Hashing

What Is it?

A form of narcotic intake?
A side order for your eggs”?

A combination of the two?

Hashing

Problem

« RT&T Is a large phone company, and they want ¢
provide caller ID capability:

- given a phone number, return the caller's name
- phone numbers are in the range R=0 t61L.0
- want to do this as efficiently as possible ($$%)

» A few suboptimal ways to design this dictionary:

- an array indexed by key: takes O(1) time, O(N+H
space -- huge amount of wasted space

(null) (null) |...| Roberto|...| (null)
000-0000 000-0001.. 863-7639. 999-9999

- a linked list: takes O(N) time, O(N) space
863-7639 863-9350

e . —
Roberto Gordon

- a balanced binary tree: O(lg N) time, O(N) spac
(you want fancy pictures here too? so read the
slides from the RedBlack help session).

e

Hashing 2

Another Solution

* \We can do better, with Hashtable-- O(1) expected
time, O(N+M) space, where M is table size

 Like an array, but come up with a function to map
the large range into one which we can manage

- e.g., take the original key, modulo the (relatively
small) size of the array, and use that as an inde

* Insert (863-7639, Roberto) into a hashed array wit

say, five slots

- 8637639 mod 5 =4, so (863-7639, Roberto) go
In slot 4 of the hash table

(null) | (null) | (null) | (null) |Roberto
0 1 2 3 4

* A lookup uses the same process: hash the query k

then check the array at that slot
 Insert (863-9350, Gordon)

* And insert (863-2234, Gordon). Don’t skip this
example!

X

SN

e

[

Hashing 3

Collision Resolution

 How to deal with two keys which hash to the samg
spot in the array?

e Usechaining

- Set up an array of links (able), indexed by the
keys, tolists of items with the same key

0 > » 0 | —»{0 || —»]
]__ > >

2_——>V—>2 2 | — 2 |
3_ > >

4_ > 4 —

* Most efficient (time-wise) collision resolution
- we'll talk about others later which use less space

Hashing 4

Pseudo-code

Any dictionary has 3 basic methods, and the
constructor:

Init

Insert

find

remove

INit
create table of M lists

Insert(K)
iIndex = h(K)
Insert into table[index]

Find(K)
iIndex = h(K)
walk down list at table[index], looking for a match
return what was found (or error)

Remove(K)
iIndex = h(K)
walk down list at table[index], lookiing for a match
remove what was found (or error)

Hashing 5

Hash Functions

Need to choose a good hash function
- guick to compute
- distributes keys uniformly throughout the table

How to deal with hashing non-integer keys:

- find some way of turning the keys into integers

- in our example, remove the hyphen in 863-7639 to get 86376

- for a string, add up the ASCII values of the characters of yd
string

- then use a standard hash function on the intege

Use the remainder
- h(K) = K mod M
- K is the key, M the size of the table

Need to choose M

M = b® (bad)
- If M Is a power of two, h(K) gives theleast
significant bits of K

- all keys with the same ending go to the same pl

M prime (good)
- helps ensure uniform distribution
- take a number theory class to understand why

3¢
Jur

al(

Hashing 6

Hash Functions (cont.)

e Mid-Square
- h(K) = middle digits of K

 |.E. Table size power of 10

- h(4150130) = 2152843617100

- h(415013034) = 526443522151420

- h(1150130) = 134523617100
 |.E. Table power is power of 2

- h(1001) = 1010001

- h(1011) = 1111001

- h(1101) = 10101001

Hashing

More on Collisions

« A key iIs mapped to an already occupied table
location

- what to do?!?
e Use a collision handling technigue
« We've seertChaining

e Can also us®pen Addressing
- Double Hashing
- Linear Probing

Man, that's a lot of hash! Watch out for the
legal probe

Hashing

Linear Probing

o If the current location is used, try the next table
location

linear_probing_insert(K)
If (table is full) error

probe = h(K)

while (table[probe] occupied)
probe = (probe + 1) mod M

table[probe] = K

» Lookups walk along table until the key or an empt
slot is found

» Uses less memory than chaining
- don’t have to store all those links

 Slower than chaining
- may have to walk along table for a long way

A real pain to delete from
- either mark the deleted slot
- or fill in the slot by shifting some elements dowr

Hashing 9

Linear Probing Example
 h(K) = K mod 13

* Insert keys:

18 41 22 44 59 32 3173

01 2 34 56 7 8 910 1112

Hashing

10

Double Hashing

e Use two hash functions

 If M Is prime, eventually will examine every
position in the table

double_hash_insert(K)
If(table is full) error

probe = h1(K)
offset = h2(K)

while (table[probe] occupied)
probe = (probe + offset) mod M

table[probe] = K
 Many of same (dis)advantages as linear probing

e Distributes keys more uniformly than linear probin
does

0

Hashing 11

Double Hashing Example

 h1(K) = Kmod 13
h2(K) =8 - Kmod 8
- we want h2 to be an offset to add

18 41 22 44 59 32 31 /3

01 2 34 56 7 8 910 1112

Hashing 12

Theoretical Results
e Leta =N/M

- the load factor: average number of keys per art:

Index

* Analysis is probabilistic, rather than worst-case

Expected Number of Probes

not found found
Chaining 1+a 1+%
Linear Probing %+ L 5 1, 1
2(1-a)” 2 2(1-a)
. 1 1 1
Double Hashing 1—0) alnm

Y

Hashing

13

Pretty Graph

Expected Number of Probes
vs. Load Factor

%

o A

®)

DE_ Linear Probing

© \

O Double Hashing
O

-

S

Z

i

1.0

0.5 1.0

Unsuccessful
Successful

Hashing 14

