Hashing

What is it?

A form of narcotic intake?

A side order for your eggs?

A combination of the two?
Problem

- RT&T is a large phone company, and they want to provide caller ID capability:
 - given a phone number, return the caller’s name
 - phone numbers are in the range $R=0$ to 10^7-1
 - want to do this as efficiently as possible ($$$)

- A few suboptimal ways to design this dictionary:
 - an array indexed by key: takes $O(1)$ time, $O(N+R)$ space -- huge amount of wasted space

<table>
<thead>
<tr>
<th>(null)</th>
<th>(null)</th>
<th>...</th>
<th>Roberto</th>
<th>...</th>
<th>(null)</th>
</tr>
</thead>
<tbody>
<tr>
<td>000-0000</td>
<td>000-0001</td>
<td>...</td>
<td>863-7639</td>
<td>...</td>
<td>999-9999</td>
</tr>
</tbody>
</table>

- a linked list: takes $O(N)$ time, $O(N)$ space

- a balanced binary tree: $O(lg N)$ time, $O(N)$ space
 (you want fancy pictures here too? so read the slides from the RedBlack help session).
Another Solution

• We can do better, with a *Hashtable* -- $O(1)$ expected time, $O(N+M)$ space, where M is table size

• Like an array, but come up with a function to map the large range into one which we can manage
 - e.g., take the original key, modulo the (relatively small) size of the array, and use that as an index

• Insert (863-7639, Roberto) into a hashed array with, say, five slots
 - $8637639 \mod 5 = 4$, so (863-7639, Roberto) goes in slot 4 of the hash table

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(null)</td>
<td>(null)</td>
<td>(null)</td>
<td>(null)</td>
<td>Roberto</td>
</tr>
</tbody>
</table>

• A lookup uses the same process: hash the query key, then check the array at that slot

• Insert (863-9350, Gordon)

• And insert (863-2234, Gordon). Don’t skip this example!
Collision Resolution

• How to deal with two keys which hash to the same spot in the array?

• Use *chaining*
 - Set up an array of links (a *table*), indexed by the keys, to *lists* of items with the same key

• Most efficient (time-wise) collision resolution
 - we’ll talk about others later which use less space
Pseudo-code

- Any dictionary has 3 basic methods, and the constructor:
 - init
 - insert
 - find
 - remove

- Init
 - create table of M lists

- Insert(K)
 - index = h(K)
 - insert into table[index]

- Find(K)
 - index = h(K)
 - walk down list at table[index], looking for a match
 - return what was found (or error)

- Remove(K)
 - index = h(K)
 - walk down list at table[index], looking for a match
 - remove what was found (or error)
Hash Functions

• Need to choose a good hash function
 - quick to compute
 - distributes keys uniformly throughout the table

• How to deal with hashing non-integer keys:
 - find some way of turning the keys into integers
 - in our example, remove the hyphen in 863-7639 to get 8637639!
 - for a string, add up the ASCII values of the characters of your string
 - then use a standard hash function on the integers

• Use the remainder
 - \(h(K) = K \mod M \)
 - \(K \) is the key, \(M \) the size of the table

• Need to choose \(M \)

• \(M = b^e \) (bad)
 - if \(M \) is a power of two, \(h(K) \) gives the \(e \) least significant bits of \(K \)
 - all keys with the same ending go to the same place

• \(M \) prime (good)
 - helps ensure uniform distribution
 - take a number theory class to understand why
Hash Functions (cont.)

• Mid-Square
 - \(h(K) = \) middle digits of \(K^2 \)

• I.E. Table size power of 10
 - \(h(4150130) = 21526 \ 4436 \ 17100 \)
 - \(h(415013034) = 526447 \ 3522 \ 151420 \)
 - \(h(1150130) = 13454 \ 2361 \ 7100 \)

• I.E. Table power is power of 2
 - \(h(1001) = 10 \ 100 \ 01 \)
 - \(h(1011) = 11 \ 110 \ 01 \)
 - \(h(1101) = 101 \ 010 \ 01 \)
More on Collisions

• A key is mapped to an already occupied table location
 - what to do?!?

• Use a collision handling technique

• We’ve seen *Chaining*

• Can also use *Open Addressing*
 - Double Hashing
 - Linear Probing

Man, that’s a lot of hash!
Watch out for the legal probe
Linear Probing

- If the current location is used, try the next table location

```python
linear_probing_insert(K)
    if (table is full) error

    probe = h(K)

    while (table[probe] occupied)
        probe = (probe + 1) mod M

    table[probe] = K
```

- Lookups walk along table until the key or an empty slot is found
- Uses less memory than chaining
 - don’t have to store all those links
- Slower than chaining
 - may have to walk along table for a long way
- A real pain to delete from
 - either mark the deleted slot
 - or fill in the slot by shifting some elements down
Linear Probing Example

- \(h(K) = K \mod 13 \)
- Insert keys:

18 41 22 44 59 32 31 73
Double Hashing

• Use two hash functions

• If \(M \) is prime, eventually will examine every position in the table

\[
\text{double_hash_insert}(K)
\]
\[
\text{if(table is full) error}
\]

\[
\text{probe} = h_1(K)
\]
\[
\text{offset} = h_2(K)
\]

\[
\text{while (table[probe] occupied)}
\]
\[
\text{probe} = (\text{probe} + \text{offset}) \mod M
\]

\[
\text{table[probe]} = K
\]

• Many of same (dis)advantages as linear probing

• Distributes keys more uniformly than linear probing does
Double Hashing Example

- \(h_1(K) = K \mod 13 \)
 \(h_2(K) = 8 - K \mod 8 \)
 - we want \(h_2 \) to be an offset to add

18 41 22 44 59 32 31 73
Theoretical Results

- Let $\alpha = \frac{N}{M}$
 - the load factor: average number of keys per array index
- Analysis is probabilistic, rather than worst-case

Expected Number of Probes

<table>
<thead>
<tr>
<th>Method</th>
<th>Not Found</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaining</td>
<td>$1 + \alpha$</td>
<td>$1 + \frac{\alpha}{2}$</td>
</tr>
<tr>
<td>Linear Probing</td>
<td>$\frac{1}{2} + \frac{1}{2(1 - \alpha)^2}$</td>
<td>$\frac{1}{2} + \frac{1}{2(1 - \alpha)}$</td>
</tr>
<tr>
<td>Double Hashing</td>
<td>$\frac{1}{1 - \alpha}$</td>
<td>$\frac{1}{\alpha} \frac{ln}{1 - \alpha}$</td>
</tr>
</tbody>
</table>
Pretty Graph

Expected Number of Probes vs. Load Factor

Number of Probes

Linear Probing

Double Hashing

Chaining

Unsuccessful

Successful