Priority Queues

• The Priority Queue Abstract Data Type
• Implementing A Priority Queue With a Sequence
Keys and Total Order Relations

• A **Priority Queue** ranks its elements by *key* with a *total order* relation

• Keys:
 - Every element has its own key
 - Keys are not necessarily unique

• Total Order Relation
 - Denoted by \leq
 - **Reflexive**: $k \leq k$
 - **Antisymmetric**: if $k_1 \leq k_2$ and $k_2 \leq k_1$, then $k_1 \leq k_2$
 - **Transitive**: if $k_1 \leq k_2$ and $k_2 \leq k_3$, then $k_1 \leq k_3$

• A **Priority Queue** supports these fundamental methods:
 - `insertItem(k, e)` // element e, key k
 - `removeMinElement()` // return and remove the
 // item with the smallest key
Sorting with a Priority Queue

- A Priority Queue P can be used for sorting by inserting a set S of n elements and calling `removeMinElement()` until P is empty:

Algorithm PriorityQueueSort(S, P):

Input: A sequence S storing n elements, on which a total order relation is defined, and a Priority Queue P that compares keys with the same relation.

Output: The Sequence S sorted by the total order relation.

```plaintext
while !S.isEmpty() do
    e ← S.removeFirst()
    P.insertItem(e, e)
while P is not empty do
    e ← P.removeMinElement()
    S.insertLast(e)
```
The Priority Queue ADT

- A priority queue P must support the following methods:

 - **size()**:
 Return the number of elements in P
 Input: None; **Output**: integer

 - **isEmpty()**:
 Test whether P is empty
 Input: None; **Output**: boolean

 - **insertItem(k, e)**:
 Insert a new element e with key k into P
 Input: Objects k, e; **Output**: None

 - **minElement()**:
 Return (but don’t remove) an element of P with smallest key; an error occurs if P is empty.
 Input: None; **Output**: Object e
The Priority Queue ADT
(contd.)

- **minKey():**
 Return the smallest key in P; an error occurs if P is empty
 Input: None; **Output:** Object k

- **removeMinElement():**
 Remove from P and return an element with the smallest key; an error condition occurs if P is empty.
 Input: None; **Output:** Object e
Comparators

• The most general and reusable form of a priority queue makes use of comparator objects.

• Comparator objects are external to the keys that are to be compared and compare two objects.

• When the priority queue needs to compare two keys, it uses the comparator it was given to do the comparison.

• Thus a priority queue can be general enough to store any object.

• The comparator ADT includes:
 - isLessThan(a, b)
 - isLessThanOrEqualTo(a, b)
 - isEqualTo(a, b)
 - isGreaterThan(a, b)
 - isGreaterThanOrEqualTo(a, b)
 - isComparable(a)
Implementation with an Unsorted Sequence

• Let’s try to implement a priority queue with an unsorted sequence S.

• The elements of S are a composition of two elements, k, the key, and e, the element.

• We can implement `insertItem()` by using `insertFirst()` of the sequence. This would take $O(1)$ time.

• However, because we always `insertFirst()`, despite the key value, our sequence is not ordered.
Implementation with an Unsorted Sequence (contd.)

- Thus, for methods such as `minElement()`, `minKey()`, and `removeMinElement()`, we need to look at all elements of S. The worst case time complexity for these methods is $O(n)$.

![Diagram showing elements 13, 6, 15, 4 in a sequence with arrows indicating connections between elements.]

Priority Queues
Implementation with a Sorted Sequence

• Another implementation uses a sequence S, sorted by keys, such that the first element of S has the smallest key.

• We can implement \textit{minElement()}, \textit{minKey()}, and \textit{removeMinElement()} by accessing the first element of S. Thus these methods are $O(1)$ (assuming our sequence has an $O(1)$ front-removal)

• However, these advantages comes at a price. To implement \textit{insertItem()}, we must now scan through the entire sequence. Thus \textit{insertItem()} is $O(n)$.
public class SequenceSimplePriorityQueue implements SimplePriorityQueue {
 // Implementation of a priority queue using a sorted sequence
 protected Sequence seq = new NodeSequence();
 protected Comparator comp;
 // auxiliary methods
 protected Object extractKey (Position pos) {
 return ((Item)pos.element()).key();
 }
 protected Object extractElem (Position pos) {
 return ((Item)pos.element()).element();
 }
 protected Object extractElem (Object key) {
 return ((Item)key).element();
 }
 // methods of the SimplePriorityQueue ADT
 public SequenceSimplePriorityQueue (Comparator c) {
 this.comp = c;
 }
 public int size () {return seq.size();}
}
public boolean isEmpty () { return seq.isEmpty(); }

public void insertItem (Object k, Object e) throws InvalidKeyException {
 if (!comp.isComparable(k))
 throw new InvalidKeyException("The key is not valid");

 else
 if (seq.isEmpty())
 seq.insertFirst(new Item(k,e));
 else
 if (comp.isGreaterThan(k,extractKey(seq.last())))
 seq.insertAfter(seq.last(),new Item(k,e));
 else {
 Position curr = seq.first();
 while (comp.isGreaterThan(k,extractKey(curr)))
 curr = seq.after(curr);
 seq.insertBefore(curr,new Item(k,e));
 }
}
public Object minElement () throws EmptyContainerException {
 if (seq.isEmpty())
 throw new EmptyContainerException("The priority queue is empty");
 else
 return extractElem(seq.first());
}
Selection Sort

