
1External Memory Computing

EXTERNAL MEMORY
COMPUTING

• hierarchical memory management

• B-trees

• external sorting

2External Memory Computing

The Memory Hierarchy
• Many problems that modern computers are given to

solve (analyzing scientific data, running Win95, etc.)
require large amounts of storage.

• In an ideal world, all the necessary information
could be stored on chip in the processor’s registers,
but that would be hideously expensive.

• Instead, computers use amemory hierarchy where
there is a tradeoff between speed and volume.

• The hierarchy consists of four layers:
- Registers
- Cache memory
- Internal memory (RAM)
- External memory (Disk)

3External Memory Computing

The Memory Hierarchy (contd.)
• The hierarchy (for a typical workstation):

Access time (CPU cycles) Volume

Registers: 1 cycle ~210bytes

Cache: 5 cycles ~220bytes

Internal: 50 cycles ~226bytes

External: 2,000,000 cycles ~232bytes

Bigger

Faster

Registers

Cache

Internal Memory

External Memory

CPU

4External Memory Computing

Caching and Blocking
• Since the performance loss is so great when external

memory needs to be accessed, several techniques
have been developed to avoid this bottleneck.

• These are based on one of two assumptions about
the data:
- Temporal Locality: If data is used once, it will

probably be needed again soon after.
- Spatial Locality: If data is used once, the data next

to it will probably be needed soon after.

• Caching usesvirtual memory which is based on
Temporal Locality.
- An address space is provided that is as large as the

secondary storage space.
- When data is requested from secondary storage, it

is transfered to primary storage (cached).

• Blocking is based on Spatial Locality.
- When data is requested from secondary storage, a

large contiguous block of data is transfered into
primary storage.
(ablock of data ispaged).

5External Memory Computing

Block Replacement Policies
• We assume we have afully associative cache, that

is, a bock from external memory can be placed in
any slot of the cache.

• The CPU determines if the virtual memory location
accessed is in the cache, and if so where.

• If it is not in the cache the block of external memory,
containing the location is transfered into the cache.

• If there are no slots free in the chache, then we must
determine which block should be evicted.

• Common policies to determine the block to evict:
- Random
- First-In, First-out (FIFO)
- Least Frequently used (LFU)
- Least Recently used (LRU)

• Random is easy to implement and takes O(1) time
New block Old block (chosen at random)

Random policy:

6External Memory Computing

Block Replacement Policies
(cont)

• FIFO is also easy to to implement, it uses temporal
locality and takes O(1) time

• LFU requires more overhead but can still be
implemented in O(1) time using a special type of
priority queue. But it penalizes recently added
blocks.

• LRU is the most effective policy in practice. It can
be implemented in O(1) time with a special type of
priority queue.

New block Old block (present longest)

FIFO policy:

8:00am 9:05am 7:10am 7:30am 10:10am 8:45am7:48am

insertion time

New block Old block (least recently used)

LRU policy:

last access time

7:25am 9:22am 6:50am 8:20am 10:02am 9:50am8:12am

7External Memory Computing

The Marker Policy
• mark bit associated with every block in the cache

• if a block in the cache is accessed, it is marked

• if all the blocks become marked, they get all
unmarked

• evict a random unmarked block

• this policy is a good approximation of LRU, but is
simpler to implement

New block Old block (unmarked)

Marker policy:

marked:

8External Memory Computing

External Searching
• Let’s look at the problem of implementing a

dictionary of a large collection of items that do not
fit in primary memory.

• In maintaing a dictionary in external memory we
want to minimize the number of times we transfer a
block between secondary and primary memory,
known as adisk transfer, during queries and
updates.

• The list-based sequence implentation of a dictionary
requires Ο(n) transfers per query or update.

• The array-based sequence implentation of a
dictionary requires O(n/B) transfers per query or
update, where B is the size of a block.

• In a binary search tree implentation of a dictionary,
in the worst case each node accessed will be in a
different block. Thus it requires at least log n
transfers per query or update.

• But we can do better ...

9External Memory Computing

(a, b) Trees
• An (a,b) tree is a tree such that:

- a and b are integers such that 2≤ a ≤ (b+1)/2
- each internal node has at least a children and at

most b children
- all external nodes have the same depth

• Insertion and deletion are similiar to insertion and
deletion in (2, 4) trees.

• Properties:
- the height is O(logan), that is, O(log n / loga)
- processing a node takes t(b) time

• A search, insertion, or deletion takes time:

and accesses

nodes (O(1) nodes for each level of the tree).

O
t b()

alog
----------- nlog 

 

O
nlog
alog

----------- 
 

10External Memory Computing

Example

70
66

98
95

75
74

45
43

63
59

29
24

12
11

85
83

86
40

38
41

50
48

51
53

56

37
22

58
46

80
72

93

65
42

11External Memory Computing

B-Trees
• To minimize disk access we must select values for a

and b such that each tree node occupies a single disk
block.

• Let B be the size of a block

• A B-treeof order d is an (a,b) tree with a = d/2 and
b=d.

• We choose d such that a node fits into a single disk
block. This implies a, b, and d areΘ(B).

• Each search or update requires accessing
O(log n / log a) nodes.

• Thus, an B-tree requires O(log n / log B) disk
transfers for any update or search operation.

