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ABSTRACT
Despite the importance and widespread use of range data, e.g., time
intervals, spatial ranges, etc., little attention has been devoted to study
the processing and querying of range data in the context of big data.
The main challenge relies in the nature of the traditional index struc-
tures e.g., B-Tree and R-Tree, being centralized by nature, and hence
are almost crippled when deployed in a distributed environment. To
address this challenge, this paper presents Kangaroo, a system built
on top of Hadoop to optimize the execution of range queries over
range data. The main idea behind Kangaroo is to split the data into
non-overlapping partitions in a way that minimizes the query execu-
tion time. Kangaroo is query workload-aware, i.e., results in partition-
ing layouts that minimize the query processing time of given query
patterns. In this paper, we study the design challenges Kangaroo ad-
dresses in order to be deployed on top of a distributed file system, i.e.,
HDFS. We also study four different partitioning schemes that Kanga-
roo can support. With extensive experiments using real range data of
more than one billion records and real query workload of more than
30,000 queries, we show that the partitioning schemes of Kangaroo
can significantly reduce the I/O of range queries on range data.

1. INTRODUCTION
Hadoop has become a standard platform for big data analytics.

Many businesses are increasingly becoming dependent on it, and this
is especially true for the Internet companies. Moreover, the tools built
on top of Hadoop such as Pig [25], Hive [28], Cheetah [6], etc make it
easier for users to engage with Hadoop and run queries using friendly
high-level languages.

One of the main issues with Hadoop is that executing a query usu-
ally involves scanning very large amounts of data to perform filtering,
grouping, and aggregation, which can lead to high response times.
Most prior work attempting to reduce the amount of data scanned
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during query processing has been considering either introducing tra-
ditional database indexing at the record-level or on filtering out entire
partitions in case the query has some filtering criteria defined on the
partition key. Moreover, except for very little work, such as [11], not
enough attention has been given to addressing those concerns in the
context of big range data, as opposed to the regular point data records.

To appreciate the significance of range data types and how they
are central to many large-scale data-intensive industries, consider the
following few examples:

• Digital Advertising: This is the main driving application for
this work, since Turn is a digital advertising company. The key
value for this type of companies lies in their ability to accu-
rately and efficiently deliver the advertiser’s message to their
target audience in the online world, which is simply known as
executing their ad campaigns. For this purpose, Turn maintains
anonymized profiles (based on cookie ids) for online users.,
which will help in deciding whether a given user is a good
match for a certain advertiser. Obviously, running such cam-
paigns results in an enormous amount of data generation. This
data is later analyzed to try to glean insights related to how
different users and user segments respond to the different mar-
keting stimuli. Hence, in this context, we can consider each
user profile as a range data record, whose range is defined by
its lifetime; i.e. from the time the profile was created until the
time of its last activity. Similarly, queries typically have time
ranges; e.g., the duration of the campaign being analyzed.

The need for this type of analysis also extends to other online
players like big publishers – e.g., popular social networks or
mobile apps – where they need to better understand the way
their users interact with their websites or apps either for adver-
tising purposes or for improving the user experience. In this
case, they may want to track individual user sessions, which
can also be regarded as range data records.

• Television: The television industry has some similarities to the
online world. Specifically, the set-top boxes installed in homes
by the TV service provider keep track of the viewed channels
(and for how long). All those range data records are sent back
to the service provider to be normally used for warehousing and
analytics. Some of the common queries against this type of data
is to try to get a break down of the viewership for a certain TV
program or TV ad. Clearly, those queries are range queries.

• Telecom: Calls made via cell phones can normally span multi-
ple locations, i.e., multiple cell towers. Wireless telecom com-
panies need to keep track of those call records, which also
have associated time ranges, for billing purposes as well as



for load-monitoring and capacity planning. Examples of anal-
ysis queries on this type of data can include a query returning
a breakdown of call traffic by cell tower and customer demo-
graphics within a given period of time.

• Customer Support: Customer support tickets normally take
some time before they are closed, and they are usually the sub-
ject of a lot of analysis – for example to understand the aver-
age response types to customers in certain classes of issues or
by certain call agents. Also, those analyses would typically be
limited to a certain time period.

In this paper, we present Kangaroo, a system built on top of Hadoop
and designed especially to handle range data and range queries. Its
key strength is centered around its ability to effectively partition the
range data in such a way that maximizes the amount of data that can be
skipped due to the irrelevance to the query. In other words, queries can
“jump” over many irrelevant partitions, and hence the system name.
The partitioning approach used by Kangaroo also has many desirable
and novel features: it (1) is workload-aware, (2) allows no data dupli-
cation across partitions, (3) allows no data splitting across partitions,
(4) allows no partition overlap, (5) guarantees bounded partition sizes,
and (6) guarantees bounded number of partitions.

Our extensive experimental study on real data of more than one
billion records and real query workload of more than 30,000 queries
clearly demonstrates the effectiveness of Kangaroo.

The rest of the paper is organized as follows. Section 2 defines
the problem, and describes and motivates the key requirements in a
Hadoop-based system for processing range data and range queries.
Section 3 overviews Kangaroo. Sections 4 and 5 explain the different
algorithms employed by Kangaroo to perform the data partitioning.
The experiments and results are given in Section 6, and the related
work is presented in Section 7. Section 8 concludes the paper.

2. PROBLEM DEFINITION
We consider a set, R, of NR records. Each record, r, is defined

by a record id, r.id, some range data, say r.start and r.end, and any
other arbitrary attributes. A workload, Q, of NQ queries is imposed
on R. Each query, q, is also defined by a range, q.start and q.end,
such that a record, r, is only relevant to q if their ranges overlap. Also,
every query, q, has a submission time, q.submit_time. Our goal is
to partition R into a given number of partitions such that the amount
of data scanned by Q is minimized, and hence the cost of executing
Q is minimized as well.

There are six main properties we wish to have in our partitioning
scheme. We list and motivate them below.

• Workload Awareness: Unlike traditional spatial indexing
methods, which effectively partition data into multiple buckets
and are mainly concerned with the data distribution irrespective
of the query workload, we found that taking the workload into
account can be very helpful. In particular, regions of data that
are queried with high frequency need to be more aggressively
partitioned compared to the other less popular regions. This
fine-grained partitioning of the in-high-demand data can result
in significant savings in query processing time.

• No Data Duplication: Some existing spatial indexing meth-
ods, particularly space-partitioning trees, can cause data
records to be duplicated in multiple partitions if those records
happen to cross partition boundaries. This duplication is not
desirable, especially in the context of very large datasets, be-
cause of the potentially large space overhead and the additional
processing needed at query time to de-duplicate the results.