- Selection Sort is a variation of PriorityQueueSort that uses an unsorted sequence to implement the priority queue P.

- **Phase 1**, the insertion of an item into P takes $O(1)$ time.

- **Phase 2**, removing an item from P takes time proportional to the number of elements in P.

<table>
<thead>
<tr>
<th></th>
<th>Sequence S</th>
<th>Priority Queue P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>(7, 4, 8, 2, 5, 3, 9)</td>
<td>()</td>
</tr>
<tr>
<td>Phase 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(4, 8, 2, 5, 3, 9)</td>
<td>(7)</td>
</tr>
<tr>
<td>(b)</td>
<td>(8, 2, 5, 3, 9)</td>
<td>(7, 4)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(g)</td>
<td>()</td>
<td>(7, 4, 8, 2, 5, 3, 9)</td>
</tr>
<tr>
<td>Phase 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(2)</td>
<td>(7, 4, 8, 5, 3, 9)</td>
</tr>
<tr>
<td>(b)</td>
<td>(2, 3)</td>
<td>(7, 4, 8, 5, 9)</td>
</tr>
<tr>
<td>(c)</td>
<td>(2, 3, 4)</td>
<td>(7, 8, 5, 9)</td>
</tr>
<tr>
<td>(d)</td>
<td>(2, 3, 4, 5)</td>
<td>(7, 8, 9)</td>
</tr>
<tr>
<td>(e)</td>
<td>(2, 3, 4, 5, 7)</td>
<td>(8, 9)</td>
</tr>
<tr>
<td>(f)</td>
<td>(2, 3, 4, 5, 7, 8)</td>
<td>(9)</td>
</tr>
<tr>
<td>(g)</td>
<td>(2, 3, 4, 5, 7, 8, 9)</td>
<td>()</td>
</tr>
</tbody>
</table>
Selection Sort (cont.)

- As you can tell, a bottleneck occurs in Phase 2. The first removeMinElement operation takes $O(n)$, the second $O(n-1)$, etc. until the last removal takes only $O(1)$ time.

- The total time needed for phase 2 is:

$$O(n + (n - 1) + \ldots + 2 + 1) \equiv O\left(\sum_{i=1}^{n} i\right)$$

- By a common proposition:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

- The total time complexity of phase 2 is then $O(n^2)$. Thus, the time complexity of the algorithm is $O(n^2)$.
Insertion Sort

- Insertion sort is the sort that results when we perform a PriorityQueueSort implementing the priority queue with a sorted sequence.

- We improve phase 2 to $O(n)$.

- However, phase 1 now becomes the bottleneck for the running time. The first `insertItem` takes $O(1)$, the second $O(2)$, until the last operation takes $O(n)$.

- The run time of phase 1 is $O(n^2)$ thus the run time of the algorithm is $O(n^2)$.
Insertion Sort (cont.)

<table>
<thead>
<tr>
<th></th>
<th>Sequence S</th>
<th>Priority Queue P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>(7, 4, 8, 2, 5, 3, 9)</td>
<td>()</td>
</tr>
<tr>
<td>Phase 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(4, 8, 2, 5, 3, 9)</td>
<td>(7)</td>
</tr>
<tr>
<td>(b)</td>
<td>(8, 2, 5, 3, 9)</td>
<td>(4, 7)</td>
</tr>
<tr>
<td>(c)</td>
<td>(2, 5, 3, 9)</td>
<td>(4, 7, 8)</td>
</tr>
<tr>
<td>(d)</td>
<td>(5, 3, 9)</td>
<td>(2, 4, 7, 8)</td>
</tr>
<tr>
<td>(e)</td>
<td>(3, 9)</td>
<td>(2, 4, 5, 7, 8)</td>
</tr>
<tr>
<td>(f)</td>
<td>(9)</td>
<td>(2, 3, 4, 5, 7, 8)</td>
</tr>
<tr>
<td>(g)</td>
<td>()</td>
<td>(2, 3, 4, 5, 7, 8, 9)</td>
</tr>
<tr>
<td>Phase 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(2)</td>
<td>(3, 4, 5, 7, 8, 9)</td>
</tr>
<tr>
<td>(b)</td>
<td>(2, 3)</td>
<td>(4, 5, 7, 8, 9)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(g)</td>
<td>(2, 3, 4, 5, 7, 8, 9)</td>
<td>()</td>
</tr>
</tbody>
</table>

