
1(2,4) Trees

(2,4) TREES

• Search Trees (but not binary)

• also known as 2-4, 2-3-4 trees

• very important as basis for Red-Black trees (so pay
attention!)

2(2,4) Trees

Multi-way Search Trees
• Each internal node of a multi-way search treeT:

- has at least two children
- stores a collection of items of the form (k, x),

wherek is a key andx is an element
- containsd - 1 items, whered is the number of

children
- “contains” 2 pseudo-items: ,

• Children of each internal node are “between” items
- all keys in the subtree rooted at the child fall

between keys of those items

• External nodes are just placeholders

k0 ∞–= kd ∞=

3(2,4) Trees

Multi-way Searching
• Similar to binary searching

• If search key , search the leftmost child

• If , search the rightmost child

• That’s it in a binary tree; what about if ?

• Find two keys and between whichs falls,
and search the child .

• What would an in-order traversal look like?

s k1<

s kd 1–>

d 2>

ki 1– ki
vi

3 4 6 8 23 24 27

22

5 10 25

11 13

14

Searching
for s = 8

Searching
for s = 12

Not found!

17 18 19 20 21

4(2,4) Trees

(2,4) Trees
• At most 4 children

• All external nodes have same depth

• Heighth of (2,4) tree is .

• How is this fact useful in searching?

O nlog()

3 4 116 8 13 14 17

12

5 10 15

5(2,4) Trees

(2,4) Insertion
• Always maintain depth condition

• Add elements only to existing nodes

• What if that makes a node too big?
- overflow

• Must perform asplit operation
- replace node with two nodes and
- gets the first two keys
- gets the last key
- send the other key up the tree

- if is root, create new root with third key

- otherwise just add third key to parent

• Much clearer with a few pictures...

4 4 6

4 6 12

Empty
tree

Insert 4 Insert 6

Insert 12

Insert 15 ?

v v' v''
v'
v''

v

6(2,4) Trees

(2,4) Insertion (cont.)

• Tree always grows from the top, maintaining
balance

• What if parent is full?

154 126 154 6

12

4 6 15

12

3 4 6 15

12

63 54 15

12

5

63 4

12

15

5 12

153 4 6

Insert 15

Insert 5

Insert 3

7(2,4) Trees

(2,4) Insertion (cont.)
• Do the same thing:

• Overflow cascade all the way up to the root
- still at most

3 4

5 1210

116 8 13 1514 17

15

3 4 116 8 13 14 17

5 1210

12

3 4

5 10

116 8

15

13 14 17

Insert 17

O nlog()

8(2,4) Trees

(2,4) Deletion
• A little trickier

• First of all, find the key
- simple multi-way search

• Then, reduce to the case where deletable item is at
the bottom of the tree
- Find item which precedes it in in-order traversal
- Swap them

• Remove the item

• Easy, right?

• ...but what about removing from 2-nodes?

14 17

15

5

11

6

8 10

13

Delete 13

9(2,4) Trees

(2,4) Deletion (cont.)
• Not enough items in the node

- underflow

• Pull an item from the parent, replace it with an item
from a sibling
- calledtransfer

• Still not good enough! What happens if siblings are
2-nodes?

• Could we just pull one item from the parent?
- too many children

• But maybe...

Delete 4

116 8

5 10

4

11

10

8

5
6

u

v w

10(2,4) Trees

(2,4) Deletion (cont.)
• We know that the node’s sibling is just a 2-node

• So wefuse them into one
- after stealing an item from the parent, of course

• Last special case, I promise: what if the parent was a
2-node?

12

10

5

6

8

5

6

8

10

u

v

5

6

8 10

u

Delete 12

11(2,4) Trees

(2,4) Deletion (cont.)
• Underflow can cascade up the tree, too.

17

15

5

11

6

8 10

14

175

11

6

8 10

15

u

v

5 8 10

11

15 17

6

u

5

6 11

15 178 10

Delete 14

12(2,4) Trees

(2,4) Conclusion
• The height of a (2,4) tree is .

• Split, transfer, and fusion each take .

• Search, insertion and deletion each take .

• Why are we doing this?
- (2,4) trees are fun! Why else would we do it?

- Well, there’s another reason, too.

- They’re pretty fundamental to the idea of Red-Black trees as
well.

- And you’re covering Red-Black trees on Monday.

- Perhaps more importantly, your next project is a Red-Black tree.

• Have a nice weekend!

O nlog()

O 1()

O nlog()