• No Data Splitting: It is common in big data analytics that
records have a nested structure, such as online user profiles for
instance, where each profile contains the user’s different online

events that together define her interval of online activity. In
this case, one possible solution to avoid data duplication across
multiple partitions is to instead split those nested records across
the partitions. So for the user profiles example, if two partitions
cover two different time ranges, and the same user spans both
ranges, then the profile can be split into two parts, such that
each partition will only contain the part with events occurring
within the partition’s time range. Unfortunately, this solution is
problematic – because whenever we need to analyze the com-
plete profiles, we will have to perform a very expensive join
across the different parts of each profile. In fact, this defeats
the whole purpose of building user profiles, which is supposed
to group the data that would normally to be analyzed together
ahead of time, so that joins can be avoided.

• No Partition Overlap: Another alternative offered by other
types of spatial indexes, such as the R-tree and its variants, is to
ensure that each data record belongs to one and only one parti-
tion, which eliminates the need for data duplication or splitting.
However, this comes at the expense of allowing partitions to
overlap. The problem with this approach is that when a query’s
range touches a region that belongs to the overlap of multiple
partitions, then all those partitions will have to be scanned, and
thereby substantially increasing the overhead.

• Bounded Partition Size: It is important for a partitioning
scheme, especially when it operates in the Hadoop environ-
ment, to provide a means of control on the amount of skew
in partition sizes. The key reason is that we want to avoid
big skews across the reduce tasks of the map-reduce job per-
forming data partitioning, as each output partition will be han-
dled by one of those reducers. For this purpose, we de-
fine two configuration parameters, min_partition_size and
max_partition_size, that the user can set to control the lower
and upper bounds of the partition sizes respectively.

• Bounded Number of Partitions: Another important feature
of a partitioning scheme running on Hadoop is the ability to
control the number of output partitions. Allowing too many
small partitions can be very harmful to the overall health of
the Hadoop cluster (See [22, 18, 29]). In particular, the name
node in charge of the Hadoop File System (HDFS) keeps track
of the individual blocks comprising the files stored on HDFS.
This is a central shared resource in the cluster, so when it gets
overloaded, it will slow down the whole cluster. Therefore, it
is a common practice in Hadoop to use large block sizes – in
the order of hundreds of MBs – and also to avoid files that are
much smaller than a single block size.

To this end, our partitioning scheme has the parameter, Kt, rep-
resenting the target number of partitions. While Kt is used to
guide the partitioning algorithm, the actual number of parti-
tions, Ka, may end up being different from Kt. The reason for
this discrepancy is that the setting of min_partition_size and
max_partition_size will normally impact the final number
of partitions. However, we still require Ka to be bounded w.r.t.
Kt, precisely: Kt ≤ Ka ≤ 2×Kt.

3. THE KANGAROO SYSTEM
The Kangaroo system is built to address the above challenges. It

can efficiently process Web-scale range data given a workload of
range queries in a Hadoop environment. As described in Section 2, it
takes the historical query workload into account, ensures that data is
neither duplicated nor split, that partitions do not overlap, and that the
number and size of partitions are both bounded.

Note that point data and point queries are special cases of range
data and range queries respectively, where each point can be thought
of as a range whose start and end are identical. So they can be easily
handled by Kangaroo.
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Figure 1: Sample range data and range queries in their raw for-
mat (1D)
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Figure 2: Sample range data and range queries in their trans-
formed format (2D)

3.1 Main Approach
Space Transformation: The main idea behind Kangaroo is that it

begins by transforming the problem into a different space where the
requirements of no duplication, no splitting, and no overlap can be
easily met. Consider Figures 1 and 2. They both represent a scenario
where we have 10 different range data records, r1 . . . r10, and two
range queries, q1 and q2. The ranges for both data records and queries
are considered to be time intervals in this scenario. In Figure 1, they
are plotted in the regular 1D space. It can be observed from the figure
that it is impossible in this 1D space to partition this data into two or
more non-overlapping partitions, with no data duplication or splitting.
There does not exist any single partitioning point that would cleanly
separate the data records into two different groups – let alone a bigger
number of groups. The only solution is to drop one of our constraints
by allowing partitions to overlap or data records to duplicate or split.

However, by transforming the problem into the 2D space, as shown
in Figure 2, we can find valid partitioning schemes that satisfy all of
our constraints. The transformation is performed as follows. For data
records, their start and end values will correspond to the first and sec-
ond dimensions in the new space respectively. This way, every range
data record in the 1D space will now become a data point in the 2D
space. On the other hand, queries will be transformed to rectangular
ranges. The idea is that any overlapping record in the 1D space should
now be a data point falling inside the query’s rectangular range. Note
that a record’s range will only overlap with the query’s range when
both its start value is less than or equal to the query’s end value, and
its end value is greater than or equal to the query’s start value. Thus,
in the 2D space, the width of the query rectangle should span all pos-
sible start values from the minimum such value to the query’s end
value. Similarly, the height of the query rectangle should span all the
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Figure 3: Architecture of Kangaroo

possible end values from query start value to the maximum possible
end value.

For example, in Figure 2, q1’s range is [7,11] in the 1D space. This
is transformed into the rectangle whose top left corner is (1, 21) and
whose bottom right corner is (11,7). Similarly, q2’s range in the 1D
space is [17,20], while its rectangle in the 2D space has (1,21) as its
top left corner and (20,17) as its bottom right corner. We can see that
in Figure 1, q1 overlaps with r1, r2, r5, and r10, whose corresponding
data points in Figure 2 are enclosed inside q1’s rectangle. The same
relationship applies between q2 and records r6, r7, and r10.

It is now clear that all queries will always share the same top left
corner, which is the top left corner of the entire 2D space. There-
fore, each query can be uniquely identified by its bottom right corner,
which is the data point corresponding to its range’s end and start val-
ues (the boundaries in reverse order).

Cost Model: In Kangaroo, we estimate the cost of executing a
query by the number of records it has to read. Thus, the main opti-
mization goal of Kangaroo is to partition the data in a way that mini-
mizes the number of retrieved records for a given query workload. We
estimate the cost, i.e., quality, of a partitioning layout by the amount
of records the queries of the workload will have to retrieve. More
formally, given a partitioning layout, say L, the cost will be:

Cost(L) =
∑
∀p∈L

Oq(p)× Cr(p), (1)

where Oq(p) is the number of queries that overlap with Partition p,
and Cr is the count of records in p. In Section 5, we show how the
above cost function can be efficiently evaluated for any given parti-
tioning layout. Furthermore, we show how Equation 1 can be adjusted
to have more precise estimate of the cost of query execution.

3.2 System Architecture
The overall architecture of Kangaroo is given in Figure 3. At the

heart of the system is the data store maintained within HDFS. The
data store has two main areas: a staging area, which only serves as a
transient location for incoming new datasets, and an active area, into
which the new datasets are ultimately loaded and made available to
answer user queries.

As shown in Figure 3, Kangaroo has four main processes, each
running on its own schedule independently from the other processes.
However, they do interact through their inputs and outputs.

