
1AVL Trees

AVL T REES

• Binary Search Trees

• AVL Trees

2AVL Trees

Binary Search Trees
• A binary search tree is a binary tree T such that

- each internal node stores an item (k, e) of a
dictionary.

- keys stored at nodes in the left subtree of v are less
than or equal to k.

- Keys stored at nodes in the right subtree of v are
greater than or equal to k.

- External nodes do not hold elements but serve as
place holders.

97

44

17 88

32 65

54 8228

29 76

80

3AVL Trees

Search
• The binary search treeT is adecision tree, where the

question asked at an internal nodev is whether the
search keyk is less than, equal to, or greater than the
key stored atv.

• Pseudocode:
Algorithm TreeSeach(k, v):

Input : A search keyk and a nodev of a binary search
treeT.

Ouput: A node w of the subtreeT(v) of T rooted atv,
such that either w is an internal node storing
key k or w is the external node encountered in
the inorder traversal ofT(v) after all the inter
nal nodes with keys smaller thank and before
all the internal nodes with keys greater thank.

if v is an external nodethen
return v

if k = key(v) then
return v

else ifk < key(v) then
return TreeSearch(k, T.leftChild(v))

else
{ k > key(v) }
return TreeSearch(k, T.rightChild(v))

4AVL Trees

Search (cont.)
• A picture:

97

44

17 88

32 65

54 8228

29
76

80

find(76)find(25)

5AVL Trees

Insertion in a Binary Search
Tr ee

• Start by callingTreeSearch(k, T.root()) onT. Letw
be the node returned by TreeSearch

• If w is external, we know no item with keyk is
stored inT. We callexpandExternal(w) onT and have
w store the item (k, e)

• If w is internal, we know another item with keyk is
stored atw. We callTreeSearch(k, rightChild(w)) and
recursively apply this alorithm to the node returned
by TreeSearch.

6AVL Trees

Insertion in a Binary Search
Tree (cont.)

• Insertion of an element with key 78:

97

44

17 88

32 65

54 8228

29 76

80

97

44

17 88

32 65

54 8228

29 76

80

78

a)

b)

7AVL Trees

Removal from a Binary Search
Tr ee

• Removal where the key to remove is stored at a node
(w) with an external child:

97

44

17 88

32 65

54 8228

29 76

80

78

(a)

w

8AVL Trees

Removal from a Binary Search
Tree (cont.)

97

44

17 88

65

54 82

28

29

76

80

78

(b)

9AVL Trees

Removal from a Binary Search
Tree (cont.)

• Removal where the key to remove is stroed at a node
whose children are both internal:

97

44

17 88

65

54 82

28

29

76

80

78

(a)

w

10AVL Trees

Removal from a Binary Search
Tree (cont.)

97

44

17 88

76

54 82

28

29

80

78

(b)

w

11AVL Trees

Time Complexity
• Searching, insertion, and removal in a binary search

tree isO(h), whereh is the height of the tree.

• However, in the worst-case search, insertion, and
removal time isO(n), if the height of the tree is
equal ton. Thus in some cases searching, insertion,
and removal is no better than in a sequence.

• Thus, to prevent the worst case, we need to develop
a rebalancing scheme to bound the height of the tree
to logn.

12AVL Trees

AVL Tree
• An AVL Tree is a binary search tree such that for

every internal nodev of T, the heights of the children
of v can differ by at most 1.

• An example of an AVL tree where the heights are
shown next to the nodes:

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

13AVL Trees

Height of an AVL Tree
• Proposition: The height of an AVL treeT storingn

keys isO(log n).

• Justification: The easiest way to approach this
problem is to try to find the minimum number of
internal nodes of an AVL tree of heighth: n(h).

• We see thatn(1) = 1 andn(2) = 2

• for n 3, an AVL tree of heighth with n(h) minimal
contains the root node, one AVL subtree of heightn-
1 and the other AVL subtree of heightn-2.

• i.e.n(h) = 1 +n(h-1) + n(h-2)

• Knowingn(h-1) > n(h-2), we getn(h) > 2n(h-2)
- n(h) > 2n(h-2)
- n(h) > 4n(h-4)

...
- n(h) > 2in(h-2i)

• Solving the base case we get:n(h) 2h/2-1

• Taking logarithms:h < 2logn(h) +2

• Thus the height of an AVL tree isO(log n)

14AVL Trees

Insertion
• A binary search treeT is calledbalancedif for every

nodev, the height ofv’s children differ by at most
one.

• Inserting a node into an AVL tree involves
performing anexpandExternal(w) onT, which
changes the heights of some of the nodes inT.

• If an insertion causesT to becomeunbalanced, we
travel up the tree from the newly created node until
we find the first nodex such that its grandparentz is
unbalanced node.

• Sincez became unbalanced by an insertion in the
subtree rooted at its childy,
height(y) = height(sibling(y)) + 2

• To rebalance the subtree rooted atz, we must
perform arestructuring
- we renamex, y, andz to a, b, andc based on the

order of the nodes in an in-order traversal.
- z is replaced byb, whose children are nowa andc

whose children, in turn, consist of the four other
subtrees formerly children ofx, y, andz.

15AVL Trees

Insertion (contd.)
• Example of insertion into an AVL tree.

