
COUNTING:
PIGEON HOLE PRINCIPLE, 

PERMUTATIONS, 
COMBINATIONS 
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Lecture 15



Tree Diagrams

We can solve many counting problems through the 
use of tree diagrams
■ a branch represents a possible choice 
■ the leaves of the tree represent possible outcomes. 
.
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Example: Tree Diagrams
A T-shirt comes in five different sizes: S, M, L, XL, and XXL. 
Each size comes in four colors: white, red, green, and 
black, except 
■ XL comes only in red, green, and black
■ XXL comes only in green and black. 

What is the minimum number of T-shirts that a store needs 
to stock to have one of each size and color available?

Solution: 
Draw the tree diagram.
17 T-shirts must be stocked.
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PIGEONHOLE 
PRINCIPLE (6.2) 

• Basic principle
• Applications 
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The Pigeonhole Principle

If a flock of 26 pigeons roosts in a set of  25 
pigeonholes, one of the pigeonholes must have more 
than 1 pigeon.

https://en.wikipedia.org/wiki/Pigeonhole_principle
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The Pigeonhole Principle
Pigeonhole Principle: 

If k is a positive integer and k + 1 objects are placed 
into k boxes, then at least one box contains two or 
more objects. 

Proof: We use a proof  by contradiction. 
Suppose none of the k boxes has more than one 
object. Then the total number of objects would be at 
most k. This contradicts the statement that we have 
k + 1 objects.

Example:  Among any group of 367 people, there must be 
at least two with the same birthday because there are only 
366 possible birthdays.
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Example: Pigeonhole Principle

Every positive integer n has a multiple that has only 
0’s and 1’s in its decimal expansion.
For example, for n=6, 1110 = 185×6.

Solution: Let n be a positive integer. 
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Every positive integer n has a multiple that has only 
0’s and 1’s in its decimal expansion; e.g., for n=6, 
1110 = 185×6.

Solution: 
Let n be a positive integer. 
Consider the n + 1 integers 1, 11, 111, …., 11…1
(where the last integer has (n + 1) 1’s). 
There are n possible remainders when an integer 
is divided by n. 

Divide each of the n + 1 integers by n. By the 
pigeonhole principle, at least two integers must 
have the same remainder (i.e., s = kn+r, t = jn+r)

Subtract the smaller from the larger. 
The result is a multiple of n that has only 0’s and 
1’s in its decimal expansion. 
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The Generalized Pigeonhole Principle

The Generalized Pigeonhole Principle: If N
objects are placed into k boxes, then there is at 
least one box containing at least ⌈N/k⌉ objects.
Prove by contradiction: If all boxes contain at 
most ⌈N/k⌉ -1 objects, the total number of 
objects cannot be N. 

Example: Among 100 people there are at least           
⌈100/12⌉ = 9 who were born in the same month.
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Example: Generalized Pigeonhole Principle

How many cards must be selected from a 
standard deck of 52 cards to guarantee that 
at least three cards of the same suit are chosen? 

Solution: 
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Example: Generalized Pigeonhole Principle

How many cards must be selected from a 
standard deck of 52 cards to guarantee that 
at least three cards of the same suit are chosen? 

Solution: 
Assume there are four boxes, one for each suit.
We place cards in the box reserved for its suit. 
After N cards have been placed into boxes, at least 
one box contains at least ⌈N/4⌉ cards. 

At least three cards of one suit have been selected if 
⌈N/4⌉ ≥3. 
The smallest integer N such that ⌈N/4⌉ ≥3 is                            
N = 2 ∙ 4 + 1 = 9.
Hence, select 9 cards. 
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Pigeonhole Principle Example (sort of…)

How many cards must be selected from a standard deck 
of 52 cards to guarantee that at least three hearts are 
selected?

Solution:  
A deck contains 52 cards and 13 hearts. 
Hence, 39 cards are not hearts. 

If we select 41 cards, we may have 39 cards which 
are not hearts along with 2 hearts. 
However, when we select 42 cards, we must have at 
least three hearts. 
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PERMUTATIONS AND 
COMBINATIONS (6.3) 

• Permutations and r-permutations
• Combinations and r-combinations
• Binomial coefficients
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Permutations
Definition: A permutation of a set of distinct objects is an 

ordered arrangement of these objects. 
An ordered arrangement of r elements of a set is 
called an r-permutation.

