

PROPERTIES OF REGULAR LANGUAGES AND REGULAR EXPRESSIONS

Lecture 24

Any regular language is accepted by an NFA.

Every NFA has a corresponding deterministic finite automation.

Given a deterministic FA, we are often interested in minimizing the number of states.

Properties of Regular Languages

Given regular languages L_1 and L_2 :

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

Union: $L_1 \cup L_2$

Reversal: L_1^R

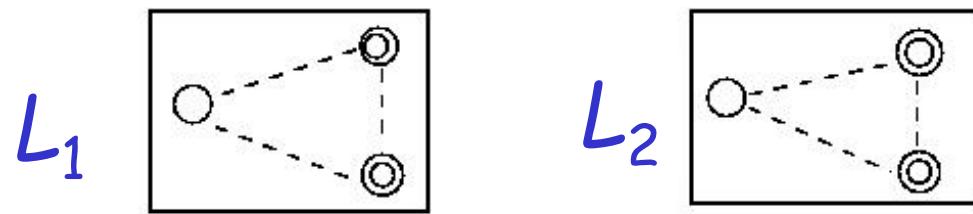
Concatenation: $L_1 L_2$

Star: L_1^*

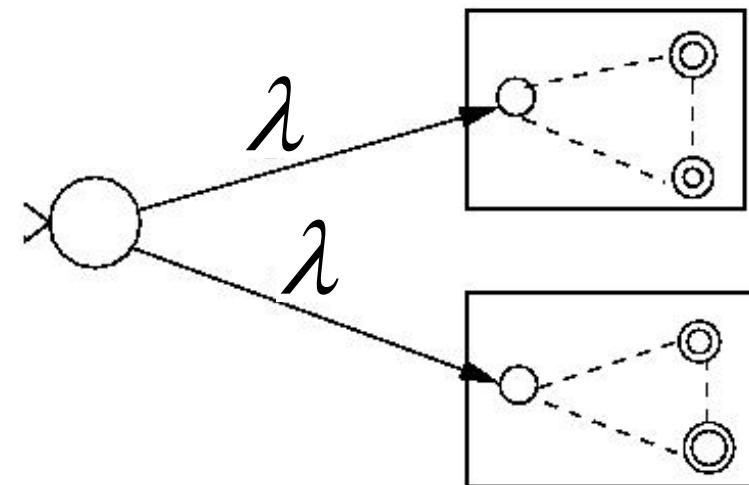
Are also
regular
languages

Proof: By construction, for union, concatenation, and Kleene star (i.e., we show how to generate a new finite automaton).

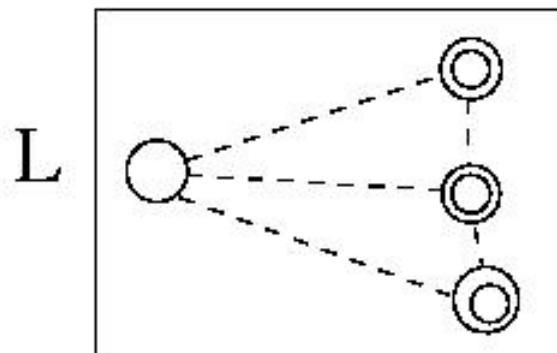
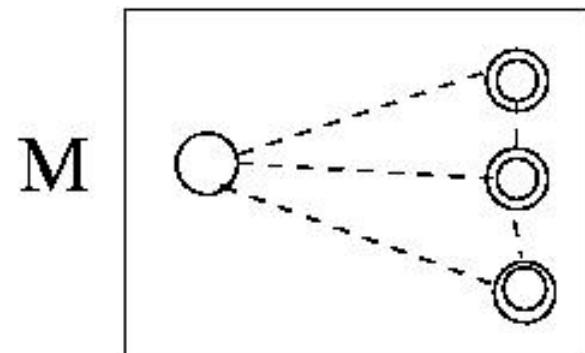
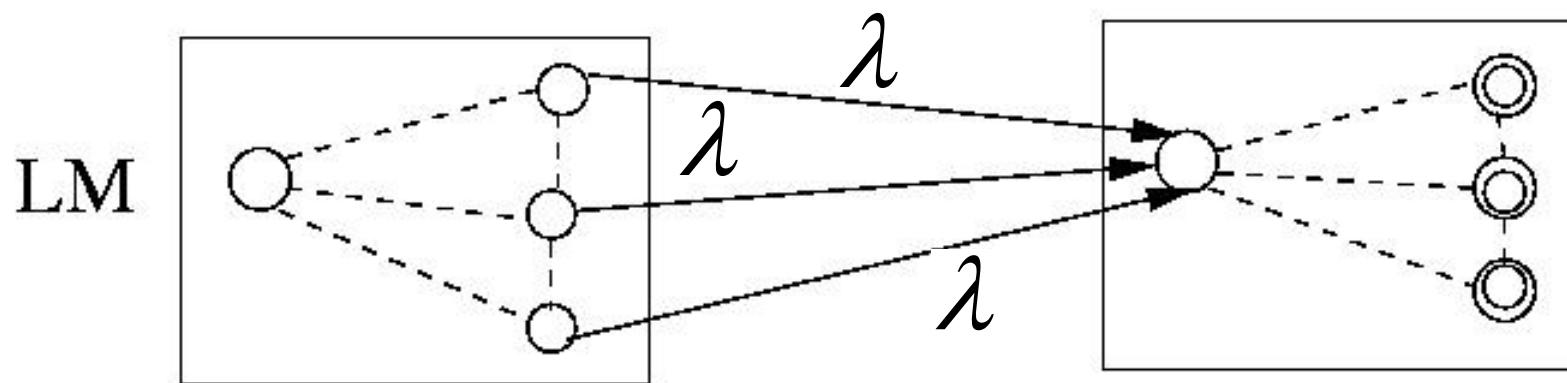
Union:



