AVL Trees

- Binary Search Trees
- AVL Trees
Binary Search Trees

- A binary search tree is a binary tree T such that
 - each internal node stores an item (k, e) of a dictionary.
 - keys stored at nodes in the left subtree of v are less than or equal to k.
 - Keys stored at nodes in the right subtree of v are greater than or equal to k.
 - External nodes do not hold elements but serve as placeholders.
Search

• The binary search tree T is a decision tree, where the question asked at an internal node v is whether the search key k is less than, equal to, or greater than the key stored at v.

• Pseudocode:

 Algorithm TreeSearch(k, v):

 Input: A search key k and a node v of a binary search tree T.

 Output: A node w of the subtree $T(v)$ of T rooted at v, such that either w is an internal node storing key k or w is the external node encountered in the inorder traversal of $T(v)$ after all the internal nodes with keys smaller than k and before all the internal nodes with keys greater than k.

 if v is an external node then
 return v

 if $k = \text{key}(v)$ then
 return v

 else if $k < \text{key}(v)$ then
 return TreeSearch($k, T.leftChild(v)$)

 else
 $\{ k > \text{key}(v) \}$
 return TreeSearch($k, T.rightChild(v)$)
Search (cont.)

- A picture:
 - `find(25)`
 - `find(76)`
Insertion in a Binary Search Tree

- Start by calling $\text{TreeSearch}(k, T.root())$ on T. Let w be the node returned by TreeSearch.

- If w is external, we know no item with key k is stored in T. We call $\text{expandExternal}(w)$ on T and have w store the item (k, e).

- If w is internal, we know another item with key k is stored at w. We call $\text{TreeSearch}(k, \text{rightChild}(w))$ and recursively apply this algorithm to the node returned by TreeSearch.
Insertion in a Binary Search Tree (cont.)

• Insertion of an element with key 78:

(a)

(b)
Removal from a Binary Search Tree

- Removal where the key to remove is stored at a node (w) with an external child:
Removal from a Binary Search Tree (cont.)

(b)
Removal from a Binary Search Tree (cont.)

- Removal where the key to remove is stored at a node whose children are both internal:
Removal from a Binary Search Tree (cont.)

(b)
Time Complexity

- Searching, insertion, and removal in a binary search tree is $O(h)$, where h is the height of the tree.

- However, in the worst-case search, insertion, and removal time is $O(n)$, if the height of the tree is equal to n. Thus in some cases searching, insertion, and removal is no better than in a sequence.

- Thus, to prevent the worst case, we need to develop a rebalancing scheme to bound the height of the tree to $\log n$.
AVL Tree

- An AVL Tree is a binary search tree such that for every internal node v of T, the heights of the children of v can differ by at most 1.

- An example of an AVL tree where the heights are shown next to the nodes:
Height of an AVL Tree

- **Proposition**: The height of an AVL tree T storing n keys is $O(\log n)$.

- **Justification**: The easiest way to approach this problem is to try to find the minimum number of internal nodes of an AVL tree of height h: $n(h)$.

 - We see that $n(1) = 1$ and $n(2) = 2$

 - for $n \geq 3$, an AVL tree of height h with $n(h)$ minimal contains the root node, one AVL subtree of height $n-1$ and the other AVL subtree of height $n-2$.

 - i.e. $n(h) = 1 + n(h-1) + n(h-2)$

 - Knowing $n(h-1) > n(h-2)$, we get $n(h) > 2n(h-2)$
 - $n(h) > 2n(h-2)$
 - $n(h) > 4n(h-4)$
 - ...
 - $n(h) > 2^i n(h-2i)$

 - Solving the base case we get: $n(h) \leq 2^{h/2-1}$

 - Taking logarithms: $h < 2\log n(h) + 2$

 - Thus the height of an AVL tree is $O(\log n)$
Insertion

- A binary search tree T is called balanced if for every node v, the height of v’s children differ by at most one.

- Inserting a node into an AVL tree involves performing an \texttt{expandExternal}(w) on T, which changes the heights of some of the nodes in T.

- If an insertion causes T to become unbalanced, we travel up the tree from the newly created node until we find the first node x such that its grandparent z is unbalanced node.

- Since z became unbalanced by an insertion in the subtree rooted at its child y, $\text{height}(y) = \text{height}(\text{ sibling}(y)) + 2$

- To rebalance the subtree rooted at z, we must perform a \textit{restructuring}
 - we rename x, y, and z to a, b, and c based on the order of the nodes in an in-order traversal.
 - z is replaced by b, whose children are now a and c whose children, in turn, consist of the four other subtrees formerly children of x, y, and z.
Insertion (contd.)

