Ox STRIX

=anl X SO T

CS 16: Radix Sort

Radix Sort

e Unlike other sorting methods, radix sort
considers the structure of the keys

« Assume keys are represented in a base
number system (M radix), i.e., If M= 2,
the keys are represented in binary

8 4 2 1 weight
9O=1001 (=9
3 2 1 0 bit #

e Sorting Is done by comparing bits in the
same position

e Extension to keys that are alphanumerig
strings

dnc 148 .

CS 16: Radix Sort

Radix Exchange Sort
Examine bits froneft to right:

1. Sort array with respect to leftmost bit

1 0
1 0
0 —— | |
1 1
0 1

2. Partition array

5 0 (top

0 0 subarray

1 ﬁ

% i (bottom
1 subarray

3. Becursion

 recursively sort top subarray,
ignoring leftmost bit

 recursively sort bottom subarray,
ignoring leftmost bit

Time: O(b N)

dnc 149 e

CS 16: Radix Sort

Radix Exchange Sort

How do we do the sort from the previous page?
Same idea agartition inQuicksort
repeat

scan top-down to find key starting with 1;
scan bottom-up to find key starting with O;

exchange keys;
until scan indices Cross;

scan from top

1 0
1 1
0 0
1 1
(0 first 1
scan from bottom exchange

scan from top

0 0
; X
0 1
. second
exchange

scan from bottom

dnc 150 e

CS 16: Radix Sort

Radix Exchange Sort

O
O
array before softy @
O
O
° 2b-1
O
® W array after sort
o on leftmost bit
array after recursive . ®
sort on second frorp
leftmost bit
O

dnc 151

CS 16: Radix Sort

Radix Exchange Sort vs.
Quicksort

Similarities
* both partition array
* both recursively sort sub-arrays

Differences

* Method of partitioning

 radix exchange divides array based «
greater than or less thaf

e quicksort partitions based on greater

than or less than some element of the
ray
e Time complexity
* Radix exchange O (bN)

e Quicksort average case O (N log N
e Quicksort worst case O N

N

dnc 152 .

DN

ar-

CS 16: Radix Sort

Straight Radix Sort

Examines bits fronnight to left

for k:=0 to b-1
sort the array in a stableway,

looking only at bit k
First,

Next, sort
fr?ertse these digits ![_hags;é.sort

O
ol1lo! lol1lo] |ololo| [o]olo
ololol lololo] |1]o]o| |ofo|1
1/ol1]! |1lo]lo| '1]o]1| lo|1]o
olol1 |1]1|o| |ololz| [o]1]|2
1/1]1] |1lo]a] 'o]a]o| [1|olo
ol111! lolola]| [1]2]o] [1]o]2
1lolol [1l2]a] 2]a]a] |alzlo
110 |o/1]z] |o]zf1] |2]1]1

Note order of these bits after sort.

dnc 153

CS 16: Radix Sort

| forgot what it means to “sort
In a stable way”!!!

In a stable sort, the initial relative order of equ

keys Is unchanged.

For example, observe the first step of the sor

from the previous page:

1

0

OlR|kR|[F|FL|O

il el el) o)
R IOk |k IO OO

0

Note that the relative order of those keys end
with O is unchanged, and the same is true for
ments ending in 1

PR IOFk|k|Ik|lO|O

0

== e =R I

e el el e

al

[guen ol

Ing
B|e-

154

CS 16: Radix Sort

The Algorithm is Correct
(right?)

« WWe show that any two keys are in the cqr-
rect relative order at the end of the algo-
rithm

e Given two keys, letk be the leftmost bit-
position where they differ

0/1(1|0]1
K

» At stepk the two keys are put in the correct
relative order

» Because offability, the successive steps ¢lo
not change the relative order of the two

keys

155 o

CS 16: Radix Sort

For Instance,

Consider a sort on an array with these two ke

010|111

yS:

0[1]1]0]1]

It makes no difference what order

I . .
they are in when the sort begins.

0/1]0]1|1

0[1/0]1]1]

When the sort visits bk,
the keys are put in the cor- - ———
rect relative order. ol1l1lol1

10]1]0]1]1] Because the sort is stable, the
order of the two keys will not
be changed when bitsk>are
0{1]1]|0|1| compared.

dnc 156 e

CS 16: Radix Sort

Radix sorting can be applied
to decimal numbers

First, sort Next, sort Last, sort
these digits these digits these.

ol

—

0/3/2| |0 ofi1|s| |0|1|5
21214 |0 ol1l6 |oj1]6
0/1/6] |2 1/2|3] |0]3]1
0/1|5] |1 2|2[4] |0]3]|2
0/3/1] |2 0[3[1] |1]2|3
1/6/9| |0 0[3|2] |1]6]9
123 |0 2|5(2] |2]|2/4
2/5/2] |1 116/9] |2]5]|2
} } }
Note order of these bits after sort.

Voilal

157 .

CS 16: Radix Sort

Straight Radix Sort
Time Complexity

for k:=0 tob-1
sort the array in atableway,
looking only at bit k

Suppose we can perform the stable sort abov
O(N) time. The total time complexity would b

O(bN).

As you might have guessed, we can perform
stable sort based on the kek® digit in O(N)

time.

The method, you ask? Why igicket Sor;of

course.

s

e in

dnc 158

CS 16: Radix Sort

Bucket Sort

N numbers

« Each numbetl {1, 2, 3, ... M}
e Stable

 Time: O (N+ M)

For example, M= 3 and our array Is:

211(3|1]|2

(note that there are two “2”s and two “1”s)

First, we create M “buckets”

1

dnc 159

CS 16: Radix Sort

Bucket Sort

Each element of the array is put in one of the
“buckets”

2] [1 1] [2
1
‘1 . [1][3] [1] [2
2 4
—
1| »
3
2 | |2 3
3|
1] |2
43
1 [F=[1]=~[1] \.
2 (2L |9 Now each element is
in the proper bucket:
3 — 1 11

2 >)|

3 B

dnc 160 e

CS 16: Radix Sort

Now, pull the elements from the buckets into t

array

Bucket Sort

At last, the sorted array (sorted igfable way):

1

1

2

2

ne

dnc

161

