Assignment 1: Order Analysis, Basic Proof Techniques, and Programming Overview

Due: Sept 13, 4:30 PM

Note: Absolutely no late submissions will be accepted. 50% of the points for the order analysis and basic proof techniques and 50% of the points for the programming project.

Order Analysis and Basic Proof Techniques

1. Show that if \(f(n) = O(g(n)) \) and \(d(n) = O(h(n)) \), then \(f(n) + d(n) = O(g(n) + h(n)) \).
2. Show that \(O(\max\{f(n), g(n)\}) = O(f(n) + g(n)) \).
3. Show that if \(p(n) \) is a polynomial in \(n \), then \(\log p(n) = O(\log n) \).
4. Characterize the following summation (exactly) in terms of \(n \):
 \[
 \sum_{i=1}^{n} (3i + 4).
 \]
5. Show that \(\sum_{i=1}^{n} i^2 = O(n^3) \).
6. Show that \(\sum_{i=1}^{n} i/2^i < 2 \). (Hint: try to bound this sum term-by-term with a geometric progression.)
7. An \(n \)-degree polynomial \(p(x) \) is an equation of the form
 \[
 p(x) = \sum_{i=0}^{n} a_i x^i,
 \]
 where \(x \) is a real number and each \(a_i \) is a constant.

 (a) Describe a simple \(O(n^2) \) time method for computing \(p(x) \) for a particular value of \(x \).

 (b) Consider now a rewriting of \(p(x) \) as
 \[
 p(x) = a_0 + x(a_1 + x(a_2 + x(a_3 + \cdots + x(a_{n-1} + xa_n) \cdots))),
 \]
 which is known as Horner's method. Characterize, using the big-Oh notation, the number of multiplications and additions this method of evaluation uses.

Programming Exercise

Programming Project 8, Page 375 of your text.