
1Hashing

Hashing

 A form of narcotic intake?

 A side order for your eggs?

 A combination of the two?

Hashing

What is it?

2Hashing

Problem
• RT&T is a large phone company, and they want to

provide caller ID capability:
- given a phone number, return the caller’s name
- phone numbers are in the range R=0 to 107-1
- want to do this as efficiently as possible ($$$)

• A few suboptimal ways to design this dictionary:
- an array indexed by key: takes O(1) time, O(N+R)

space -- huge amount of wasted space

- a linked list: takes O(N) time, O(N) space

- a balanced binary tree: O(lg N) time, O(N) space
(you want fancy pictures here too? so read the
slides from the RedBlack help session).

000-0000 000-0001 863-7639... 999-9999

......

...

Roberto(null) (null) (null)

863-9350
Gordon

863-7639
Roberto

3Hashing

Another Solution
• We can do better, with aHashtable-- O(1) expected

time, O(N+M) space, where M is table size

• Like an array, but come up with a function to map
the large range into one which we can manage
- e.g., take the original key, modulo the (relatively

small) size of the array, and use that as an index

• Insert (863-7639, Roberto) into a hashed array with,
say, five slots
- 8637639 mod 5 = 4, so (863-7639, Roberto) goes

in slot 4 of the hash table

• A lookup uses the same process: hash the query key,
then check the array at that slot

• Insert (863-9350, Gordon)

• And insert (863-2234, Gordon). Don’t skip this
example!

0 1

Roberto(null) (null) (null)(null)

2 3 4

4Hashing

Collision Resolution
• How to deal with two keys which hash to the same

spot in the array?

• Usechaining
- Set up an array of links (atable), indexed by the

keys, tolists of items with the same key

• Most efficient (time-wise) collision resolution
- we’ll talk about others later which use less space

0

2

4

0

2 2

0

1

2

3

4

5Hashing

Pseudo-code
• Any dictionary has 3 basic methods, and the

constructor:
init
insert
find
remove

• Init
create table of M lists

• Insert(K)
index = h(K)
insert into table[index]

• Find(K)
index = h(K)
walk down list at table[index], looking for a match
return what was found (or error)

• Remove(K)
index = h(K)
walk down list at table[index], lookiing for a match
remove what was found (or error)

6Hashing

Hash Functions
• Need to choose a good hash function

- quick to compute
- distributes keys uniformly throughout the table

• How to deal with hashing non-integer keys:
- find some way of turning the keys into integers

- in our example, remove the hyphen in 863-7639 to get 8637639!

- for a string, add up the ASCII values of the characters of your
string

- then use a standard hash function on the integers

• Use the remainder
- h(K) = K mod M
- K is the key, M the size of the table

• Need to choose M

• M = be (bad)
- if M is a power of two, h(K) gives thee least

significant bits of K
- all keys with the same ending go to the same place

• M prime (good)
- helps ensure uniform distribution
- take a number theory class to understand why

7Hashing

Hash Functions (cont.)
• Mid-Square

- h(K) = middle digits of K2

• I.E. Table size power of 10
- h(4150130) = 21526 443617100
- h(415013034) = 5264473522 151420
- h(1150130) = 13454 23617100

• I.E. Table power is power of 2
- h(1001) = 10100 01
- h(1011) = 11110 01
- h(1101) = 101010 01

8Hashing

More on Collisions
• A key is mapped to an already occupied table

location
- what to do?!?

• Use a collision handling technique

• We’ve seenChaining

• Can also useOpen Addressing
- Double Hashing
- Linear Probing

Man, that’s a lot of hash! Watch out for the
legal probe

9Hashing

Linear Probing
• If the current location is used, try the next table

location

linear_probing_insert(K)
if (table is full) error

probe = h(K)

while (table[probe] occupied)
probe = (probe + 1) mod M

table[probe] = K

• Lookups walk along table until the key or an empty
slot is found

• Uses less memory than chaining
- don’t have to store all those links

• Slower than chaining
- may have to walk along table for a long way

• A real pain to delete from
- either mark the deleted slot
- or fill in the slot by shifting some elements down

10Hashing

Linear Probing Example
• h(K) = K mod 13

• Insert keys:

73

0 1 2 3 4 5 6 7 8 9 10 11 12

18 41 22 44 59 32 31

85 2 9 5 7 6 5

11Hashing

Double Hashing
• Use two hash functions

• If M is prime, eventually will examine every
position in the table

double_hash_insert(K)
if(table is full) error

probe = h1(K)
offset = h2(K)

while (table[probe] occupied)
probe = (probe + offset) mod M

table[probe] = K

• Many of same (dis)advantages as linear probing

• Distributes keys more uniformly than linear probing
does

12Hashing

Double Hashing Example
• h1(K) = K mod 13

h2(K) = 8 - K mod 8
- we want h2 to be an offset to add

0 1 2 3 4 5 6 7 8 9 10 11 12

18 41 22 44 59 32 31 73

13Hashing

Theoretical Results
• Let α = Ν/Μ

- the load factor: average number of keys per array
index

• Analysis is probabilistic, rather than worst-case

Expected Number of Probes

1 α+ 1 α
2
---+Chaining

Linear Probing
1
2
--- 1

2 1 α–()2
------------------------+ 1

2
--- 1

2 1 α–()
---------------------+

Double Hashing
1

1 α–()
----------------- 1

α
--- ln

1
1 α–

not found found

14Hashing

Pretty Graph

0.5 1.0

Successful
Unsuccessful

Linear Probing

Chaining

Double Hashing

Expected Number of Probes
vs. Load Factor

1.0

N
um

be
r

of
 P

ro
be

s

α