Example: Let S = {1,2,3}. 
The ordered arrangement 3,1, 2 is a permutation of S.
The ordered arrangement 3, 2 is a 2-permutation of S.
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Permutations
The number of r-permutations of a set with n elements 
is denoted by P(n,r).

The 2-permutations of S = {1,2,3} are
1,2;  1,3;  2,1;  2,3;  3,1;  3,2  

Hence, P(3,2) = 6. 

P(n,r) = n(n-1)(n-2) … (n-r+1) with 1 ≤ r ≤ n
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Solving Counting Problems by 
Counting Permutations

Example: How many ways are there to select a first-prize 
winner, a second prize winner, and a third-prize winner 
from 100 different people who have entered a contest?

Solution: 
P(100,3) = 100 ∙ 99 ∙ 98 = 970,200
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Solving Counting Problems by Counting 
Permutations 

Example: Suppose a saleswoman has to visit eight 
different cities. She must begin her trip in a specified 
city, but she can visit the other seven cities in any 
order. 

How many possible orders exist?
Solution: The first city is chosen, and the rest are ordered 

arbitrarily. Hence the orders are:
7! = 7 ∙ 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 = 5040

If you need to find the tour with the shortest path that visits 
all the cities, do you need to consider all 5040 paths? 
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Theorem: If n is a positive integer and r is an integer 
with 1 ≤ r ≤ n, then there are

𝑷𝑷 𝒏𝒏, 𝒓𝒓 = n(n − 1)(n − 2) ∙∙∙ (n − r + 1) = 𝑛𝑛!
𝑛𝑛−𝑟𝑟 !

r-permutations of a set with n distinct elements.
Proof: Use the product rule. 

– The first element can be chosen in n ways. 
– The second element can be chosen in  n−1 ways, 

.

.
– until there are (n − ( r − 1)) ways to choose the last 

element.

Note: P(n,0) = 1. There is only one way to order zero 
elements.
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Solving Counting Problems by 
Counting Permutations

Example: How many permutations of the letters 
ABCDEFGH contain the string ABC ?

Solution: We solve this problem by counting the 
permutations of six objects, ABC, D, E, F, G, and H.

6! = 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 = 720
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Combinations

Definition: An r-combination of elements of a set is an 
unordered selection of r elements from the set. 

An r-combination is a subset with r elements.

The number of r-combinations of a set with n distinct 
elements is denoted by C(n, r). 

Notation: 𝐶𝐶 𝑛𝑛, 𝑟𝑟 = 𝑛𝑛
𝑟𝑟 is called a binomial coefficient. 
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Example: Combinations

S = {a, b, c, d}
{a, c, d} is a 3-combination from S. 
It is the same as {d, c, a} since the order does not 
matter.

C(4,2) = 6 
The 2-combinations of set {a, b, c, d} are six subsets: 
{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, and {c, d}. 
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Combinations
Theorem: The number of r-combinations of a set with n
elements, n ≥ r ≥ 0, is 
Proof:  
The P(n,r) r-permutations of the set can be obtained by 
– forming the C(n,r) r-combinations and then 
– ordering the elements in each which can be done in 

r! ways
By the product rule P(n, r) = C(n,r) ∙ r! The result 
follows.
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Useful identities

𝐶𝐶 𝑛𝑛, 𝑟𝑟 =
𝑃𝑃 𝑛𝑛, 𝑟𝑟
𝑟𝑟!

𝑃𝑃 𝑛𝑛, 𝑟𝑟 = 𝐶𝐶 𝑛𝑛, 𝑟𝑟 ⋅ 𝑟𝑟!

𝐶𝐶 𝑛𝑛, 𝑟𝑟 = 𝐶𝐶 𝑛𝑛,𝑛𝑛 − 𝑟𝑟



Example: Combinations

How many poker hands of five cards can be dealt from a 
standard deck of 52 cards? 

Solution: Since the order in which the cards are dealt 
does not matter, the number of five card hands is:
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Example: Combinations

How many ways are there to select 47 cards from a 
deck of 52 cards?

The different ways to select 47 cards from 52 is
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Combinations

Corollary: Let n and r be nonnegative integers, r ≤ n.
Then C(n, r) = C(n, n − r).

Proof: Since 

and 

C(n, r) = C(n, n − r) follows. 
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