SHORTEST PATHS

* Weighted Digraphs

e Shortest paths

Shortest Paths

Weighted Graphs

» weights on the edges of a graph represent distange:
costs, etc.

« An example of an undirected weighted graph:

Shortest Paths 2

Shortest Path

e BFS finds paths with the minimum number of edges
from the start vertex

 Hencs, BFS finds shortest paths assuming that eac
edge has the same weight

e In many applications, e.g., transportation networks,
the edges of a graph have different weights.

 How can we find paths of minimum total weight?

« Example - Boston to Los Angeles:

1464

(sF0)
ol

1235

Shortest Paths 3

Dijkstra’s Algorithm

 Dijkstra’s algorithm finds shortest paths from a start
vertexsto all the other vertices in a graph with

- undirected edges
- nonnegative edge weights

 Dijkstra’s algorithm uses @eedy method
(sometimes greed works and is good ...)

e the algorithm computes for each venethe
distance of v from the start vertex s, that is, the
weight of a shortest path between s and v

 the algorithm keeps track of the set of vertices for
which the distance has been computed, called the
cloud C

 the algorithm usesiabel D[v] to store an
approximation of the distance between s and v

« when a vertex v is added to the cloud, its label D|v]
IS equal to the actual distance between s and v

« initially, the cloud C contains s, and we set
- D[s] =0
- D[v] = forv#s

Shortest Paths 4

Expanding the Cloud

« meaning of D[z] length of shortest path from s to z
that uses only intermediate vertices in the cloud

o after a new vertex u is added to the cloud, we neec
check whether u is a better routing vertex to reacl|

e let u be a vertex not in the cloud that has smalles|

label D[u]
- we addu to the cloud C

- we update the labels of the adjacent verticas of

as follows
for each vertex z adjacentualo

If z is not in the cloud ¢hen
If D[u] +weight(u,z) < D[z]then
D([z] = D[u] + weight(u,z)

 the above step is calledaaxation of edge (u,z)

D%

60 10

t
N

Shortest Paths

Pseudocode

e We use a priority queu@ to store the vertices not in
the cloud, wher®|[v] the key of a vertex in Q

Algorithm ShortestPai(t, v):
Input: A weighted grapl; and a distinguished verte»
v of G.
Output:A label D[u], for each vertex that of G,
such thaDJu] is the length of a shortest path
fromvtouinG.

Initialize D[v] —~ 0 andD[u] — +o for each
vertexv# u

let Q be a priority queue that contains all of the
vertices ofG using theD lables as keys.

while Q # [0 do
{pull uinto the cloud C}
u — Q.removeMinElement()

for each vertex adjacent tas such thatzis in Q do
{perform the relaxation operation on edgeZ) }

If D[u] + w((u, 2)) <D[Z] then
D[Z] " D[u] + w((u, 2))
change the key value ain Q to D[Z]
returnthe labebD[u] of each vertex..

Shortest Paths 6

)

Example

 shortest paths starting from BWI

2704
00

=7

ORD)

= R

(DFW) 946

(00)
1121

Shortest Paths

 JFK IS the nearest...

Shortest Paths

e followed by sunny PVD.

(ORD

00
1121

27:4 i 328

Shortest Paths

« BOS is just a little further.

Shortest Paths

10

« ORD: Chicago is my kind of town.

Shortest Paths

11

 MIA, just after Spring Break.

2704

621

Shortest Paths

12

« DFW is huge like Texas.

Shortest Paths 13

« SFO: the 49’ers will take the prize next year.

Shortest Paths

14

 LAX Is the last stop on the journey.

Shortest Paths

15

Running Time

e Let's assume that we represent G with an adjacenc
list. We can then step through all the vertices
adjacent to u in time proportional to their number
(i.e. O()) where | In the number of vertices adjacent
to u)

e The priority queue Q:

- A Heap: Implementing Q with a heap allows for
efficient extraction of vertices with the smallest D
label(O(logN)). If Q Is implented with locators,
key updates can be performed in O(logN) time.
The total run time is O((n+m)logn) where n is the
number of vertices in G and m in the number of
edges. In terms of n, worst case time is (On2loq)

- Unsorted Sequence: O(n) when we extract
minimum elements, but fast key updates (O(1)).
There are only n-1 extractions and m relaxations.
The running time is O(n2+m)

 In terms of worst case time, heap is good for small
data sets and sequence for larger.

e For each vertex, its neighbors are pulled into the
cloud in random order. There are only O(logn)
updates to the key of a vertex. Under this

Shortest Paths 16

Running Time (cont)

assumption, the run time of the head is
O(nlogn+m), which is always O(n2) the heap
Implementation is thus preferable for all but
degenerate cases.

