
CS 16: Balanced Trees

erm 204

2-3-4 Trees and Red-
Black Trees

CS 16: Balanced Trees

erm 205

2-3-4Trees Revealed

• Nodes store 1, 2, or 3 keys and have
2, 3, or 4 children, respectively

• All leaves have thesame depth

b e h n r

a c d f g i l m p s x

1
2
--- N 1+()log height N 1+()log≤ ≤

k

b e h n r

CS 16: Balanced Trees

erm 206

• Introduction of nodes with more than 1 key,
and more than 2 children

4-node:
• 3 keys, 4 links

2-3-4 Tree Nodes

2-node:
• same as a binary node

<a >a

3-node:
• 2 keys, 3 links >b<a

<a >c

>a
b
<c

a b c

>a
<b

a

 a b

CS 16: Balanced Trees

erm 207

• That means if d= N1/2, we get a height of 2

• However, searching out the correct child
on each level requires O(log N1/2) by
binarysearch

• 2 log N1/2 = O(log N) which is not as good
as we had hoped for!

• 2-3-4-trees willguarantee O(log N) height
using only 2, 3, or 4 children per node

Why 2-3-4?
• Why not minimize height by maximizing

children in a “d-tree”?
• Let each node have d children so that we

getO(logd N) search time! Right?

log
d N

 =
 log N

/log d

CS 16: Balanced Trees

erm 208

Insertion into 2-3-4 Trees

• Insert thenew key at thelowest internal
node reached in the search

• What about a4-node?
• We can’t insert another key!

dg d g

• 3-node becomes4-node

• 2-node becomes3-node

d g d f gf

CS 16: Balanced Trees

erm 209

• Now we can perform the
insertion using one of the
previous two cases

• Since we follow this
method from the root down
to the leaf, it is called
top down insertion

Top Down Insertion
• In our way down the tree, whenever we

reach a4-node, webreak it up into two2-
nodes, and move the middle element up
into the parent node

n

g

e

f n

d

g

d f g

f n
e

d e

CS 16: Balanced Trees

erm 210

Splitting the Tree

As we travel down the tree, if we encounter any
4-nodewe will break it up into2-nodes. This
guarantees that we will never have the problem
of inserting the middle element of a former 4-
node into its parent4-node.

a xf i l p r

a f i l p r

g

g

n

c t

x

c n t

Whoa, cowboy

CS 16: Balanced Trees

erm 211

a xf i l p r

a xf i l p r

c t

n

n

c t

g

g

Whoa, cowboy

CS 16: Balanced Trees

erm 212

a xp r

t

n

f l

a xp r

c i t

n

l

a xp r

c t

n

g

f i l

c ig

f g

Whoa, cowboy

CS 16: Balanced Trees

erm 213

Time Complexity of Insertion
in 2-3-4 Trees

Time complexity:
• A search visits O(log N) nodes

• An insertion requires O(log N) node splits

• Each node split takes constant time

• Hence, operationsSearch andInsert each
take timeO(log N)

Notes:
• Instead of doing splits top-down, we can

perform them bottom-up starting at the in-
sertion node, and only when needed. This
is calledbottom-up insertion.

• A deletion can be performed byfusing
nodes (inverse of splitting), and takes
O(log N) time

CS 16: Balanced Trees

erm 214

Beyond 2-3-4 Trees

What do we know about 2-3-4 Trees?

• Balanced

• O(log N) search time

• Different node structures

Can we get 2-3-4 tree advantages in a binary
tree format???

 Welcome to the world ofRed-Black Trees!!!

Siskel

Ebert

Roberto

CS 16: Balanced Trees

erm 215

Red-Black Tree
A red-black tree is abinarysearchtreewith the
following properties:

• edges are coloredred or black

• no two consecutive red edges
on any root-leaf path

• same number of black edges
on any root-leaf path
(= black height of the tree)

• edges connecting leaves are black

Black
Edge

Red
Edge

CS 16: Balanced Trees

erm 216

2-3-4 Tree Evolution

Note how2-3-4 treesrelate tored-black trees

2-3-4 Red-Black

Now we seered-black trees are just a way of
representing 2-3-4 trees!

or

CS 16: Balanced Trees

erm 217

More Red-Black Tree
Properties

N # of internal nodes
L # leaves (= N + 1)
H height
B black height

Property 1: 2B ≤ N + 1 ≤ 4B

Property 2:

This implies that searches take timeO(logN)!

