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Any regular language is accepted by an 
NFA. 

Every NFA has a corresponding 
deterministic finite automation.

Given a deterministic FA, we are often 
interested in minimizing the number of 
states.
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Properties of 
Regular Languages
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1L 2L

21LLConcatenation:

*1LStar:

21 LL ∪Union: Are also 
regular
languages

Given regular languages       and      :

1L

21 LL ∩

Complement:

Intersection:

RL1Reversal:
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Proof: By construction, for union, 
concatenation, and Kleene star  (i.e., we 
show how to generate a new finite 
automaton).

Union:

21 LL ∪

L1 L2

λ
λ
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Concatenation:

λ
λ

λ
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Kleene star: L*

λ

λ

λ
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We say: Regular languages are closed under

21LLConcatenation:

*1LStar:

21 LL ∪Union:

1L

21 LL ∩

Complement:

Intersection:

RL1Reversal:
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Non-regular languages
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Regular languages

ba * acb +*

...etc
*)( bacb ++

Non-regular languages
}0:{ ≥nba nn

}*},{:{ bavvvR ∈
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How can we prove that a language
is not regular?

L

Prove that there is no DFA that accepts L

Problem: this is not easy to prove

Solution: use the Pumping Lemma !!!
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Regular Expressions
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Regular Expressions

Regular expressions 
describe regular languages  

Example:

describes the language

*)( cba ⋅+

{ } { },...,,,,,*, bcaabcaabcabca λ=
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Recursive Definition
αλ,,∅

( )1

1

21

21

*
r

r
rr
rr

⋅
+

Are regular expressions

Primitive regular expressions:

2r1rGiven regular expressions       and 
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Examples

( ) )(* ∅+⋅⋅+ ccbaA regular expression:

( )++ baNot a regular expression:
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Languages of Regular Expressions

:   language of regular expression

Example

( )rL r

( ) { },...,,,,,*)( bcaabcaabcacbaL λ=⋅+
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Definition

For primitive regular expressions:

( )

( ) { }

( ) { }aaL

L

L

=

=

∅=∅

λλ
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Definition (continued)

For regular expressions       and1r 2r

( ) ( ) ( )2121 rLrLrrL ∪=+

( ) ( ) ( )2121 rLrLrrL =⋅

( ) ( )( )** 11 rLrL =

( )( ) ( )11 rLrL =
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Example
Regular expression:  ( ) *aba ⋅+

( )( )*abaL ⋅+ ( )( ) ( )*aLbaL +=
( ) ( )*aLbaL +=
( ) ( )( ) ( )( )*aLbLaL ∪=

{ } { }( ) { }( )*aba ∪=
{ }{ },...,,,, aaaaaaba λ=

{ },...,,,...,,, baababaaaaaa=
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Regular expression:  (a.b*).a

L((a.b*).a)  =  L((ab*))L(a)
= L((ab*)){a}
= L(a) L(b*){a}
= {a} (L(b))* {a}
= {a} {b}* {a}
= {w |w  is of the form  abna, for n ≥ 0}
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Example

Regular expression ( ) ( )bbabar ++= *

( ) { },...,,,,, bbbbaabbaabbarL =
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Example

Regular expression ( ) ( ) bbbaar **=

( ) }0,:{ 22 ≥= mnbbarL mn
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Example

Regular expression *)10(00*)10( ++=r

)(rL = { all strings with at least
two consecutive 0 } 
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Example

Regular expression )0(*)011( λ++=r

)(rL = { all strings without
two consecutive 0 } 
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Equivalent Regular Expressions

Definition:

Regular expressions        and

are equivalent if    

1r 2r

)()( 21 rLrL =
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Regular Expressions
and

Regular Languages
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Theorem

Languages
Generated by
Regular Expressions

Regular
Languages=
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Languages
Generated by
Regular Expressions

Regular
Languages

⊆

Languages
Generated by
Regular Expressions

Regular
Languages

⊇

We will show:
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Proof - Part 1

r
)(rL

For any regular expression
the language           is regular

Languages
Generated by
Regular Expressions

Regular
Languages

⊆

Proof by induction on the size of r
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Induction Basis
Primitive Regular Expressions: αλ,,∅

NFAs

)()( 1 ∅=∅= LML

)(}{)( 2 λλ LML ==

)(}{)( 3 aLaML ==

regular
languages

a
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Inductive Hypothesis

Assume 
for regular expressions        and
that  

and             are regular languages

1r 2r

)( 1rL )( 2rL
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Inductive Step
We will prove:

( )

( )

( )

( )( )1

1

21

21

*

rL

rL

rrL

rrL

⋅

+

Are regular 
Languages
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By definition of regular expressions:

( ) ( ) ( )

( ) ( ) ( )

( ) ( )( )

( )( ) ( )11

11

2121

2121

**

rLrL

rLrL

rLrLrrL

rLrLrrL

=

=

=⋅

∪=+
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)( 1rL )( 2rL
By inductive hypothesis we know:

and             are regular languages

Regular languages are closed under:
( ) ( )
( ) ( )
( )( )*1

21

21

rL
rLrL

rLrL ∪Union 
Concatenation 

Star 

We also know:
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Therefore: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )( )** 11

2121

2121

rLrL

rLrLrrL

rLrLrrL

=

=⋅

∪=+

Are regular
languages
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And trivially: 

))(( 1rL is a regular language
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Proof - Part 2

Languages
Generated by
Regular Expressions

Regular
Languages

⊇

L
r LrL =)(

For any regular language       there is
a regular expression       with

Proof: by construction of regular expression
(beyond the scope of the class)



38

Standard Representations 
of Regular Languages

Regular Languages

FAs

NFAs
Regular
Expressions
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