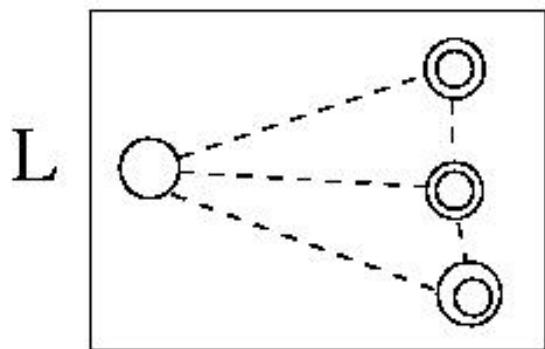
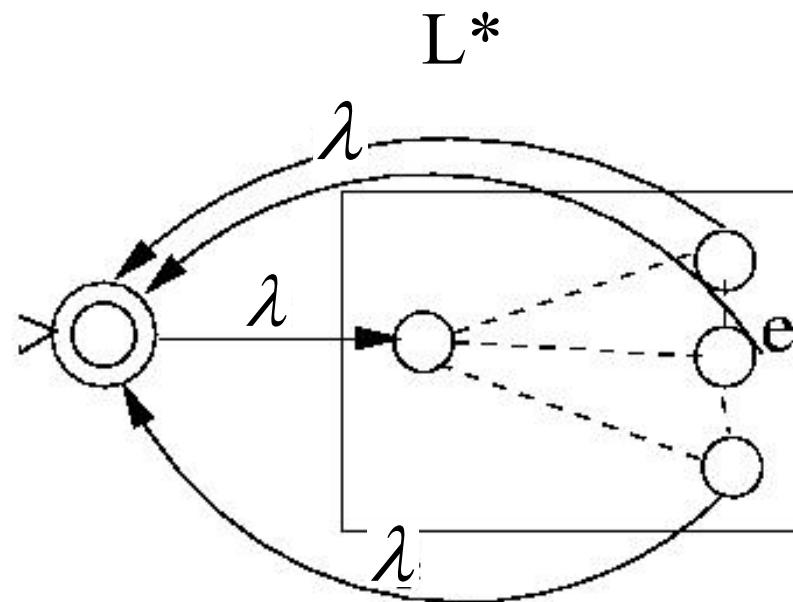
$L_1 \cup L_2$



Concatenation:



Kleene star:



We say: Regular languages are **closed under**

Union: $L_1 \cup L_2$

Concatenation: $L_1 L_2$

Star: L_1^*

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

Non-regular languages

Non-regular languages

$$\{a^n b^n : n \geq 0\}$$

$$\{vv^R : v \in \{a,b\}^*\}$$

Regular languages

$$a^*b$$

$$b^*c + a$$

$$b + c(a+b)^*$$

etc...

How can we prove that a language L is not regular?

Prove that there is no DFA that accepts L

Problem: this is not easy to prove

Solution: use the Pumping Lemma !!!

