty, replaceElement, swap</td>
<td>O(1)</td>
</tr>
<tr>
<td>numVertices, numEdges</td>
<td>O(1)</td>
</tr>
<tr>
<td>vertices</td>
<td>O(n)</td>
</tr>
<tr>
<td>edges, directedEdges, undirectedEdges</td>
<td>O(m)</td>
</tr>
<tr>
<td>elements, positions</td>
<td>O(n+m)</td>
</tr>
<tr>
<td>endVertices, opposite, origin, destination, isDirected, degree, inDegree, outDegree</td>
<td>O(1)</td>
</tr>
<tr>
<td>incidentEdges, inIncidentEdges, outIncidentEdges, adjacentVertices, inAdjacentVertices, outAdjacentVertices, areAdjacent</td>
<td>O(m)</td>
</tr>
<tr>
<td>insertVertex, insertEdge, insertDirectedEdge, removeEdge, makeUndirected, reverseDirection, setDirectionFrom, setDirectionTo</td>
<td>O(1)</td>
</tr>
<tr>
<td>removeVertex</td>
<td>O(m)</td>
</tr>
</tbody>
</table>
Adjacency List (traditional)

- adjacency list of a vertex v: sequence of vertices adjacent to v
- represent the graph by the adjacency lists of all the vertices

Space = $\Theta(N + \sum \text{deg}(v)) = \Theta(N + M)$
Adjacency List
(modern)

• The **adjacency list** structure extends the edge list structure by adding **incidence containers** to each vertex.

• The space requirement is $O(n + m)$.
<table>
<thead>
<tr>
<th>Operation</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>size, isEmpty, replaceElement, swap</td>
<td>O(1)</td>
</tr>
<tr>
<td>numVertices, numEdges</td>
<td>O(1)</td>
</tr>
<tr>
<td>vertices</td>
<td>O(n)</td>
</tr>
<tr>
<td>edges, directedEdges, undirectedEdges</td>
<td>O(m)</td>
</tr>
<tr>
<td>elements, positions</td>
<td>O(n+m)</td>
</tr>
<tr>
<td>endVertices, opposite, origin, destination, isDirected, degree, inDegree, outDegree</td>
<td>O(1)</td>
</tr>
<tr>
<td>incidentEdges(v), inIncidentEdges(v), outIncidentEdges(v), adjacentVertices(v), inAdjacentVertices(v), outAdjacentVertices(v)</td>
<td>O(deg(v))</td>
</tr>
<tr>
<td>areAdjacent(u, v)</td>
<td>O(min(deg(u), deg(v)))</td>
</tr>
<tr>
<td>insertVertex, insertEdge, insertDirectedEdge, removeEdge, makeUndirected, reverseDirection,</td>
<td>O(1)</td>
</tr>
<tr>
<td>removeVertex(v)</td>
<td>O(deg(v))</td>
</tr>
</tbody>
</table>

Performance of the Adjacency List Structure
• matrix \(M \) with entries for all pairs of vertices

• \(M[i,j] = \text{true} \) means that there is an edge \((i,j)\) in the graph.

• \(M[i,j] = \text{false} \) means that there is no edge \((i,j)\) in the graph.

• There is an entry for every possible edge, therefore:
 \[\text{Space} = \Theta(N^2) \]
Adjacency Matrix (modern)

- The adjacency matrix structures augments the edge list structure with a matrix where each row and column corresponds to a vertex.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ø</td>
<td>Ø</td>
<td>NW 35</td>
<td>Ø</td>
<td>DL 247</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>1</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>AA 49</td>
<td>Ø</td>
<td>DL 335</td>
<td>Ø</td>
</tr>
<tr>
<td>2</td>
<td>Ø</td>
<td>AA 1387</td>
<td>Ø</td>
<td>Ø</td>
<td>AA 903</td>
<td>Ø</td>
<td>TW 45</td>
</tr>
<tr>
<td>3</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>UA 120</td>
<td>Ø</td>
</tr>
<tr>
<td>4</td>
<td>Ø</td>
<td>AA 523</td>
<td>Ø</td>
<td>AA 411</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>5</td>
<td>Ø</td>
<td>UA 877</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>6</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
</tbody>
</table>

- The space requirement is $O(n^2 + m)$
Performance of the Adjacency Matrix Structure

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>size, isEmpty, replaceElement, swap</td>
<td>O(1)</td>
</tr>
<tr>
<td>numVertices, numEdges</td>
<td>O(1)</td>
</tr>
<tr>
<td>vertices</td>
<td>O(n)</td>
</tr>
<tr>
<td>edges, directedEdges, undirectedEdges</td>
<td>O(m)</td>
</tr>
<tr>
<td>elements, positions</td>
<td>O(n+m)</td>
</tr>
<tr>
<td>endVertices, opposite, origin, destination, isDirected, degree, inDegree, outDegree</td>
<td>O(1)</td>
</tr>
<tr>
<td>incidentEdges, inIncidentEdges, outIncidentEdges, adjacenentVertices, inAdjacentVertices, outAdjacentVertices,</td>
<td>O(n)</td>
</tr>
<tr>
<td>areAdjacent</td>
<td>O(1)</td>
</tr>
<tr>
<td>insertEdge, insertDirectedEdge, removeEdge, makeUndirected, reverseDirection, setDirectionFrom, setDirectionTo</td>
<td>O(1)</td>
</tr>
<tr>
<td>insertVertex, removeVertex</td>
<td>O(n^2)</td>
</tr>
</tbody>
</table>