- Selection and insertion sort both take $O(n^2)$.
- Selection sort will always take $\Omega(n^2)$ time, no matter the input sequence.
- The run of insertion sort varies depends on the input sequence.
- We have yet to see the ultimate priority queue....
Heaps

• A **Heap** is a Binary Tree H that stores a collection of keys at its internal nodes and that satisfies two additional properties:
 - 1) **Heap-Order Property**
 - 2) **Complete Binary Tree Property**

• **Heap-Order Property Property (Relational):** In a heap H, for every node v (except the root), the key stored in v is greater than or equal to the key stored in v’s parent.

• **Complete Binary Tree Property (Structural):** A Binary Tree T is complete if each level but the last is full, and, in the last level, all of the internal nodes are to the left of the external nodes.
Heaps (contd.)

• An Example:
Height of a Heap

• **Proposition:** A heap H storing n keys has height
 \[h = \lceil \log(n+1) \rceil \]

• **Justification:** Due to H being complete, we know:
 - \# of internal nodes is at least:
 \[1 + 2 + 4 + \ldots + 2^{h-2} + 1 = 2^{h-1} - 1 + 1 = 2^{h-1} \]
 - \# of internal nodes is at most:
 \[1 + 2 + 4 + \ldots + 2^{h-1} = 2^h - 1 \]
 - Therefore:
 \[2^{h-1} \leq n \text{ and } n \leq 2^h - 1 \]
 - Which implies that:
 \[\log(n+1) \leq h \leq \log n + 1 \]
 - Which in turn implies:
 \[h = \lceil \log(n+1) \rceil \]
 - Q.E.D.
Prioriy Queues

Heigh of a Heap (contd.)

• Let’s look at that graphically:

Consider this heap which has height \(h = 4 \) and \(n = 13 \)

Suppose two more nodes are added. To maintain completeness of the tree, the two external nodes in level 4 will become internal nodes: i.e.

\[n = 15, \ h = 4 = \log(15+1) \]

Add one more: \(n = 16, \ h = 5 = \lceil \log(16+1) \rceil \)
Insertion into a Heap

![Diagram of a heap with nodes labeled with values and characters, including a highlighted node with values (8,W) and (2,T).]
Insertion into a Heap (cont.)

(4,C)

(5,A)

(15,K)

(16,X)

(14,E)

(12,H)

(11,S)

(7,Q)

(6,Z)

(9,F)

(25,J)

(2,T)

(8,W)

(20,B)

(20,B)
Insertion into a Heap (cont.)

Priority Queues
Insertion into a Heap (cont.)

(5,A)

(15,K)

(16,X)

(25,J)

(14,E)

(12,H)

(11,S)

(8,W)

(20,B)

(4,C)

(2,T)

(5,A)

(15,K)

(16,X)

(25,J)

(14,E)

(12,H)

(11,S)

(8,W)

(20,B)
Removal from a Heap

(4,C) → (5,A) → (15,K) → (16,X) → □ □ □ □

(6,Z) → (9,F) → (14,E) → (25,J) → □ □ □ □

(20,B) → (7,Q) → (12,H) → □ □ □ □

(13,W) → (11,S) → □ □ □ □

Priority Queues
Removal from a Heap (cont.)

Priority Queues
Removal from a Heap (cont.)
Removal from a Heap (cont.)

(5,A)

(9,F)

(15,K)
(16,X) (25,J) (14,E) (13,W) (12,H) (11,S) (7,Q) (20,B)

Priority Queues
Implementation of a Heap

```java
public class HeapSimplePriorityQueue implements SimplePriorityQueue {
    BinaryTree T;
    Position last;
    Comparator comparator;
    ...
}
```

Priority Queues
Implementation of a Heap (cont.)

- Two ways to find the insertion position z in a heap:

 a)

 b)
Heap Sort

• All heap methods run in logarithmic time or better

• If we implement PriorityQueueSort using a heap for our priority queue, `insertItem` and `removeMinElement` each take $O(\log k)$, k being the number of elements in the heap at a given time.

• We always have n or less elements in the heap, so the worst case time complexity of these methods is $O(\log n)$.

• Thus each phase takes $O(n \log n)$ time, so the algorithm runs in $O(n \log n)$ time also.

• This sort is known as heap-sort.

• The $O(n \log n)$ run time of heap-sort is much better than the $O(n^2)$ run time of selection and insertion sort.
Bottom-Up Heap Construction

- If all the keys to be stored are given in advance we can build a heap bottom-up in $O(n)$ time.

- Note: for simplicity, we describe bottom-up heap construction for the case for n keys where:

$$n = 2^h - 1$$

h being the height.