Property 3:

1
2
--- N 1+()log B N 1+()log≤ ≤

N 1+()log H 2 N 1+()log≤ ≤

CS 16: Balanced Trees

erm 218

Insertion into Red-Black Trees
1.Perform a standard search to find the leaf

where the key should be added

2.Replace the leaf with an internal node with
the new key

3.Color the incoming edge of the new node
red

4.Add two new leaves, and color their
incoming edges black

5.If the parent had an incomingrededge, we
now have two consecutiverededges! We
must reorganize tree to remove that
violation. What must be done depends on
the sibling of the parent.

R

G

R

G

CS 16: Balanced Trees

erm 219

Let:
 n be the new node
 p be its parent
 g be its grandparent

Insertion - Plain and Simple

Case 1: Incoming edge ofp is black

g

p

n

STOP!

Pretty easy, huh?

Well... it gets messier...

No violation

CS 16: Balanced Trees

erm 220

Restructuring

We call this a “right rotation”

• No further work on tree is necessary
• Inorder remains unchanged
• Tree becomes more balanced
• No two consecutivered edges!

Case 2: Incoming edge ofp is red, and
 its sibling is black

g

p

n
g

p

n

Uh oh!

Much
Better!

CS 16: Balanced Trees

erm 221

More Rotations

Similar to a right rotation, we can do a
“ left rotation ”...

Simple, huh?

g

p

n
g

p

n

CS 16: Balanced Trees

erm 222

Double Rotations

What if the new node is between its parent and
grandparent in the inorder sequence?

We must perform a “double rotation”
(which is no more difficult than a “single” one)

g

p

n

gp

n

This would be called a
“left-right double rotation”

CS 16: Balanced Trees

erm 223

Last of the Rotations

And this would be called a
“right-left double rotation”

g

p

n

g p

n

CS 16: Balanced Trees

erm 224

• We call this a “promotion”

• Note how the black depth remains un-
changed for all of the descendants ofg

• This process will continue upward beyond
g if necessary: renameg asn and repeat.

Bottom-Up Rebalancing

Case 3: Incoming edge ofp is red and its
sibling is alsored

g

p

n

g

p

n

CS 16: Balanced Trees

erm 225

Summary of Insertion

• If two red edges are present, we do either

• arestructuring(with a simple or double
rotation) andstop, or

• apromotion andcontinue

• A restructuring takesconstant time and is
performed at most once. It reorganizes an
off-balanced section of the tree.

• Promotions may continue up the tree and
are executedO(log N) times.

• Thetime complexity of an insertion is
O(logN).

CS 16: Balanced Trees

erm 226

An Example

Start by inserting “REDSOX” into an empty tree

E

RD

SO

X

Now, let’s insert “C U B S”...

CS 16: Balanced Trees

erm 227

E

RD

SO

X

A Cool Example

C

E

RD

SO

X

C

CS 16: Balanced Trees

erm 228

An Unbelievable Example

U E

RD

SO

X

C

E

RD

SO

X

C

What should we do?

Oh No!

U

CS 16: Balanced Trees

erm 229

E

RD

S

O

X

C U

E

RD

SO

X

C

Double Rotation

U

CS 16: Balanced Trees

erm 230

A Beautiful Example

B
E

RD

S

O

X

C U

E

R

S

O

X

D

U

B

C
What
now?

CS 16: Balanced Trees

erm 231

E

R

S

O

X

D

U

B

CRotation

E

R

S

O

X

C

UDB

CS 16: Balanced Trees

erm 232

S

A Super Example
E

R

S

O

X

C

UDB

E

R

S

O

X

C

UDB

S

Holy Consecutive
Red Edges, Batman!

We could’ve
placed it on
either side

CS 16: Balanced Trees

erm 233

E

R

S

O

X

C

UDB

S

 Use the

E

R

S

O

X

C

UDB

S

BIFF!

Bat-Promoter!!

CS 16: Balanced Trees

erm 234

E

R

SO XC

U

DB S

E

R

S

O

X

C

UDB

S

Rotation

The SUN lab
and Red-Bat
trees are safe...
 ...for now!!!