Partition Planning Process: This is the key process distinguish-
ing Kangaroo from other Hadoop-based data processing systems. The
partition planning process is responsible for identifying the (near) op-
timal partitioning scheme (according to the cost model in Equation 1)
to be later used for partitioning the data and serving the query load. It



has a data and query analyzer component, which aggregates and maps
the active and new data records residing in HDFS, along with the his-
torical queries from the query log – onto the 2D space. The data and
queries in their new format are then passed to the second component,
the partition planner to run the partitioning algorithm that would find
the best partitioning scheme to minimize the useless data scanning
while satisfying all the required constraints. The output partitioning
scheme is then written to disk (typically on HDFS) to be available for
other Kangaroo processes. This process runs every given time, Tpl.
Depending on the anticipated rate of change in the workload patterns,
Tpl can be configured to have different values; e.g, weekly, monthly,
etc. It can also be dynamically triggered by a continuous monitor-
ing system for the workload pattern changes. In Section 4, we will
describe in detail the different algorithms considered for the partition
planner component.

Data Partitioning Process: This process runs at a higher fre-
quency (every Tpa) than the partition planning process; e.g., daily.
It is responsible for using the partitioning scheme derived by the
planning process to actually construct the new partitions out of both
the active (previously-partitioned) and the newly arriving (never-
partitioned) data. There are two components used during the data par-
titioning process. The first component is the partition selector, which
first loads the most recent partition descriptors from disk to memory,
and then given an input data record, it can find the matching partition
descriptor. This component is used by the second component, the
data partitioner, to properly assign each scanned data record to its
new partition. The data partitioner is implemented as a map-reduce
job, where the mappers read different chunks of records and then send
each record to the appropriate reducer, which will ultimately write the
corresponding partition file to HDFS. Data partitioning is treated as
an atomic transaction in the sense that all output partition files are first
written to a temporary directory, and then only when partitioning is
complete, the old active directory is deleted and the temporary direc-
tory is renamed to replace it. If any failures occur during partitioning,
the temporary directory is deleted and the process can be repeated.

Query Execution Process: This process is continuously running
as long as queries are being served by the system. It also has two
components, where the first component is also an instance of the par-
tition selector. It has a slightly different role in this context, where
it is given a query as input and in return it provides all the partitions
overlapping with the query range. The second component, which is
the query engine, uses the partition selector to decide which partitions
need to be scanned to answer a given query. The query engine is based
on the Cheetah system [6], the data warehousing component used in
Turn Data Management Platform (DMP) [12]. In addition to answer-
ing incoming queries, the query engine also logs all those queries, so
that they can be later used by the partition planning process.

Data Loading Process: The data loading process is triggered by
the arrival of a new dataset. The data loader would ingest the new
data, perform any necessary sanity checking and transformations, and
finally load the data into the staging area in HDFS. The new dataset
waits in the staging area until the next run of the data partitioning
process. Afterwards, the data partitions are moved to the active area
to be ready for query answering. The data loading process is described
in more detail in the context of Turn DMP [12].

4. PARTITIONING ALGORITHMS

4.1 Types of Partitioning Schemes
We consider two types of partitioning schemes that the partition-

ing algorithms can return: grid-based and tree-based. An example
of grid-based partitioning schemes is given in Figure 4. In this type,
the partitions form a coarse-grained grid structure that is overlaid on
top of the original fine-grained grid of the 2D space. Hence the parti-
tioning scheme can be represented using a pair of bit strings, B1 and
B2, with lengths (N1 − 1) and (N2 − 1) for the first and second di-
mensions respectively. Each bit will denote either a row or a column

start%1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14%

19%

18%

17%

16%

15%

14%

13%

12%
11%

10%

9%

8%

7%

6%

5%

4%
r3%

r1%

r9%

r4%

r10%

r8%

r6%

r7%

q1%

20%

21%

15% 16% 17% 18% 19% 20%

q2%

end%

P1# P2#

P3# P4#

r2%

r5%

(a) Partitons layout

0" 0" 0" 0" 0" 0" 0" 0" 0" 0" 1" 0" 0" 0" 0" 0" 0" 0" 0"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17" 18" 19"

0" 0" 0" 0" 0" 0" 0" 0" 0" 0" 0" 0" 0" 1" 0" 0" 0"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17"

B1"(start)"

B2"(end)"

(b) Bit strings for the partitions
in (a)

Figure 4: Grid-based partitioning

start%1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14%

19%

18%

17%

16%

15%

14%

13%

12%
11%

10%

9%

8%

7%

6%

5%

4%
r3%

r1%

r9%

r5%

r4%

r10%

r8%

r6%

r7%

q1%

20%

21%

15% 16% 17% 18% 19% 20%

q2%

end%

P1#

P2#P3#

P4#

r2%

(a) Partitons layout

P1234!

P134! P2!

P13! P4!

P1! P3!

P1234!

P134! P2!

P1! P34!

P3! P4!

(b) Possible tree structures for
the partitions in (a)

Figure 5: Tree-based partitioning

in the original grid. A set bit indicates that the corresponding row or
column acts as a borderline between partitions. For example, in Fig-
ure 4, B1[11] = 1 and B2[14] = 1, indicating the two borderlines in
the 4-partitions scheme depicted in the figure. (Note that the indexes
below the bits in Figure 4(b) denote the positions and not the actual
values of the first and second dimensions.)

Figure 5 shows an example of the more general tree-based parti-
tioning scheme. The example also has four partitions, but they do not
conform to a grid structure anymore. Instead, they can be represented
by any of the two binary trees shown in Figure 5(b). In these trees,
the root node represents a large partition covering the entire 2D space.
Then, it is split into two smaller partitions captured by its two child
nodes. Similarly, the children of each internal node are the outcome
of splitting the partition it represents into two partitions, and so on.

Note that with the grid-based partitioning scheme in Figure 4(a), q1
will have to scan 7 records (partitions P1 and P3) even though only 5
are relevant, while q2 will only scan its 3 relevant records (partitions
P1 and P2). This gives a total of 10 scanned records for both q1 and
q2. On the other hand, when the tree-based partitioning scheme in
Figure 5(a) is used, q1 will scan the 5 records it needs, while q2 will
scan an extra record beyond it 3 relevant records – resulting in a total
of 9 scanned records for both queries, which is a lower cost compared
to that of the grid-based partitioning scheme in Figure 4(a).

Because of the large search space involved in both types of parti-
tioning schemes, we considered multiple approximate algorithms to
find the (near) optimal solution that minimizes the total cost. These
schemes are described in the following subsections.

4.2 Grid-Based Algorithms

4.2.1 Genetic
The grid-based genetic algorithm has the same general outline com-

mon to all genetic algorithms. It starts by generating an initial random
population of partitioning schemes. Then, it iterates a given number
of iterations. In each iteration, random pairs in the population go
through crossovers to generate new offspring. A percentage of this
offspring will further undergo mutations. The new generation con-
sisting of all the offspring following the crossovers and mutations is



then merged with the current population, and only the most fit parti-
tioning schemes (the ones with the least costs) will survive until the
next iteration, and so on. After all the iterations are over, the min-
imum cost partitioning scheme in the final population is selected as
the answer. This general outline is given in Algorithm 1.