Regular Expressions

Regular Expressions

Regular expressions
describe regular languages

Example: $(a + b \cdot c)^*$

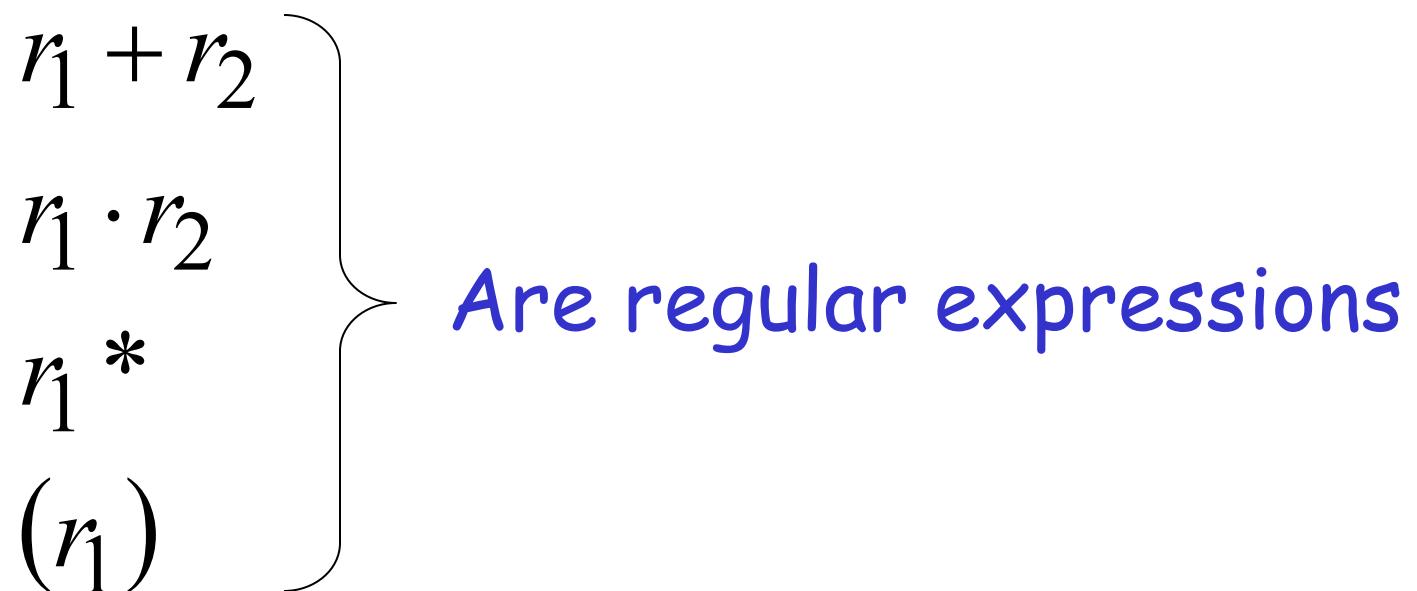
describes the language

$$\{a, bc\}^* = \{\lambda, a, bc, aa, abc, bca, \dots\}$$

Recursive Definition

Primitive regular expressions: $\emptyset, \lambda, \alpha$

Given regular expressions r_1 and r_2



$r_1 + r_2$
 $r_1 \cdot r_2$
 r_1^*
 (r_1)

Are regular expressions

Examples

A regular expression: $(a + b \cdot c)^* \cdot (c + \emptyset)$

Not a regular expression: $(a + b +)$

Languages of Regular Expressions

$L(r)$: language of regular expression r

Example

$$L((a + b \cdot c)^*) = \{\lambda, a, bc, aa, abc, bca, \dots\}$$

Definition

For primitive regular expressions:

$$L(\emptyset) = \emptyset$$

$$L(\lambda) = \{\lambda\}$$

$$L(a) = \{a\}$$

Definition (continued)

For regular expressions r_1 and r_2

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1^*) = (L(r_1))^*$$

$$L((r_1)) = L(r_1)$$

Example

Regular expression: $(a + b) \cdot a^*$

$$\begin{aligned}L((a + b) \cdot a^*) &= L((a + b)) L(a^*) \\&= L(a + b) L(a^*) \\&= (L(a) \cup L(b)) (L(a))^* \\&= (\{a\} \cup \{b\}) (\{a\})^* \\&= \{a, b\} \{\lambda, a, aa, aaa, \dots\} \\&= \{a, aa, aaa, \dots, b, ba, baa, \dots\}\end{aligned}$$

Regular expression: $(a.b^*).a$

$$\begin{aligned}L((a.b^*).a) &= L((ab^*))L(a) \\&= L((ab^*))\{a\} \\&= L(a) L(b^*)\{a\} \\&= \{a\} (L(b))^* \{a\} \\&= \{a\} \{b\}^* \{a\} \\&= \{w \mid w \text{ is of the form } ab^n a, \text{ for } n \geq 0\}\end{aligned}$$