Shortest Paths

17

Java Implementation

e We use a priority queue supporting locator-based

methods in the implementation of Dijkstra’s shorte

path algorithm

 when we insert a vertexinto Q, we associate with
the locator returned hysert (e.g., via a dictionary)
Locator u_loc = Q.insert(new Integer(u_dist), u);
setLocator(u, u_loc);

* in the relaxation of an edgez), the update of the
distance of is performed with operatio®placeKey

for (Enumeration u_edges = graph.incidentEdges(u);
u_edges.hasMoreElements();) {
Edge e = (Edge) u_edges.nextElement();
Vertex z = graph.opposite(u,e);
Locator z_loc = getLocator(z);
if (z_loc.isContained()) { // test whether zisin Q
int e_weight = weight(e);
Int z_dist = value(z_loc);
If (u_dist + e_weight <z _dist)
Q.replaceKey(z_loc, new Integer(u_dist e _weight));

}
}

St

Shortest Paths 18

Java Implementation (contd.)

public abstract class Dijkstra {
private static final int INFINITE = Integer. MAX_VALUE;
protected InspectableGraph graph;
/l priority queue used by the algorithm
protected PriorityQueue Q;

public Object execute(InspectableGraph g, Vertex
start) {

graph = g;
dijkstraVisit(start);
return distances();
}
// initialization
abstract void init();
/] create an empty priority queue
abstract PriorityQueue initPQ(Comparator comp);
// return the weight of edge e
abstract int weight(Edge e);
/[attach to u its locator loc in Q
abstract void setLocator(Vertex u, Locator loc);
// return the locator attached to u
abstract Locator getLocator(Vertex u);

Shortest Paths 19

Java Implementation(cont)

/[attach to u its distance dist
abstract void setDistance(Vertex u, int dist);
// return the vertex distances in a data structure
abstract Object distances();
// return as an int the key of a vertex in Q
private int value(Locator u_loc) {
return ((Integer) u_loc.key()).intValue();

}

Shortest Paths

20

Java Implementation (cont.)

protected void dijkstraVisit (Vertex v) {

// Initialize the priority queue Q and store all the
vertices in it

init();
Q = initPQ(new IntegerComparator());
for (Enumeration vertices = graph.vertices();
vertices.hasMoreElements();) {
Vertex u = (Vertex) vertices.nextElement();
int u_dist;
If (u==v)
u_dist = 0;
else
u_dist = INFINITE;
Locator u_loc = Q.insert(new Integer(u_dist), u);
setLocator(u, u_loc);
}
/[grow the cloud, one vertex at a time
while (! Q.isEmpty()) {

/l remove from Q and insert into cloud a vertex with
minimum distance

Locator u_loc = Q.min();

Shortest Paths 21

Java Implementation (cont)

Q.remove(u_loc);
setDistance(u, u_dist); // the distance of u is final

I/l examine all the neighbors of u and update their
distances

for (Enumeration u_edges = graph.incidentEdges(u);
u_edges.hasMoreElements();) {
Edge e = (Edge) u_edges.nextElement();
Vertex z = graph.opposite(u,e);
Locator z_loc = getLocator(z);
/[check if z is not in the cloud, i.e., zisin Q
If (z_loc.isContained()) {
// relaxation of edge e = (u,z)
Int e_weight = weight(e);
int z_dist = value(z_loc);
If (u_dist + e _weight <z _dist)

Q.replaceKey(z_loc, new Integer(u_dist +
e_weight));

}
}

}
}

Shortest Paths 22

Java Implementation (cont)

public class MyDijkstra extends Dijkstra {
protected Hashtable locators = new Hashtable();
protected Hashtable distances = new Hashtable();
protected Hashtable weights = new Hashtable();
public void init() { }
public PriorityQueue initPQ(Comparator comp) {

return (PriorityQueue) new
SeguencelLocPriorityQueue(comp);

}

public int weight(Edge e) {
return ((Integer) weights.get(e)).intValue();

}

public void setWeight(Edge e, int w) {
weights.put(e, new Integer(w));

}

public void setLocator(Vertex u, Locator loc) {
locators.put(u, loc);

}

public Locator getLocator(Vertex u) {
return (Locator) locators.get(u);

Shortest Paths 23

Java Implementation (cont.)
)

public void setDistance(Vertex u, int dist) {
distances.put(u, new Integer(dist));

}

public int distance(Vertex u) {
return ((Integer) distances.get(u)).intValue();

}
public Object distances() {

return distances:

}

Shortest Paths

24