To complete the description of this algorithm, some important de-
tails need to be covered, e.g., how the partitioning schemes are rep-
resented? how are the random partitioning schemes generated in the
initial population? how are the crossovers and mutations performed?
and how are the constraints on the partition size and number of parti-
tions enforced?

Representation: As described in Section 4.1, grid-based partition-
ing schemes can be represented using a pair of bit strings, B1 and B2.
This is the same representation used by the genetic algorithm.

Algorithm 1 GridGenetic(R, Q, N1, N2, Kt, min_partition_size,
max_partition_size)
1: //generate initial population of partitioning schemes
2: population = {}
3: for i = 1 to population_size do
4: repeat
5: ps = GridRandomPS(N1, N2, Kt)
6: until IsFeasible(ps, min_partition_size)
7: ps.cost = PSCost(ps, R, Q)
8: insert ps into population, such that population remains sorted by

cost.
9: end for

10: for i = 1 to n_iterations do
11: //generate offspring
12: offspring = {}
13: for i = 1 to offspring_size do
14: repeat
15: pick two random parent partitioning schemes, ps1 and ps2 from

population.
16: ps_child = GridCrossover(ps1, ps2)
17: rand = a random number between 0 and 1
18: if rand < mutation_prob then
19: ps_child = GridMutation(ps_child)
20: end if
21: until IsFeasible(ps_child, min_partition_size)
22: add ps_child to offspring.
23: end for
24: //merge offspring with population
25: for each ps in offspring do
26: ps.cost = PSCost(ps, R, Q)
27: insert ps into population, such that population remains sorted by

cost.
28: if population.length > population_size then
29: remove population[population_size+ 1].
30: end if
31: end for
32: end for
33: ps∗ = population[1]
34: SplitLargePartititons(ps∗, max_partition_size)
35: return ps∗.

Random partitioning schemes: Algorithm 2 shows how we cre-
ate the two bit strings of a new random partitioning scheme, given the
target number of partitions along with the cardinalities of the two di-
mensions in the 2D space. First, we pick a random pair of values, K1

and K2, such that K1 × K2 = Kt. Then B1 and B2 are randomly
generated with a total number of bits equal to N1 and N2, of which
(K1-1) and (K2-1) are set respectively.

Crossovers: The crossover algorithm is given in Algorithm 3.
Given a pair of partitioning schemes, we first decide on K1 and K2

for their child. It is chosen out of all valid (K1, K2) pairs, such that
it is the closest to the midpoint of the two pairs corresponding to the
two parents. We experimentally verified that this strategy is more ef-
fective than just randomly picking any valid pair for the child. In the
next step, we construct B1 and B2 for the child by first OR-ing the
B1’s of the parents and the B2’s of the parents respectively. Finally,

Algorithm 2 GridRandomPS(N1, N2, Kt)
1: pick a random pair (K1, K2), such that K1 ×K2 = Kt.
2: construct a random bit string, B1 with (N1-1) bits, such that exactly (K1-

1) bits are set.
3: construct a random bit string, B2 with (N2-1) bits, such that exactly (K2-

1) bits are set.
4: return the partitioning scheme, ps, corresponding to the pair of bit strings,

(B1, B2).

a sufficient number of random bits is either set of reset to ensure that
B1 and B2 for the child have exactly (K1-1) and (K2-1) set bits.

Algorithm 3 GridCrossover(ps1, ps2)
1: Kt = ps1.K1 × ps1.K2

2: find a new pair (K1, K2), such that K1 × K2 = Kt and (K1,
K2) is the nearest such point to the midpoint of (ps1.K1, ps1.K2) and
(ps2.K1, ps2.K2).

3: B1 = ps1.B1 ∨ ps2.B1.
4: randomly set or reset enough bits in B1 until exactly (K1-1) bits are set.
5: B2 = ps1.B2 ∨ ps2.B2.
6: randomly set or reset enough bits in B2 until exactly (K2-1) bits are set.
7: return the partitioning scheme, ps, corresponding to the pair of bit strings,

(B1, B2).

Mutations: As shown in Algorithm 4, the mutation operation is
performed simply by swapping a random 0-bit and a random 1-bit in
each of B1 and B2 of the input partitioning scheme.

Algorithm 4 GridMutation(ps)
1: swap a random 0-bit and a random 1-bit in ps.B1.
2: swap a random 0-bit and a random 1-bit in ps.B2.
3: return ps.

Partition size and count constraints: Recall that all our algo-
rithms have to conform with the constraint that the size of each
partition in the output partitioning scheme should fall between
min_partition_size and max_partition_size. Additionally, the
actual number of partitions should not exceed double the target num-
ber of partitions. The minimum size constraint is enforced using the
IsFeasible() function (Lines 6, 21 in Algorithm 1), which will only
allow a partitioning scheme to be considered if all of its partitions
satisfy this constraint.

The maximum size constrain is satisfied through a post-
processing step using the SplitLargePartitions() function. If
the size of a large partition in the final partitioning scheme ex-
ceeds max_partition_size, it gets further partitioned, uniformly,
into a number of sub-partitions given by the ratio of its size to
max_partition_size. The partitioning key in this case is the record
id, rather than the record range, to ensure that uniform partitioning
can always be achieved.

Note that the worst case in terms of partitions imbalance in the out-
put partitioning scheme (prior to splitting large partitions) will happen
when all partitions are virtually empty except for one very large par-
tition that almost has all of the data records. In this case, that large
partition will be further split a maximum of Kt times, leading to an
actual number of partitions, Ka = 2 × Kt. We study the tradeoff
in setting Kt, min_partition_size, and max_partition_size, and
their impact on Ka in Section 6.

4.2.2 Genetic with Dynamic Programming
We also considered a variant of the grid-based genetic algorithm

that uses dynamic programming along one of the dimensions. In par-
ticular, it uses the exact same framework captured by Algorithms 1,
2, 3, and 4. However, whenever any of these algorithms attempt to
compute the second bit string, B2, for a given partitioning scheme, it
is not randomly generated. Instead, it is computed using a dynamic



programming algorithm. The intuition here is that along one dimen-
sion, it is possible to compute the optimal 1D partitioning scheme
somewhat efficiently and without using any approximate methods.

Algorithm 5 shows how the optimal B2 is computed. Let us first
explain the need for dynamic programming. If B2 can only have K2

set bits, then the last set bit can have several valid positions. Going in
the backward direction, those valid positions start from the last bit in
B2 back to position K2 (where all the previous bits will have to be set
too). Out of those alternative positions, to find the one leading to the
optimal B2, we first need to solve a smaller subproblem for each one
of them. In the subproblem corresponding to position pos, we want
to find the optimal positioning of (K2-1) 1-bits in the substring of B2

preceding pos. Once all the subproblems are solved, the optimal posi-
tion, pos∗, for the last set bit in B2 will be the one with the minimum
sum of costs for (1) its corresponding subproblem occurring before
pos∗, and (2) the K1 individual partitions occurring after pos∗.

