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ABSTRACT
The widespread use of location-aware devices together with the
increased popularity of micro-blogging applications (e.g., Twitter)
led to the creation of large streams of spatio-textual data. In order
to serve real-time applications, the processing of these large-scale
spatio-textual streams needs to be distributed. However, existing
distributed stream processing systems (e.g., Spark and Storm) are
not optimized for spatial/textual content. In this demonstration, we
introduce Tornado, a distributed in-memory spatio-textual stream
processing server that extends Storm. To efficiently process spatio-
textual streams, Tornado introduces a spatio-textual indexing layer
to the architecture of Storm. The indexing layer is adaptive, i.e.,
dynamically re-distributes the processing across the system accord-
ing to changes in the data distribution and/or query workload. In
addition to keywords, higher-level textual concepts are identified
and are semantically matched against spatio-textual queries. Tor-
nado provides data deduplication and fusion to eliminate redun-
dant textual data. We demonstrate a prototype of Tornado running
against real Twitter streams, where the users can register continu-
ous or snapshot spatio-textual queries using a map-assisted query-
interface.

1. INTRODUCTION
The widespread use of GPS-enabled cellular devices and the in-

creasing popularity of micro-blogging platforms (e.g., Twitter) has
resulted in generating large volumes of geo-tagged data (e.g., a
tweet has both spatial and textual attributes).

Consider the following scenario. A tourist is visiting a city for
the first time and wishes to know how people currently visiting
the attractions feel about them in order to choose the best attrac-
tion to visit (i.e., avoid busy, uninteresting, or closed attractions).
The tourist submits a query to a real-time spatio-textual system that
finds tweets originating in the vicinity of an attraction and that are
discussing the attraction. Tweets arrive at high rate and the data
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Figure 1: A Storm topology vs. a Tornado topology.

sources containing information about attractions are large (e.g.,
OpenStreetMap is about 300 GB). Processing these spatio-textual
queries calls for a scalable and distributed real-time spatio-textual
query processing system that can efficiently process and analyze
these spatio-textual data streams in real-time.

Although being in the big data era, existing platforms are not op-
timized for spatio-textual query processing over big data streams.
Existing platforms fall into one of the following categories: (1) dis-
tributed batch systems (e.g., [1, 6, 7]) that are not optimized for
spatio-textual query processing and that suffer from high latency,
(2) distributed spatio-textual batch systems (e.g., [8]) that can han-
dle spatio-textual queries yet they suffer from high latency, (3) dis-
tributed main-memory and streaming systems (e.g., [3, 4, 12]) that
are also not optimized for spatio-textual query execution, (4) cen-
tralized stream-based spatio-textual systems (e.g., [9]) that are con-
strained by the resources of the single machine they run on.

This demonstration presents Tornado, a distributed system for
real-time processing of spatio-textual queries over data streams.
Tornado extends Storm that is a distributed and fault-tolerant
general-purpose stream processing system [4]. Stream process-
ing in Storm is implemented using three main components; spouts,
bolts, and topologies. A spout is a source of input data streams. A
bolt is a data processing unit. A topology is a directed graph that
connects spouts and bolts to form a stream processing pipeline.
Tornado extends Storm with an adaptive indexing layer that im-
proves the query processing performance of spatio-textual queries.

Figure 1 contrasts a Storm topology and a Tornado topology
when processing queries with spatio-textual predicates. As in Fig-



ure 1, Storm has no notion of spatial locality, and hence queries are
replicated across all bolts. This imposes network overhead and im-
plies overloaded bolts. In contrast, Tornado uses an adaptive index-
ing layer (Figure 1(b)) that ensures that queries are not replicated
and that the data is sent only to the relevant bolts.

Tornado provides semantic search capabilities that go beyond
conventional keyword-based matching. We identify and use con-
cepts over streaming data in an online fashion in order to determine
how semantically related the identified concepts are to the spatio-
textual queries. For example, consider the query that finds all the
nearby points of interest that are related to Pollution. Assume that
there is a nearby factory that is semantically related to the concept
Pollution with a specific score. Then, the factory is reported as a
result of the query if the relatedness score is above a certain thresh-
old.

We demonstrate Tornado with its real-time spatio-textual pro-
cessing capabilities using real annotated map data from Open-
StreetMap [2], Tweets arriving from Twitter fire-hose, and syn-
thetic trajectory data from the Minnesota Traffic Generator [11].