- Steps:
 1) Construct $(n+1)/2$ elementary heaps with one key each.
 2) Construct $(n+1)/4$ heaps, each with 3 keys, by joining pairs of elementary heaps and adding a new key as the root. The new key may be swapped with a child in order to preserve heap-order property.
 3) Construct $(n+1)/8$ heaps, each with 7 keys, by joining pairs of 3-key heaps and adding a new key. Again swaps may occur.

...

4) In the ith step, $2 \leq i \leq h$, we form $(n+1)/2^i$ heaps, each storing $2^i - 1$ keys, by joining pairs of heaps storing $(2^{i-1} - 1)$ keys. Swaps may occur.
Bottom-Up Heap Construction (cont.)

![Bottom-Up Heap Construction Diagram]

Priority Queues
Bottom-Up Heap Construction (cont.)
Bottom-Up Heap Construction (cont.)
Bottom-Up Heap Construction (cont.)

The End
Analysis of Bottom-Up Heap Construction

- **Proposition:** Bottom-up heap construction with \(n \) keys takes \(O(n) \) time.
 - Insert \((n + 1)/2 \) nodes
 - Insert \((n + 1)/4 \) nodes
 - Upheap at most \((n + 1)/4 \) nodes 1 level.
 - Insert \((n + 1)/8 \) nodes
 - ...
 - Insert 1 node.
 - Upheap at most 1 node 1 level.

- \(n \) inserts, \(n/2 \) upheaps of 1 level = \(O(n) \)
Locators

- Locators can be used to keep track of elements in a container.

- A locator sticks with a specific key-element pair, even if that element “moves around”.

- The Locator ADT supports the following fundamental methods:

 - `element()`: Return the element of the item associated with the Locator.
 Input: None; **Output**: Object

 - `key()`: Return the key of the item associated with the Locator.
 Input: None; **Output**: Object

 - `isContained()`: Return true if and only if the Locator is associated with a container.
 Input: None; **Output**: boolean

 - `container()`: Return the container associated with the Locator.
 Input: None; **Output**: boolean
Priority Queue with Locators

- It is easy to extend the sequence-based and heap-based implementations of a Priority Queue to support Locators.

- The Priority Queue ADT can be extended to implement the Locator ADT

- In the heap implementation of a priority queue, we store in the locator object a key-element pair and a reference to its position in the heap.

- All of the methods of the Locator ADT can then be implemented in $O(1)$ time.
public class LocItem extends Item implements Locator {
 private Container cont;
 private Position pos;
 LocItem (Object k, Object e, Position p, Container c) {
 super(k, e);
 pos = p;
 cont = c;
 }
 public boolean isContained() throws InvalidLocatorException {
 return cont != null;
 }
 public Container container() throws InvalidLocatorException {
 return cont;
 }
 protected Position position() { return pos; }
 protected void setPosition(Position p) { pos = p; }
 protected void setContainer(Container c) { cont = c; }
}
A Java Implementation of a Locator-Based Priority Queue

```java
public class SequenceLocPriorityQueue extends SequenceSimplePriorityQueue implements PriorityQueue {
    // priority queue with locators implemented with a sorted sequence
    public SequenceLocPriorityQueue (Comparator comp) {
        super(comp);
    }

    // auxiliary methods
    protected LocItem locRemove(Locator loc) {
        checkLocator(loc);
        seq.remove(((LocItem) loc).position());
        ((LocItem) loc).setContainer(null);
        return (LocItem) loc;
    }
}
```
protected Locator locInsert(LocItem locit) throws InvalidKeyException {
 Position p, curr;
 Object k = locit.key();
 if (!comp.isComparable(k))
 throw new InvalidKeyException("The key is not valid");
 else
 if (seq.isEmpty())
 p = seq.insertFirst(locit);
 else if (comp.isGreaterThan(k, extractKey(seq.last())))
 p = seq.insertAfter(seq.last(), locit);
 else {
 curr = seq.first();
 while (comp.isGreaterThan(k, extractKey(curr)))
 curr = seq.after(curr);
 p = seq.insertBefore(curr, locit);
 }
 locit.setPosition(p);
 locit.setContainer(this);
 return (Locator) locit;
}
public void insert(Locator loc) throws InvalidKeyException {
 locInsert((LocItem) loc);
}

public Locator insert(Object k, Object e) throws InvalidKeyException {
 LocItem locit = new LocItem(k, e, null, null);
 return locInsert(locit);
}

public void insertItem(Object k, Object e) throws InvalidKeyException {
 insert(k, e);
}

public void remove(Locator loc) throws InvalidLocatorException {
 locRemove(loc);
}

public Object removeMinElement() throws EmptyContainerException {
 Object toReturn = minElement();
 remove(min());
 return toReturn;
}