Note that those individual partitions are completely defined by B1

along the first dimension and pos∗ along the second dimension. For
example, in Figure 4, if B1 is as shown and pos∗=14, then the indi-
vidual partitions will be P1 and P2.

The above discussion shows how the problem has an optimal sub-
structure, and hence can be solved using dynamic programming. At a
high level, Algorithm 5 builds the dynamic programming matrix, M ,
where one axis represents the cardinality of the second dimension in
our 2D space (i varied from 1 to N2), and the second axis represents
the target number of partitions we wish to have for that dimension (j
varied from 1 to K2). The matrix is built by incrementally computing
the costs for all valid combinations across the two axes. During ini-
tialization, no partitioning is considered (j=1). Then, computing the
cost for each subsequent cell in the matrix will be by finding the mini-
mum across multiple sums of costs, as described above. Finally, when
the entire matrix is computed, the minimum cost for the whole prob-
lem can be found in M [N2,K2]. The optimal B2 can then be derived
by retracing the computation from M [N2,K2] back to M [1, 1].

To compute the time complexity for this algorithm, note that there
are O(N2 × K2) valid cels in the matrix. Moreover, the number of
smaller subproblems required to compute each cell is O(N2). Thus,
the total time complexity is O(N2

2 × K2). Considering that this al-
gorithm can be called a fairly large number of times by the genetic
algorithm, it can potentially slow it down compared to the pure ge-
netic approach in Section 4.2.1.

4.3 Tree-Based Algorithms

4.3.1 Genetic
The tree-based genetic algorithm uses exactly the same outline of

Algorithm 1. The main difference, however, is in the way the par-
titioning schemes are represented, and consequently the related op-
erations of generating new random partitioning schemes, crossovers,
and mutations. The mechanisms used to enforce the partition size and
count constraints are the same as the ones described for the grid-based
algorithms in Section 4.2.1.

Representation: As explained in Section 4.1, tree-based partition-
ing schemes are represented as binary trees, where the leaf nodes cap-
ture the final partitions, while the internal nodes capture the parent
enclosing partitions.

Random partitioning schemes: Algorithm 6 shows how the ran-
dom partitioning schemes are generated for the tree-based genetic al-
gorithm. It starts by building a single-node tree whose root is the
partition covering the entire space. Then, it picks a random leaf node,
and randomly splits it into two partitions to form its two children.
This process repeats until exactly K leaf partitions are created.

Crossovers: The crossover operation is described in Algorithm 7.
It is performed by splitting the two input parents using the same ran-
dom split line. If, for example, the selected split line was vertical,
then the right part of the first parent will be trimmed, keeping only
the left part to be covered by its tree. Conversely, the second parent’s
tree will only keep the right part, while the left part will be trimmed.

Algorithm 5 PartitionDP(R, Q, B1, N2, K2)
1: //initialization
2: for i = 1 to N2 do
3: M [i, 1] = 0
4: p_list = list of partitions of the form p(x1, 1, x2, i), such that (a) x1=1

or B1[x1 − 1]=1, (b) x2=N1 or B1[x2]=1, and (c) B1[x]=0 for x1 ≤
x < x2

5: for each p in p_list do
6: M [i, 1] += PCost(p, R, Q)
7: end for
8: end for
9: //main loop

10: for i = 2 to N2 do
11: for j = 2 to min(i, K2) do
12: M [i, j] = ∞
13: for h = j − 1 to i− 1 do
14: temp_cost = M [h, j − 1]
15: p_list = list of partitions of the form p(x1, h + 1, x2, i), such

that (a) x1=1 or B1[x1 − 1]=1, (b) x2=N1 or B1[x2]=1, and (c)
B1[x]=0 for x1 ≤ x < x2

16: for each p in p_list do
17: temp_cost += PCost(p, R, Q)
18: end for
19: if temp_cost < M [i, j] then
20: M [i, j] = temp_cost
21: end if
22: end for
23: end for
24: end for
25: return B2 resulting in partitioning scheme with minimum cost,

M [N2,K2], by retracing the computation of M [N2,K2] back to
M [1, 1].

Algorithm 6 TreeRandomPS(N1, N2, Kt)
1: construct a partition of the form p(1, 1, N1, N2), and make it the root of

a new partition tree, pt.
2: k = 1 //number of leaf nodes in pt
3: while k < Kt do
4: SplitRandomLeaf(pt)
5: k += 1
6: end while
7: return the partitioning scheme, ps, corresponding to pt.

Then, a new root node is created for the child’s tree that covers the
entire 2D space. Subsequently, the roots of the two trimmed parent
trees are added to the child’s root as its two children. At this point,
the child’s tree may contain more or less leaf nodes than Kt. To
correct this situation, existing leaf nodes are either randomly split or
randomly merged with their siblings – until the total number of leaf
nodes equals Kt.

The functions of trimming a tree given a split line and of merging
a leaf node with its sibling are both more complex than the simple
function of splitting a leaf node. The TrimTree() function operates
recursively starting from the root. The root node is first trimmed us-
ing the split line. Then, if the split line goes through one of the child
nodes, that child is properly trimmed too. If the child node was com-
pletely on the to-keep side of the split line, it remains unchanged.
Otherwise, if it is on the to-trim side of the split line, then it is com-
pletely removed from the tree along with all of its descendants. For
nodes that get partially trimmed, all their children will be examined
and processed in the same way.

The MergeRandomLeaf() function is also recursive in the sense
that it first finds a random leaf node to be merged, and then identifies
its sibling. The sibling is precessed recursively as follows. Initially,
the sibling node is expanded towards the neighboring to-be-merged
node up until the border opposite to their shared border. Then, for
each child of the sibling node, if the child shares a border with the to-
be-merged node, then it is also expanded in the same direction until
the opposite border of the to-be-merged node is reached. Otherwise,
if the child does not share a border with the to-be-merged node, then it



remains unchanged. By the end of processing the sibling node and its
descendants, the randomly selected leaf node would have been com-
pletely merged with its neighbors and the total number of leaf nodes
is decreased by one.

Algorithm 7 TreeCrossover(ps1, ps2)
1: Kt = number of leaf nodes in ps1
2: randomly set orientation to either “horizontal” or “vertical”.
3: based on orientation, randomly pick a horizontal line, y = s, or a

vertical line, x = s, where 1 ≤ s ≤ N2 or 1 ≤ s ≤ N1 resp.
4: TrimTree(ps1.pt, s, orientation, “after_trim_line”)
5: TrimTree(ps2.pt, s, orientation, “before_trim_line”)
6: construct a partitioning scheme, ps, such that ps.pt.left = ps1.pt and

ps.pt.right = ps2.pt.
7: k = number of leaf nodes in ps.pt
8: while k < Kt do
9: SplitRandomLeaf(ps.pt)

10: k += 1
11: end while
12: while k > Kt do
13: MergeRandomLeaf(ps.pt)
14: k -= 1
15: end while
16: return ps.

