PROPERTIES OF
REGULAR LANGUAGES
AND REGULAR
EXPRESSIONS

Lecture 24




Any regular language is accepted by an
NFA.

Every NFA has a corresponding
deterministic finite automation.

Given a deterministic FA, we are often
interested in minimizing the number of
states.



Properties of
Regular Languages



Given regular languages L and Lj:

Complement: L; A
Intersection: Lj ML,
Union: L; U L, Are also
. > regular
Reversal: [, languages

Concatenation: L1,

Star: [ * )



Proof: By construction, for union,
concatenation, and Kleene star (i.e., we

show how to generate a new finite

automaton).
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We say: Regular languages are closed under

Union: L U L,
Concatenation: 1L,
Star: [ *
Reversal: LIR

Complement: L;
Intersection: L1 a L2



Non-regular languages



fa"b" : n>0}
Non-regular languages

{vvR . vela,b}™}

Regular languages

a*b

b*c+a
b+c(a+b)*

elc...
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How can we prove that a language L
is not reqular?

Prove that there is no DFA that accepts L

Problem: this is not easy to prove

Solution: use the Pumping Lemma !l
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Regular Expressions
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Regular Expressions

Regular expressions
describe regular languages

Example: (a+b-c)*

describes the language
{a,bc}* = {i,a,bc,aa,abc,bca,...}
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Recursive Definition

Primitive regular expressions: J, A, «
Given reqular expressions 11 and 7

nt+n -
n-n

. > Are regular expressions

4
(”1) _
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Examples

A regular expression:

(a+b-c)*(c+ D)

Not a regular expression: (a +b +)
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Languages of Regular Expressions

L(r): language of regular expression 7

Example
L((a+b-c)*)={A,a,bc,aa,abc,bca,...|
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Definition

For primitive regular expressions:

D)=
L(1)= {4}

L(a)=iaj
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Definition (continued)

For regular expressions /4 and 7,

L(r +1y)=L(1) v L(ry)

L(r -ry)=L(1) L(r,)
L(r *)=(L(r))*
L((r))=L(1)

)=
*)=

18



Example
Regular expression: (a + b)- a*

Ll(a+b)-a*) =L((a+b)) L(a*)
=L(a+b)L(a*)
=(L(a) v L(b))(L(a))*
=(laju b)) (a))*

— {a,b} {ﬂ,, a,ad, aaa,...}

={a,aa,aaa,...,b,ba,baa,...}
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Regular expression: (a.b*).a

L((a.b*).a) = L((ab™))L(a)
= L((ab™*)Xa}

L(a) L(b*)}{a}

{a} (L(b))* {a}

= {a} {b}* {a}

={w |w is of the form abn"a, for n> 0}



Example

Regular expression r=(a+b)*(a+bb)

L(r)={a,bb,aa,abb,ba,bbb.,...}
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Example

Regular expression  r =(aa)*(bb)*b

L(r)={a*"b""b: n,m=0}
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Example

Regular expression r=(0+1)*00(0+1)*

L(7) = { all strings with at least
two consecutive O }
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Example

Regular expression r=(1+01)*(0+ A1)

L(7) = { all strings without
two consecutive O }
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Equivalent Regular Expressions
Definition:
Regular expressions 73 and »

are equivalent if L(r1)=L(»)
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Regular Expressions
and
Regular Languages



Theorem
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Proof - Part 1

fLanguages ) i )
Regular
Generated by S G ] ’ -
. anguages
_Regular Expressions,

\. 7

For any reqular expression r
the language L(7) is regular

Proof by induction on the size of r

29



Induction Basis
Primitive Regular Expressions: O, A, «

NFAs

Lo LM =D =L(D) |

0 L(My)={A}=L(2) - regular

languages
—(O- )| L(M3)={a}=L(a) ,
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Inductive Hypothesis

Assume
for reqular expressions 4 and 72

that
L(ry) and L(7) are regular languages
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We will prove:

Inductive Step

L(n+n)
L(r-r
( ! 2) Are regular
Languages
L(r*)

32



By definition of reqular expressions:

L(ri+ry)=L(1) v L(r)
L(r-ry)=L(r) L(r,)
L(r*)=(L(r))*
L((r))=L(r)



By inductive hypothesis we know:
L(ry) and L(») are regular languages

We also know:
Regular languages are closed under:

Union L(n)VL(r)
Concatenation L(r1 ) L(rz)
Star (Z(r))*
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Therefore:

L(n+7)=L(1)UL(r)
L(ri-ry)=L(r) L(ry)

L(rn*)=(L(rn))*

>

Are regular
languages
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And trivially:

L((r1)) isaregular language
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Proof - Part 2

i Languages Reqular
Generated by > :_) 3 ] g
. anguages
_Regular Expressions,

\. 7

For any regular language L there is
a regular expression » with L(r)=L

Proof: by construction of regular expression
(beyond the scope of the class)
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Standard Representations
of Regular Languages

Regular Languages

/
Fhs

Regular
[ NFAS} Expressions

|
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