88

44

17 78

32 50

48 62

2

5

1

1

3

4

2

1

54

1

T0
T2

T3

x

y

z

88

44

17

7832 50

48

62
2

4

1

1

2 2

3

1
54

1

T0 T1

T2

T3

x

y z

16AVL Trees

Restructuring
• The four ways to rotate nodes in an AVL tree,

graphically represented:

- Single Rotations:

T0
T1

T2

T3

c = x
b = y

a = z

T0 T1 T2

T3

c = x
b = y

a = z
single rotation

T3
T2

T1

T0

a = x
b = y

c = z

T0T1T2

T3

a = x
b = y

c = z
single rotation

17AVL Trees

Restructuring (contd.)

- double rotations:

double rotationa = z

b = x
c = y

T0
T2

T1

T3 T0
T2

T3T1

a = z
b = x

c = y

double rotationc = z

b = x
a = y

T0
T2

T1

T3 T0
T2

T3 T1

c = z
b = x

a = y

18AVL Trees

Restructuring (contd.)
• In Pseudo-Code:

Algorithm restructure(x):
Input:A nodex of a binary search treeT that has both

a parenty and a grandparentz
Output: TreeT restructured by a rotation (either

single or double) involving nodesx, y, andz.

1: Let (a, b, c) be an inorder listing of the nodesx, y,
andz, and let (T0, T1, T2, T3) be an inorder listing
of the the four subtrees ofx, y, andznot rooted atx,
y, orz

2. Replace the subtree rooted atz with a new subtree
rooted atb

3. Leta be the left child ofb and let T0, T1 be the left
and right subtrees ofa, respectively.

4. Letc be the right child ofb and let T2, T3 be the left
and right subtrees ofc, respectively.

19AVL Trees

Removal
• We can easily see that performing a

removeAboveExternal(w) can causeT to become
unbalanced.

• Let zbe the firstunbalancednode encountered while
travelling up the tree fromw. Also, let y be the child
of zwith the larger height, and letx be the child ofy
with the larger height.

• We can perform operationrestructure(x) to restore
balance at the subtree rooted atz.

• As this restructuring may upset the balance of
another node higher in the tree, we must continue
checking for balance until the root ofT is reached.

20AVL Trees

Removal (contd.)
• example of deletion from an AVL tree:

88

44

17

78

32

50

48

62
1

4

1

2 2

3

1
54

1
T0

T1

T2

T3

z

y

x

0

8817

78

50

48

62

1

1

2

23

1

54
1

T0

T1

T2

T3

y

x
44

4

z

0

21AVL Trees

Removal (contd.)
• example of deletion from an AVL tree

88

44

17

78

32

50

48

62
1

4

1

2 2

3

1
54

1
T0

T1 T2 T3

z

y

x

0

88

17 78

50

48

62
1 1

4

2

3

1
54

1

T0 T1 T2

T3

y

x

0

44
2

z

22AVL Trees

Implementation
• A Java-based implementation of an AVL tree

requires the following node class:

public class AVLItem extends Item {

int height;

AVLItem(Object k, Object e, int h) {

super (k, e);

height = h;

 }

public int height() {

return height;

 }

public int setHeight(int h) {

int oldHeight = height;

height = h;

return oldHeight;

 }

}

23AVL Trees

Implementation (contd.)
public class SimpleAVLTree

extends SimpleBinarySearchTree
implements Dictionary {

public SimpleAVLTree(Comparator c) {

super (c);

T = new RestructurableNodeBinaryTree();

 }

private int height(Position p) {

if (T.isExternal(p))

return 0;

else

return ((AVLItem) p.element()).height();

 }

private void setHeight(Position p) { // called only
// if p is internal

 ((AVLItem) p.element()).setHeight

(1 + Math.max(height(T.leftChild(p)),
height(T.rightChild(p))));

 }

24AVL Trees

Implementation (contd.)

private boolean isBalanced(Position p) {
// test whether node p has balance factor
// between -1 and 1

 int bf = height(T.leftChild(p)) - height(T.rightChild(p));

return ((-1 <= bf) && (bf <= 1));

}

private Position tallerChild(Position p) {
 // return a child of p with height no

 // smaller than that of the other child

if (height(T.leftChild(p)) >= height(T.rightChild(p)))

return T.leftChild(p);

else

return T.rightChild(p);

 }

25AVL Trees

Implementation (contd.)

private void rebalance(Position zPos) {
//traverse the path of T from zPos to the root;
//for each node encountered recompute its
//height and perform a rotation if it is
//unbalanced

while (!T.isRoot(zPos)) {

zPos = T.parent(zPos);

setHeight(zPos);

if (!isBalanced(zPos)) { // perform a rotation

 Position xPos = tallerChild(tallerChild(zPos));

zPos = ((RestructurableNodeBinaryTree)
T).restructure(xPos);

setHeight(T.leftChild(zPos));

setHeight(T.rightChild(zPos));

setHeight(zPos);

 }

}

}

26AVL Trees

Implementation (contd.)

public void insertItem(Object key, Object element)

throws InvalidKeyException {

super .insertItem(key, element);// may throw an
// InvalidKeyException

Position zPos = actionPos; // start at the
// insertion position

T.replace(zPos, new AVLItem(key, element, 1));

rebalance(zPos);

 }

public Object remove(Object key)

throws InvalidKeyException {

Object toReturn = super .remove(key); // may throw
// an InvalidKeyException

if (toReturn != NO_SUCH_KEY) {

Position zPos = actionPos; // start at the
 // removal position

rebalance(zPos);

 }

return toReturn;

 }

}