Mutations: Algorithm 8 illustrates the mutation operation for an
input tree-based partitioning scheme. It is as simple as randomly split-
ting a leaf node in the tree to increase the leaf nodes by one, and then
randomly merging a leaf node to bring the total number back to Kt.

Algorithm 8 TreeMutation(ps)
1: SplitRandomLeaf(ps.pt)
2: MergeRandomLeaf(ps.pt)
3: return ps.

4.3.2 Greedy
The tree-based greedy algorithm, Algorithm 9, is comparable to Al-

gorithm 6, which was used to generate a random tree-based partition-
ing scheme. The greedy algorithm also starts by creating a root node
covering the entire 2D space, and it keeps on splitting leaf nodes until
the total number of leaf nodes is Kt. However, the main difference is
in the way it selects the next leaf node split. It applies a greedy strat-
egy rather than a random strategy. In particular, for each leaf node
and for each feasible split for that node, that would not violate the
minimum partition size requirement, the leaf node split resulting in
the maximum gain in terms of cost reduction is chosen.

We denote the tree generated by the greedy algorithm as the KNGR-
tree (pronounced “Kangaroo-tree”). This is because, as will be dis-
cussed in Section 6, it was shown to have superior properties com-
pared to the other competing algorithms, and as a result, it is the de-
fault partitioning algorithm used by Kangaroo.

It is also worth noting that the greedy choice in the KNGR-tree is
comparable to the one used for the KD-tree. Some of the key differ-
ences however, are that the KD-tree is not aware of the query load,
and it normally does not provide any guarantees on the size or count
of partitions (data records in leaf nodes).

5. EFFICIENT EVALUATION OF THE COST
FUNCTION

According to Equation 1 discussed in Section 3.1, the cost corre-
sponding to a partition can be modeled as the number of queries that
overlap with the partition multiplied by the number of records inside
the partition. This cost model would perform well, i.e., result into par-
titions of good quality, if all the records have the same size (number of
bytes). However, a more precise estimate of the cost corresponding to
a partition would consider the size of each record in the cost formula.
More formally, the cost of a certain partition, say p is:

Algorithm 9 TreeGreedy(R, Q, N1, N2, Kt, min_partition_size,
max_partition_size)
1: construct a partition of the form p(1, 1, N1, N2), and make it the root of

a new partition tree, pt.
2: k = 1 //number of leaf nodes in pt
3: while k < Kt do
4: max_gain = 0, max_n = null, max_n1=null, max_n2 = null
5: for each leaf node, n, in pt do
6: for each possible split of n resulting in two new leaf nodes, n1 and

n2, do
7: if IsFeasible(n1, min_partition_size) and IsFeasible(n2,

min_partition_size) then
8: gain = PCost(n, R, Q) - PCost(n1, R, Q) - PCost(n2, R, Q)
9: if gain > max_gain then

10: max_gain = gain, max_n = n, max_n1=n1, max_n2

= n2

11: end if
12: end if
13: end for
14: end for
15: split max_n into max_n1 and max_n2.
16: k += 1
17: end while
18: construct partitioning scheme, ps∗, corresponding to pt.
19: SplitLargePartititons(ps∗, max_partition_size)
20: return ps∗.

Cost(p) = Oq(p)×
∑
∀r∈p

Size(r), (2)

where Oq(p) is the number of queries that overlap with p and
Size(r) is the size of record r.

A basic operation in each of our proposed algorithms is to com-
pute the cost corresponding to a given partition according to the above
equation. For instance, in the tree-based greedy algorithm, we deter-
mine for each leaf node the best split that would achieve the maximum
gain in terms of cost reduction. In particular, we try all the possible
horizontal and vertical splits and for each pair of emerging partitions,
we compute the cost. Thus, the computation of the cost of a certain
partition has to be extremely efficient because it will have a direct
impact on the overall running time of all the partitioning algorithms.

Given a partition, say p, the cost corresponding to p contains two
components: 1) the size total data size in p and 2) the number of
queries overlapping with p.

Because the raw data is not partitioned, one can have a complete
scan of the data in order to determine the number of points in a given
partition (i.e., the first component of the cost of a partition). Obvi-
ously, this is not practical to perform. Because we are interested in
aggregates, i.e., count of points in a rectangle, scanning the individ-
ual points involves redundancy. [17] presents the idea of maintaining
prefix sums in a grid in order to answer range-sum queries of the num-
ber of points in a window, in constant time, irrespective of the size of
the window of the query or the size of the data. Hence, we prepro-
cess the raw data in a way that enables quick lookup (in O(1) time)
of the count corresponding to a given rectangle. We maintain a two-
dimensional grid that has a very fine granularity. The grid does not
contain the data points, but rather maintains aggregate information.
In particular, we divide the space into a grid, say G, of n rows and
m columns. Each grid cell, say G[i, j], initially contains the total
number of points that are inside the boundaries of G[i, j]. This is
achieved through a single MapReduce job that reads the entire data
and determines the count for each grid cell. Afterwards, we aggre-
gate the data corresponding to each cell in G using prefix-sums as
in [17]. As we explain in [1] in more detail, to compute the number
of points corresponding to any given partition, only four values need
to be added/subtracted. Thus, in Kangaroo, the process of finding the
number of points for any given partition is performed in O(1).

Extending the idea of prefix sums in a grid for counting the number
of rectangles (i.e., queries) that overlap a partition is a bit challeng-



ing due to the problem of duplicate counting of rectangles. One way
to address this challenge is to insert all the queries into an R-tree,
and then given a partition, find the number of overlapping queries
from the R-tree. However, this is inefficient because redundancy is
involved as we are interested in aggregates. Euler histograms [4] were
proposed to efficiently find the number of rectangles that intersect a
given region without duplicates. Kangaroo employs a variant of the
Euler histogram in [4] to efficiently compute the number of queries
that overlap any given partition (without duplicates). Grid G is pig-
gybacked with additional counters that enable Kangaroo to find the
number of overlapping queries in O(1). For more details, the reader
is referred to [1].

Note that the above techniques of grid-based pre-aggregation are
key for the efficiency of our partitioning algorithms. Without pre-
aggregation, e.g., using a straightforward approach of successive data
scans or R-Tree-based computation, our proposed partitioning algo-
rithms would be impractical (would take hours or even days for high
values of Kt). With the O(1) counting mechanisms, most of our par-
titioning algorithms are able to complete execution within one or two
seconds as we demonstrate in Section 6.

