ANALYSIS OF ALGORITHMS

• Quick Mathematical Review
• Running Time
• Pseudo-Code
• Analysis of Algorithms
• Asymptotic Notation
• Asymptotic Analysis

\[T(n) \]

\[n = 4 \]

Input \quad \text{Algorithm} \quad \text{Output}
A Quick Math Review

• Logarithms and Exponents
 - properties of logarithms:

 \[\log_b(xy) = \log_b x + \log_b y \]
 \[\log_b(x/y) = \log_b x - \log_b y \]
 \[\log_b x^\alpha = \alpha \log_b x \]

 \[\log_b a = \frac{\log_a x}{\log_a b} \]

 - properties of exponentials:

 \[a^{(b+c)} = a^b a^c \]
 \[a^{bc} = (a^b)^c \]
 \[a^{b/a^c} = a^{(b-c)} \]
 \[b = a^{\log_a b} \]
 \[b^c = a^{c \log_a b} \]
A Quick Math Review (cont.)

- **Floor**
 \[\lfloor x \rfloor = \text{the largest integer } \leq x \]

- **Ceiling**
 \[\lceil x \rceil = \text{the smallest integer } x \]

- **Summations**
 - general definition:
 \[
 \sum_{i=s}^{t} f(i) = f(s) + f(s+1) + f(s+2) + \ldots + f(t)
 \]
 - where \(f \) is a function, \(s \) is the start index, and \(t \) is the end index

- **Geometric progression**: \(f(i) = a^i \)
 - given an integer \(n \) \(\geq 0 \) and a real number \(0 < a \neq 1 \)
 \[
 \sum_{i=0}^{n} a^i = 1 + a + a^2 + \ldots + a^n = \frac{1 - a^{n+1}}{1 - a}
 \]
 - geometric progressions exhibit exponential growth
Average Case vs. Worst Case
Running Time of an Algorithm

• An algorithm may run faster on certain data sets than on others,

• Finding the average case can be very difficult, so typically algorithms are measured by the worst-case time complexity.

• Also, in certain application domains (e.g., air traffic control, surgery) knowing the worst-case time complexity is of crucial importance.

<table>
<thead>
<tr>
<th>Input Instance</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 ms</td>
</tr>
<tr>
<td>B</td>
<td>2 ms</td>
</tr>
<tr>
<td>C</td>
<td>3 ms</td>
</tr>
<tr>
<td>D</td>
<td>4 ms</td>
</tr>
<tr>
<td>E</td>
<td>5 ms</td>
</tr>
<tr>
<td>F</td>
<td>4 ms</td>
</tr>
<tr>
<td>G</td>
<td>3 ms</td>
</tr>
</tbody>
</table>

worst-case
average-case
best-case
Measuring the Running Time

• How should we measure the running time of an algorithm?

• Experimental Study
 - Write a program that implements the algorithm
 - Run the program with data sets of varying size and composition.
 - Use a method like System.currentTimeMillis() to get an accurate measure of the actual running time.
 - The resulting data set should look something like:

```
50 1000
10 20
30
40
50
60
```

![Graph showing running time data](image)
Beyond Experimental Studies

• Experimental studies have several limitations:
 - It is necessary to implement and test the algorithm in order to determine its running time.
 - Experiments can be done only on a limited set of inputs, and may not be indicative of the running time on other inputs not included in the experiment.
 - In order to compare two algorithms, the same hardware and software environments should be used.

• We will now develop a general methodology for analyzing the running time of algorithms that
 - Uses a high-level description of the algorithm instead of testing one of its implementations.
 - Takes into account all possible inputs.
 - Allows one to evaluate the efficiency of any algorithm in a way that is independent from the hardware and software environment.
Pseudo-Code

• Pseudo-code is a description of an algorithm that is more structured than usual prose but less formal than a programming language.

• Example: finding the maximum element of an array.

\[
\textbf{Algorithm } \text{arrayMax}(A, n):
\]
\[
\begin{align*}
\text{Input: } & \text{ An array } A \text{ storing } n \text{ integers.} \\
\text{Output: } & \text{ The maximum element in } A. \\
\text{currentMax} & \leftarrow A[0] \\
\text{for } i & \leftarrow 1 \text{ to } n - 1\text{ do} \\
& \text{if currentMax} < A[i] \text{ then} \\
& \quad \text{currentMax} \leftarrow A[i] \\
\text{return currentMax}
\end{align*}
\]

• Pseudo-code is our preferred notation for describing algorithms.

• However, pseudo-code hides program design issues.
What is Pseudo-Code?

• A mixture of natural language and high-level programming concepts that describes the main ideas behind a generic implementation of a data structure or algorithm.

- Expressions: use standard mathematical symbols to describe numeric and boolean expressions
 - use ← for assignment (“=” in Java)
 - use = for the equality relationship (“==” in Java)

- Method Declarations:
 - Algorithm name(param1, param2)

- Programming Constructs:
 - decision structures: if ... then ... [else ...]
 - while-loops: while ... do
 - repeat-loops: repeat ... until ...
 - for-loop: for ... do
 - array indexing: A[i]

- Methods:
 - calls: object method(args)
 - returns: return value
A Quick Math Review (cont.)

