Shortest Paths

- Weighted Digraphs
- Shortest paths
Weighted Graphs

- **weights** on the edges of a graph represent distances, costs, etc.

- An example of an undirected weighted graph:
Shortest Path

- BFS finds paths with the minimum number of edges from the start vertex.
- Hence, BFS finds shortest paths assuming that each edge has the same weight.
- In many applications, e.g., transportation networks, the edges of a graph have different weights.
- How can we find paths of minimum total weight?
- Example - Boston to Los Angeles:
Dijkstra’s Algorithm

• Dijkstra’s algorithm finds shortest paths from a start vertex \(s \) to all the other vertices in a graph with
 - undirected edges
 - nonnegative edge weights

• Dijkstra’s algorithm uses a greedy method (sometimes greed works and is good ...)

• the algorithm computes for each vertex \(v \) the distance of \(v \) from the start vertex \(s \), that is, the weight of a shortest path between \(s \) and \(v \).

• the algorithm keeps track of the set of vertices for which the distance has been computed, called the cloud \(C \)

• the algorithm uses a label \(D[v] \) to store an approximation of the distance between \(s \) and \(v \)

• when a vertex \(v \) is added to the cloud, its label \(D[v] \) is equal to the actual distance between \(s \) and \(v \)

• initially, the cloud \(C \) contains \(s \), and we set
 - \(D[s] = 0 \)
 - \(D[v] = \infty \) for \(v \neq s \)
Expanding the Cloud

- **meaning of D[z]:** length of shortest path from s to z that uses only intermediate vertices in the cloud

- after a new vertex u is added to the cloud, we need to check whether u is a better routing vertex to reach z

- let u be a vertex not in the cloud that has smallest label D[u]
 - we add u to the cloud C
 - we update the labels of the adjacent vertices of u as follows

    ```
    for each vertex z adjacent to u do
        if z is not in the cloud C then
            if D[u] + \text{weight}(u, z) < D[z] then
                D[z] = D[u] + \text{weight}(u, z)
    ```

- the above step is called a **relaxation** of edge (u,z)
Pseudocode

• we use a priority queue \(Q \) to store the vertices not in the cloud, where \(D[v] \) the key of a vertex \(v \) in \(Q \)

Algorithm ShortestPath\((G, v)\):

Input: A weighted graph \(G \) and a distinguished vertex \(v \) of \(G \).

Output: A label \(D[u] \), for each vertex that \(u \) of \(G \), such that \(D[u] \) is the length of a shortest path from \(v \) to \(u \) in \(G \).

initialize \(D[v] \leftarrow 0 \) and \(D[u] \leftarrow +\infty \) for each vertex \(v \neq u \)
let \(Q \) be a priority queue that contains all of the vertices of \(G \) using the \(D \) labels as keys.
while \(Q \neq \emptyset \) do
 \{pull \(u \) into the cloud C\}
 \(u \leftarrow Q.removeMinElement() \)
 for each vertex \(z \) adjacent to \(u \) such that \(z \) is in \(Q \) do
 \{perform the relaxation operation on edge \((u, z)\)\}
 if \(D[u] + w((u, z)) < D[z] \) then
 \(D[z] \leftarrow D[u] + w((u, z)) \)
 change the key value of \(z \) in \(Q \) to \(D[z] \)
return the label \(D[u] \) of each vertex \(u \).
Example

• shortest paths starting from BWI
• JFK is the nearest...
followed by sunny PVD.
• BOS is just a little further.
• ORD: Chicago is my kind of town.
• MIA, just after Spring Break.
- DFW is huge like Texas.
• SFO: the 49’ers will take the prize next year.
LAX is the last stop on the journey.
Running Time

- Let’s assume that we represent G with an adjacency list. We can then step through all the vertices adjacent to u in time proportional to their number (i.e. $O(j)$ where j is the number of vertices adjacent to u)

- The priority queue Q:
 - A Heap: Implementing Q with a heap allows for efficient extraction of vertices with the smallest D label ($O(\log N)$). If Q is implemented with locators, key updates can be performed in $O(\log N)$ time. The total run time is $O((n+m)\log n)$ where n is the number of vertices in G and m in the number of edges. In terms of n, worst case time is $O(n^2 \log)$
 - Unsorted Sequence: $O(n)$ when we extract minimum elements, but fast key updates ($O(1)$). There are only $n-1$ extractions and m relaxations. The running time is $O(n^2+m)$

- In terms of worst case time, heap is good for small data sets and sequence for larger.