6. EXPERIMENTS AND RESULTS
The Kangaroo system is implemented at Turn Inc to serve as part

of its Data Management Platform (DMP) [12]. Turn DMP is a cloud-
based service, particularly built for digital marketers. It already has
a query execution process similar to the one shown in Figure 3. It
translates a SQL-like language (Cheetah Query Language, or CQL)
into map-reduce jobs. In this section, we focus on measuring the
effectiveness of the partition planning process (in Figure 3), which
plays the central role in the effectiveness of the entire system. In other
words, we evaluate the partitioning algorithms proposed in Section 4.
Note that this process runs periodically on a single node (i.e., it is not
distributed).

We have also independently verified the positive impact of highly
effective partitioning algorithms on the query speedup, which was ex-
pected because of the reduction in the amount of data scanned by
each query. It is worth noting, however, that the actual gains in query
processing are dependent on the cpu cost for each query, which can
widely vary from one workload to another – for example, queries eval-
uating UDFs can be much more cpu-intensive than simple filtering-
and-aggregation queries. For this reason we decided to focus our re-
ported experiments on evaluating the partitioning algorithms.

Our performance measures are: 1) the running time of the algo-
rithms, and 2) the I/O reduction percentage achieved by the partition-
ing algorithms for a given query-load. To measure the latter, we de-
termine the number of unnecessary I/Os that a no-partitioning scheme
would make for a given query-load and compare it to the number of
unnecessary I/Os that our proposed algorithms would make for the
same query-load. The less the number of unnecessary I/Os our pro-
posed partitioning algorithms would make, the higher the I/O reduc-
tion percentage is.

As a baseline, we compare our proposed algorithms to what we
refer to as the Random partitioning scheme that for a given Kt, uni-
formly splits the data by equally distant horizontal lines and equally
distant vertical lines, i.e., performs uniform grid partitioning, such
that the total number of partitions (i.e., grid cells) is Kt. We also
tried to compare Kangaroo to an existing system, particularly Spatial-
Hadoop [11] , which focuses on processing spatial data in Hadoop.
Unfortunately, it expected a more recent Hadoop version than the one
running on the test cluster we have access to. And since it was a
shared cluster, we were not able to upgrade the Hadoop version and
compare against SpatialHadoop. As an alternative, we ran an exper-
iment (described in Section 6.3) that shows the effect of workload
awareness, which is one of the key differentiators between Kangaroo
and SpatialHadoop.

It is important to note that for the genetic algorithms we propose,
we examined different values for the parameters: population size,

number of offspring, and mutation probability. We preset these pa-
rameters to values that achieve the best. Precisely, our best config-
uration of these parameters is population size = 100, number of off-
springs per iteration = 10, and mutation probability = 0.05. It is also
worth noting that for all the experiments, to realize exactly Kt by the
partitioning algorithms, we set the maximum partition size to ∞ and
the minimum partition size to 0. These are the default values of these
parameters, unless stated otherwise.

In the rest of this section, we study: 1) the effect of the number of
partitions (Kt) on our performance metrics, 2) the effect of query load
awareness on the I/O reduction percentage, 3) the effect of the query
selectivity on the I/O reduction percentage, 4) the effect of the scale
of the search space on the running time of the partitioning algorithms,
and 5) the effect of the max-partition-size parameter on the number of
actual partitions, i.e., Ka computed by the algorithms.

In the figures, we refer to the tree-based algorithms as TB and
the grid-based algorithms as GB. For instance, ‘Greedy TB’ refers
to the the tree-based greedy algorithm, while ‘Genetic GB’ refers to
the grid-based genetic algorithm.

6.1 Experimental Setup
To evaluate Kangaroo, we use real datasets and real query work-

load, we have available at Turn. Our data is a sample of over one
billion user profiles (each defined by a cookie id). Each user profile
contains the user’s history of impressions, clicks, and actions. It also
has start and end timestamps defining the user’s activity lifespan. Our
query workload is a sample of 30,000 queries collected from the logs
of Turn DMP over a period of six months. Each query specifies a time
range of interest, where only users who were active during that time
range are to be processed by the query. Since each query has a sub-
mission time, we shift the interval of each query in the workload by
the number of days since the submission time. The rationale behind
this interval adjustment step is that we expect future queries to have
a similar behavior to that of historical queries, except that the time
ranges they specify will likely be relative to their (future) submission
times. Therefore, a good approximation for those future queries that
we wish to optimize for is to consider them to be identical to the his-
torical queries after having their time ranges properly shifted.

6.2 Effect of the Number of Partitions
In this experiment, we study the effect of the number of partitions

(Kt) on our performance metrics. At different values of Kt (in log-
scale), Figure 6(a) shows the percentage of I/O reduction each of our
proposed partitioning algorithms can achieve in addition to that of the
random partitioning scheme. As the figure demonstrates, the perfor-
mance of all the proposed algorithms is better than that of the random
partitioning scheme. Furthermore, our proposed algorithms tend to
achieve maximal (100%) reduction percentages especially for high
values of Kt. Notice that the Greedy TB algorithm achieves the best
performance, reaching almost 100% reduction for only 512 partitions.
Observe that the amount of reduction of the Genetic GB algorithm
seems consistently proportional to the value of Kt. However, the
three algorithms, the curves are not showing consistent proportions
of reduction for the different values of Kt because of the fuzziness of
the genetic algorithms.

Figure 6(b) shows the running time of our proposed algorithms at
different values of Kt (in log-scale). As the figure demonstrates, the
performance of the Genetic with Dynamic algorithm is the worst. The
reason is due to the high cost of the Dynamic programming evaluation
step. For high values of Kt, e.g., 2048, the algorithm can take more
than a day to execute. However, the running time of the three other
algorithms is relatively low (below one second). Interestingly, the
Greedy TB algorithm has the lowest running time while achieving the
highest I/O reduction percentage.

6.3 Effect of Workload Awareness
In this experiment, we study the effect of the workload awareness

on the I/O reduction percentage that the partitioning algorithms can



achieve. For simplicity, we choose the Genetic TB algorithm as it
achieves the best performance as demonstrated in Section 6.2. In the
experiment, we examine two costing models, one that considers both
the number of points and the workload in computing the partitions,
and the other considers only the number of points. One might view
the latter model as a way to generate a two-dimensional k-d tree to
partition the data according to the number of points.

Figure 6(c) gives the performance of the two models. It is clear
from the figure that the workload-awareness enables the partitioning
algorithm to achieve better I/O reduction. Observe that the improve-
ment is bigger with small Kt values because when a small number
of partitions is specified, the algorithm has less flexibility and this is
where the usefulness of workload-awareness is pronounced the most.

6.4 Effect of Query Selectivity
In this experiment, we study the effect of the query selectivity

on the I/O reduction percentage that the partitioning algorithms can
achieve. We fix the value of Kt to 256. We categorize the queries of
the workload according to the query selectivity. Intuitively, the higher
the selectivity of the query is, the higher the chance of the partitioning
algorithm to achieve high reduction percentages, and vice versa. For
instance, when the query selectivity is low, e.g., 0%, i.e., the query
has to scan all the data anyway, then, there is no room for reducing
the I/O cost, i.e., the expected I/O reduction percentage is 0. In other
words, an optimal curve for this experiment when the values of the x-
axis are the query selectivities from 0% to 100% should be a straight
line with slope = 1.