- **Arithmetic progressions:**
 - An example

\[\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n = \frac{n^2 + n}{2} \]

- two visual representations
Analysis of Algorithms

- **Primitive Operations**: Low-level computations that are largely independent from the programming language and can be identified in pseudocode, e.g:
 - calling a method and returning from a method
 - performing an arithmetic operation (e.g. addition)
 - comparing two numbers, etc.

- By inspecting the pseudo-code, we can count the number of primitive operations executed by an algorithm.

- Example:

  ```
  Algorithm arrayMax(A, n):
  
  Input: An array A storing n integers.
  Output: The maximum element in A.
  
  currentMax ← A[0]
  for i ← 1 to n − 1 do
    if currentMax < A[i] then
      currentMax ← A[i]
  return currentMax
  ```
Asymptotic Notation

• Goal: To simplify analysis by getting rid of unneeded information
 - Like “rounding”: $1,000,001 \approx 1,000,000$
 - $3n^2 \approx n^2$

• The “Big-Oh” Notation
 - given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if and only if $f(n) \leq c \cdot g(n)$ for $n \geq n_0$
 - c and n_0 are constants, $f(n)$ and $g(n)$ are functions over non-negative integers
Asymptotic Notation (cont.)

• Note: Even though $7n - 3$ is $O(n^5)$, it is expected that such an approximation be of as small an order as possible.

• Simple Rule: Drop lower order terms and constant factors.
 - $7n - 3$ is $O(n)$
 - $8n^2 \log n + 5n^2 + n$ is $O(n^2 \log n)$

• Special classes of algorithms:
 - logarithmic: $O(\log n)$
 - linear $O(n)$
 - quadratic $O(n^2)$
 - polynomial $O(n^k)$, $k \geq 1$
 - exponential $O(a^n)$, $n > 1$

• “Relatives” of the Big-Oh
 – $\Omega(f(n))$: Big Omega
 – $\Theta(f(n))$: Big Theta
Asymptotic Analysis of The Running Time

• Use the Big-Oh notation to express the number of primitive operations executed as a function of the input size.

• For example, we say that the arrayMax algorithm runs in $O(n)$ time.

• Comparing the asymptotic running time
 - an algorithm that runs in $O(n)$ time is better than one that runs in $O(n^2)$ time
 - similarly, $O(\log n)$ is better than $O(n)$
 - hierarchy of functions:
 - $\log n << n << n^2 << n^3 << 2^n$

• Caution!
 - Beware of very large constant factors. An algorithm running in time 1,000,000 n is still $O(n)$ but might be less efficient on your data set than one running in time $2n^2$, which is $O(n^2)$
Example of Asymptotic Analysis

• An algorithm for computing prefix averages

\textbf{Algorithm} prefixAverages1(\textit{X}): \\
\textit{Input}: An \textit{n}-element array \textit{X} of numbers. \\
\textit{Output}: An \textit{n}-element array \textit{A} of numbers such that \\
\textit{A}[\textit{i}] is the average of elements \textit{X}[0], ..., \textit{X}[\textit{i}]. \\
Let \textit{A} be an array of \textit{n} numbers. \\
for \(i \leftarrow 0\) to \(n - 1\) do \\
\(a \leftarrow 0\) \\
for \(j \leftarrow 0\) to \(i\) do \\
\(a \leftarrow a + X[j]\) \\
\(A[i] \leftarrow a/(i + 1)\) \\
return array \textit{A}

• Analysis ...
Example of Asymptotic Analysis

• A better algorithm for computing prefix averages:

Algorithm prefixAverages2(X):

Input: An n-element array X of numbers.

Output: An n-element array A of numbers such that $A[i]$ is the average of elements $X[0], \ldots, X[i]$.

Let A be an array of n numbers.

$s \leftarrow 0$

for $i \leftarrow 0$ to $n - 1$ do

$s \leftarrow s + X[i]$

$A[i] \leftarrow s / (i + 1)$

return array A

• Analysis ...
Advanced Topics: Simple Justification Techniques

• By Example
 - Find an example
 - Find a counter example

• The “Contra” Attack
 - Find a contradiction in the negative statement
 - Contrapositive

• Induction and Loop-Invariants
 - Induction
 - 1) Prove the base case
 - 2) Prove that any case \(n \) implies the next case \((n + 1) \) is also true
 - Loop invariants
 - Prove initial claim \(S_0 \)
 - Show that \(S_{i-1} \) implies \(S_i \) will be true after iteration \(i \)
Advanced Topics: Other Justification Techniques

• Proof by Excessive Waving of Hands
• Proof by Incomprehensible Diagram
• Proof by Very Large Bribes
 - see instructor after class
• Proof by Violent Metaphor
 - Don’t argue with anyone who always assumes a sequence consists of hand grenades
• The Emperor’s New Clothes Method
 - “This proof is so obvious only an idiot wouldn’t be able to understand it.”