- Example of insertion into an AVL tree.
Restructuring

• The four ways to rotate nodes in an AVL tree, graphically represented:

- Single Rotations:
Restructuring (contd.)

- double rotations:

\[
\begin{align*}
&T_0
& \quad a = z
& \quad b = x \\
&T_1
& \quad c = y \\
&T_2
&T_3
\end{align*}
\]

\[
\begin{align*}
&T_0
& \quad a = z
& \quad b = x \\
&T_1
&T_2
& \quad c = y \\
&T_3
\end{align*}
\]

\[
\begin{align*}
&T_3
&T_2
&T_1
&T_0
\end{align*}
\]
Restructuring (contd.)

• In Pseudo-Code:

Algorithm restructure(x):

Input: A node x of a binary search tree T that has both a parent y and a grandparent z

Output: Tree T restructured by a rotation (either single or double) involving nodes x, y, and z.

1. Let (a, b, c) be an inorder listing of the nodes x, y, and z, and let (T_0, T_1, T_2, T_3) be an inorder listing of the four subtrees of x, y, and z not rooted at x, y, or z

2. Replace the subtree rooted at z with a new subtree rooted at b

3. Let a be the left child of b and let T_0, T_1 be the left and right subtrees of a, respectively.

4. Let c be the right child of b and let T_2, T_3 be the left and right subtrees of c, respectively.
Removal

- We can easily see that performing a `removeAboveExternal(w)` can cause T to become unbalanced.

- Let z be the first **unbalanced** node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height.

- We can perform operation `restructure(x)` to restore balance at the subtree rooted at z.

- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached.
Removal (contd.)

- example of deletion from an AVL tree:
Removal (contd.)

- example of deletion from an AVL tree
Implementation

• A Java-based implementation of an AVL tree requires the following node class:

```java
public class AVLItem extends Item {
    int height;

    AVLItem(Object k, Object e, int h) {
        super(k, e);
        height = h;
    }

    public int height() {
        return height;
    }

    public int setHeight(int h) {
        int oldHeight = height;
        height = h;
        return oldHeight;
    }
}
```
Implementation (contd.)

```java
public class SimpleAVLTree
    extends SimpleBinarySearchTree
    implements Dictionary {

    public SimpleAVLTree(Comparator c) {
        super(c);
        T = new RestructurableNodeBinaryTree();
    }

    private int height(Position p) {
        if (T.isExternal(p))
            return 0;
        else
            return ((AVLItem) p.element()).height();
    }

    private void setHeight(Position p) {
        // called only // if p is internal
        // if p is internal
        ((AVLItem) p.element()).setHeight
            (1 + Math.max(height(T.leftChild(p)),
                          height(T.rightChild(p))));
    }
```
private boolean isBalanced(Position p) {
 // test whether node p has balance factor
 // between -1 and 1
 int bf = height(T.leftChild(p)) - height(T.rightChild(p));
 return ((-1 <= bf) && (bf <= 1));
}

private Position tallerChild(Position p) {
 // return a child of p with height no
 // smaller than that of the other child
 if (height(T.leftChild(p)) >= height(T.rightChild(p)))
 return T.leftChild(p);
 else
 return T.rightChild(p);
}
private void rebalance(Position zPos) {
 // traverse the path of T from zPos to the root;
 // for each node encountered recompute its
 // height and perform a rotation if it is
 // unbalanced
 while (!T.isRoot(zPos)) {
 zPos = T.parent(zPos);
 setHeight(zPos);
 if (!isBalanced(zPos)) { // perform a rotation
 Position xPos = tallerChild(tallerChild(zPos));
 zPos = ((RestructurableNodeBinaryTree) T).restructure(xPos);
 setHeight(T.leftChild(zPos));
 setHeight(T.rightChild(zPos));
 setHeight(zPos);
 }
 }
}
public void insertItem(Object key, Object element) throws InvalidKeyException {
 super.insertItem(key, element); // may throw an
 // InvalidKeyException
 Position zPos = actionPos; // start at the
 // insertion position
 T.replace(zPos, new AVLItem(key, element, 1));
 rebalance(zPos);
}

public Object remove(Object key) throws InvalidKeyException {
 Object toReturn = super.remove(key); // may throw
 // an InvalidKeyException
 if (toReturn != NO_SUCH_KEY) {
 Position zPos = actionPos; // start at the
 // removal position
 rebalance(zPos);
 }
 return toReturn;
}