Example

Regular expression $r = (a + b)^*(a + bb)$

$$L(r) = \{a, bb, aa, abb, ba, bbb, \dots\}$$

Example

Regular expression $r = (aa)^*(bb)^*b$

$$L(r) = \{a^{2n}b^{2m}b : n, m \geq 0\}$$

Example

Regular expression $r = (0 + 1)^* 00 (0 + 1)^*$

$L(r) = \{ \text{all strings with at least two consecutive 0} \}$

Example

Regular expression $r = (1 + 01)^*(0 + \lambda)$

$L(r) = \{ \text{all strings without}$
 $\text{two consecutive 0} \}$

Equivalent Regular Expressions

Definition:

Regular expressions r_1 and r_2

are **equivalent** if $L(r_1) = L(r_2)$

Regular Expressions and Regular Languages

Theorem

$$\left\{ \begin{array}{l} \text{Languages} \\ \text{Generated by} \\ \text{Regular Expressions} \end{array} \right\} = \left\{ \begin{array}{l} \text{Regular} \\ \text{Languages} \end{array} \right\}$$

We will show:

$$\left\{ \begin{array}{l} \text{Languages} \\ \text{Generated by} \\ \text{Regular Expressions} \end{array} \right\} \cap \left\{ \begin{array}{l} \text{Regular} \\ \text{Languages} \end{array} \right\}$$

$$\left\{ \begin{array}{l} \text{Languages} \\ \text{Generated by} \\ \text{Regular Expressions} \end{array} \right\} \cup \left\{ \begin{array}{l} \text{Regular} \\ \text{Languages} \end{array} \right\}$$

Proof - Part 1

$$\left\{ \begin{array}{l} \text{Languages} \\ \text{Generated by} \\ \text{Regular Expressions} \end{array} \right\} \subseteq \left\{ \begin{array}{l} \text{Regular} \\ \text{Languages} \end{array} \right\}$$

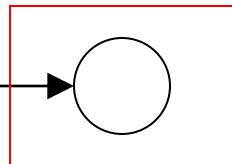
For any regular expression r
the language $L(r)$ is regular

Proof by induction on the size of r

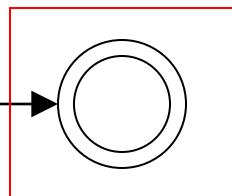
Induction Basis

Primitive Regular Expressions: $\emptyset, \lambda, \alpha$

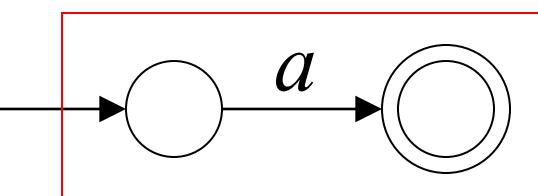
NFAs



$$L(M_1) = \emptyset = L(\emptyset)$$



$$L(M_2) = \{\lambda\} = L(\lambda)$$



$$L(M_3) = \{a\} = L(a)$$

regular
languages

Inductive Hypothesis

Assume
for regular expressions r_1 and r_2
that
 $L(r_1)$ and $L(r_2)$ are regular languages

Inductive Step

We will prove:

$$\left. \begin{array}{l} L(r_1 + r_2) \\ L(r_1 \cdot r_2) \\ L(r_1^*) \\ L(r_1) \end{array} \right\}$$

Are regular
Languages

By definition of regular expressions:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1^*) = (L(r_1))^*$$

$$L((r_1)) = L(r_1)$$

By inductive hypothesis we know:

$L(r_1)$ and $L(r_2)$ are regular languages

We also know:

Regular languages are closed under:

Union

$L(r_1) \cup L(r_2)$

Concatenation

$L(r_1) L(r_2)$

Star

$(L(r_1))^*$

Therefore:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1^*) = (L(r_1))^*$$

Are regular
languages

And trivially:

$L((r_1))$ is a regular language

Proof - Part 2

$$\left\{ \begin{array}{l} \text{Languages} \\ \text{Generated by} \\ \text{Regular Expressions} \end{array} \right\} \supseteq \left\{ \begin{array}{l} \text{Regular} \\ \text{Languages} \end{array} \right\}$$

For any regular language L there is a regular expression r with $L(r) = L$

Proof: by construction of regular expression
(beyond the scope of the class)

Standard Representations of Regular Languages