- For each vertex, its neighbors are pulled into the cloud in random order. There are only $O(\log n)$ updates to the key of a vertex. Under this
Running Time (cont)

assumption, the run time of the head is O(nlogn+m), which is always O(n^2) the heap implementation is thus preferable for all but degenerate cases.
Java Implementation

• we use a priority queue Q supporting locator-based methods in the implementation of Dijkstra’s shortest path algorithm

• when we insert a vertex u into Q, we associate with u the locator returned by \texttt{insert} (e.g., via a dictionary)

 Locator $u_loc = Q.insert(\text{new Integer}(u_dist), u);
 \text{setLocator}(u, u_loc);

• in the relaxation of an edge (u,z), the update of the distance of z is performed with operation \texttt{replaceKey}

 for (Enumeration $u_edges = \text{graph.incidentEdges}(u)$;
 $u_edges.hasMoreElements();)$

 Edge $e = (\text{Edge}) u_edges.nextElement();$

 Vertex $z = \text{graph.opposite}(u,e);$

 Locator $z_loc = \text{getLocator}(z);$

 if ($z_loc.isContained())$ \{ // test whether z is in Q
 int $e_weight = \text{weight}(e);$
 int $z_dist = \text{value}(z_loc);$
 if ($u_dist + e_weight < z_dist$)

 \text{Q.replaceKey}(z_loc, \text{new Integer}(u_dist e_weight));
 \}

}
public abstract class Dijkstra {
 private static final int INFINITE = Integer.MAX_VALUE;
 protected InspectableGraph graph;
 // priority queue used by the algorithm
 protected PriorityQueue Q;
 public Object execute(InspectableGraph g, Vertex start) {
 graph = g;
 dijkstraVisit(start);
 return distances();
 }
 // initialization
 abstract void init();
 // create an empty priority queue
 abstract PriorityQueue initPQ(Comparator comp);
 // return the weight of edge e
 abstract int weight(Edge e);
 // attach to u its locator loc in Q
 abstract void setLocator(Vertex u, Locator loc);
 // return the locator attached to u
 abstract Locator getLocator(Vertex u);
// attach to u its distance dist
abstract void setDistance(Vertex u, int dist);
// return the vertex distances in a data structure
abstract Object distances();
// return as an int the key of a vertex in Q
private int value(Locator u_loc) {
 return ((Integer) u_loc.key()).intValue();
}
protected void dijkstraVisit (Vertex v) {
 // initialize the priority queue Q and store all the vertices in it
 init();
 Q = initPQ(new IntegerComparator());
 for (Enumeration vertices = graph.vertices(); vertices.hasMoreElements();) {
 Vertex u = (Vertex) vertices.nextElement();
 int u_dist;
 if (u==v)
 u_dist = 0;
 else
 u_dist = INFINITE;
 Locator u_loc = Q.insert (new Integer(u_dist), u);
 setLocator (u, u_loc);
 }
 // grow the cloud, one vertex at a time
 while (! Q.isEmpty()) {
 Locator u_loc = Q.min();
 // remove from Q and insert into cloud a vertex with minimum distance
 Locator u_loc = Q.min();
 }
}
Q.remove(u_loc);
setDistance(u, u_dist); // the distance of u is final
// examine all the neighbors of u and update their distances
for (Enumeration u_edges = graph.incidentEdges(u);
 u_edges.hasMoreElements();) {
 Edge e = (Edge) u_edges.nextElement();
 Vertex z = graph.opposite(u,e);
 Locator z_loc = getLocator(z);
 // check if z is not in the cloud, i.e., z is in Q
 if (z_loc.isContained()) {
 // relaxation of edge e = (u,z)
 int e_weight = weight(e);
 int z_dist = value(z_loc);
 if (u_dist + e_weight < z_dist)
 Q.replaceKey(z_loc, new Integer(u_dist + e_weight));
 }
}
public class MyDijkstra extends Dijkstra {
 protected Hashtable locators = new Hashtable();
 protected Hashtable distances = new Hashtable();
 protected Hashtable weights = new Hashtable();
 public void init() { }
 public PriorityQueue initPQ(Comparator comp) {
 return (PriorityQueue) new SequenceLocPriorityQueue(comp);
 }
 public int weight(Edge e) {
 return ((Integer) weights.get(e)).intValue();
 }
 public void setWeight(Edge e, int w) {
 weights.put(e, new Integer(w));
 }
 public void setLocator(Vertex u, Locator loc) {
 locators.put(u, loc);
 }
 public Locator getLocator(Vertex u) { return (Locator) locators.get(u); }
public void setDistance(Vertex u, int dist) {
 distances.put(u, new Integer(dist));
}

public int distance(Vertex u) {
 return ((Integer) distances.get(u)).intValue();
}

public Object distances() {
 return distances;
}