Figure 6(d) demonstrates the performance of the different parti-
tioning algorithms for different query-selectivity values. It is clear
from the figure that the Greedy TB algorithm tends to achieve the
best performance, with consistent reduction percentages according to
the query-selectivity. Furthermore, it’s curve is close to a being a line
with slope = 1, i.e., optimal performance as explained above.

6.5 Effect of the Scale of Search Space
In this experiment, we study the effect of the scale of the search

space on the running time of the partitioning algorithms. Our original
search space is defined by a grid of 1200 × 500 lines. We fix the
value of Kt to 100 and vary the scale of the grid by a scale factor
that represents the portion of the grid the should be considered. For
instance, if the scale factor is 0.5, it means that we consider half the
size of the search space in the partitioning process.

Figure 6(e) demonstrates the performance of the different partition-
ing algorithms for different scale factors. It is clear from the figure
that the running time of the algorithms is directly proportional to the
search space size. Observe that the running time of all the algorithms
except the Genetic with Dynamic is below one second, which means
that they are practical for even higher scale factors.

6.6 Effect of Skew in Partition Size
In this experiment, we study the effect of the parameter maximum

partition-size on the number of actual partitioning K1. We examine
such effect in the Greedy TB algorithm as similar results can be ob-
tained for the other three partitioning strategies. We fix the value of
Kt to 100 and vary the value of the maximum partition size as fol-
lows. We define the ideal partition size as the total size of the whole
space divided by Kt. We set the maximum partition-size as multiple
of the ideal size.

Figure 6(f) demonstrates the ratio between the actual number of
partitions to the target number of partitions, i.e., Ka

Kt
, for different

values of the maximum partition-size. It is clear from the figure that
the ratio Ka

Kt
always varies between 1 and 2. The worst case hap-

pens when the maximum partition size equals the ideal size. In this
case, it is possible that the partitioning algorithm keeps fine-tuning
a small region of space with Kt splits while leaving the rest of the
space unpartitioned. In this case, the unpartitioned region requires at
most another Kt additional splits, and hence the overall number of

partitions Ka is 2Kt. Observe that when the maximum partition-size
is sufficiently large, the ratio Ka

Kt
tends to 1 because in this case, the

size of each of the Kt initial partitions is most probably less than the
maximum partition-size, and hence no further splitting is needed.

7. RELATED WORK
Work related to Kangaroo can be categorized into three main cat-

egories: 1) centralized data indexing, 2) data indexing in distributed
platforms, and 3) workload-aware query processing.

In centralized indexing, e.g., B-Tree [7], R-Tree [3, 16, 20], Quad-
Tree [27], Interval Tree [9], k-d Tree [5], the goal is to split the data
in a centralized index that should reside on one machine. Most of
the indexes in this category aim at distributing the size of the data
among a set of files, where in most cases, there is no restriction on
the number of files that can be used. Consequently, in these indexes,
the structure of the index can have unbounded decomposed until the
finest granularity of data is reached in each split (e.g., file). For in-
stance, the R-Tree recursively keeps splitting the space into rectan-
gles until the number of points in each rectangle is less/greater than
a certain threshold. This model of unbounded decomposition plays
well for any query workload distribution; the very fine granularity of
the splits (e.g., files) enables any query to retrieve its required data by
scanning the minimal (or close to minimal) amount of data with very
little redundancy.

In distributed indexing, e.g., (see [10, 19, 2, 11, 13, 14, 15, 21,
23, 24]), the goal is to split the data in a distributed file system in
a way that optimizes the distributed query processing by minimiz-
ing the I/O overhead. Unlike the centralized indexes, indexes in this
category are usually geared towards fulfilling the requirements of the
distributed file system, e.g., keeping the number of input splits (in
Hadoop) within a certain bound. For instance the Eagle-Eyed Ele-
phant (E3) framework [13] was proposed to avoid accesses of data
splits that are irrelevant to the query at hand. However, E3 considers
only one-dimensional point data, and hence is not suited for interval-
based data/queries. [11] presents SpatialHadoop; a system that can
index spatial two-dimensional data using two-dimensional Grids or
R-Trees. A similar effort in [21] addresses how to build R-Tree-like
indexes in Hadoop for spatial data. However, none of these efforts is
workload-aware.

Several research efforts tried to leverage the skeweness of the
query-workload in order to optimize the overall query execution. [1,
8, 26] present query-workload-aware systems and data partitioning
mechanisms in distributed platforms. However, these systems cannot
support range data and range queries. For instance, in [1], we consider
only two-dimensional point (i.e., non-interval) data.

To the best of our knowledge, Kangaroo is the first effort to con-
sider the problem of multi-dimensional range data/query indexing in
a distributed system while being query-load aware.

8. CONCLUSIONS
In this paper, we have introduced Kangaroo, a system built on top

of Hadoop and designed especially to handle range data and range
queries. Its key strength is centered around its ability to effectively
partition the range data in such a way that maximizes the number of
partitions that queries can skip for not having any relevant data. In
other words, queries can “jump” over many irrelevant partitions, and
hence the system name. The partitioning approach used by Kangaroo
also has many desirable and novel features: it (1) is workload-aware,
(2) allows no data duplication across partitions, (3) allows no data
splitting across partitions, (4) allows no partition overlap, (5) guaran-
tees bounded partition sizes, and (6) guarantees bounded number of
partitions. We also described four different partitioning algorithms to
be used by Kangaroo and showed experimentally how one of them,
tree-based greedy, outperforms all the others. Our experimental study
was based on a real datasets of over one billion data records and
30,000 queries. The study showed clearly the effectiveness of Kanga-
roo in processing range data and queries in big distributed systems.



(a) I/O reduction percentage achieved at a
given Kt.

(b) Execution time of the partitioning algo-
rithms at a given Kt.

(c) Effect of query-load awareness.

(d) I/O reduction percentage achieved
given the query selectivity. Kt = 256.

(e) Effect of the scale of the search space
on the running time of the partitioning al-
gorithms.

Scale Genetic GR

1 1.95 195

2 1.41 141

3 1.28 128

4 1.19 119

5 1.12 112

6 1.1 110

7 1.07 107

8 1.05 105

9 1.05 105

10 1.04 104

11 1.02 102

12 1.02 102

13 1.01 101

14 1.01 101

15 1 100

16 1 100

17 1 100

18 1 100

19 1 100

20 1 100

21 1 100

22 1 100

23 1 100

24 1 100

25 100 100

26 100 100

27 100 100

28 100

29 100

30 100

31 100
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(f) Effect of the maximum partition size pa-
rameter on Ka. The ratio Ka

Kt
is always be-

tween 1 and 2.

Figure 6: Experimental Results
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