2. OVERVIEW OF TORNADO

2.1 Features
The main features of Tornado are summarized as follows:

• Distributed Main-Memory Spatio-Textual Indexing. This
index ensures that data that is relevant to a specific query
is sent to the same processing bolt where the query resides.
Realizing this index without introducing system bottlenecks
is an important design challenge.

• Adaptivity to Skewed Query-Workload and Data Distri-
bution. Because of the dynamic nature of the spatio-textual
data, data distribution may change over time. Furthermore,
typical spatial query-workloads exhibit skewed access pat-
terns, where certain spatial regions receive queries more fre-
quently than others. To address these challenges, Tornado
realizes a novel adaptive and query-workload awar data par-
titioning mechanism. An important characteristic of this par-
titioning mechanism is that it does not assume prior knowl-
edge of the query-workload or the data distribution. Tornado
maintains statistics about the data distribution and the num-
ber of queries received at each bolt. Whenever the distri-
bution of the data or the query-workload changes, Tornado
reacts by incrementally updating the layout of the bolts in
the underlying topology.

• Support for Spatio-textual Trajectories with Limited His-
tories. Tornado is able to efficiently maintain limited his-
tories (i.e., sliding windows) of spatio-textual trajectories,
e.g., trajectories of moving objects for the past one day, three
hours, etc [10]. A spatio-textual trajectory is the history of
locations visited by a moving entity. This history of locations
is tagged with any textual content that is produced at any spe-
cific location (if any). Maintaining limited trajectories allows
performing several important analytical queries (e.g., traffic
analysis) without exhausting memory resources by not keep-
ing the entire history in memory. These queries cannot be
answered if we only keep current-time location data.

• Spatio-textual Querying. Nowadays, many complex spatio-
textual operators and their matching complex indexing struc-
tures are commonly being proposed in the literature. How-
ever, in the authors’ opinion, this approach is against the

spirit of SQL and relational algebra. In relational algebra,
simple relational operators are offered, e.g., relational se-
lects, projects, and joins, that are composable to form more
complex queries. Tornado’s query language follows the phi-
losophy of SQL and relational algebra in the following sense.
Tornado offers simple declarative spatial, textual, and seman-
tic building block operators and predicates that are compos-
able to form complex spatio-textual queries.

• Deduplication and Fusion. Tornado identifies duplicate
spatio-textual data, e.g., tweets that convey the same infor-
mation, and returns a single representation of these dupli-
cates (fusion). The benefit of this phase is twofold. On one
hand, it reduces the number of tweets to be processed by the
query evaluators, hence, improving the query response time.
On the other hand, it diversifies the content of the returned
answer, and hence improving the quality of the query results.

• Map-assisted Query Interface. Users of Tornado can ex-
press spatio-textual queries using an SQL-like query lan-
guage that is coupled with a map. For example, users can
specify a set of focal points by clicking on the map and ref-
erence these points in their k-nearest neighbor queries. This
interface is different from [9], as Tornado provides an SQL-
Like language to express user queries while [9] uses a web-
based form to specify the various predicates.

• Semantic Search. Tornado provides semantic search ca-
pabilities extending beyond conventional Boolean keyword
matches. Introducing semantic search allows Tornado to find
the semantically relevant items that match the query.

2.2 Data Model
Tornado processes tuple data from mulitple sources that are of

the following format: {srcid, oid, (x, y), t, text}, where srcid is
the data source identifier, oid is the identifier of the object reporting
the incoming tuple. (x, y), t, and text are the spatial location of
the centroid of the object, the timestamp, and the textual content of
the tuple, respectively.

2.3 Supported Query Predicates
Tornado is meant to handle a wide range of spatio-textual

queries. In the current phase of Tornado, we are mainly concerned
with both snapshot and continuous versions of the following query
predicates: spatio-textual range and kNN select and join predicates
(including distance joins), textual similarity and semantic matching
predicates, limited history, and temporal predicates. Examples of
supported queries are given in Section 4.

3. SYSTEM ARCHITECTURE
In this section, we give an overview of the layered architecture

of Tornado illustrated in Figure 2.

3.1 Adaptive Indexing Layer
Indexing in Tornado is distributed and is composed of (1) a

global spatial index, and (2) local spatio-textual indexes. Fig-
ure 3 illustrates Tornado’s indexing module. All incoming data
and queries navigate though the global index to be assigned to a
query processing unit (i.e., a bolt). To avoid performance bottle-
necks, the global index is replicated across several bolts. A local
spatio-textual index is composed of multiple in-memory k-d trees
(one per data source). Each non-leaf node in the k-d tree is aug-
mented with an inverted list that summarizes the textual contents
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Figure 4: Index adaptivity in Tornado.
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Figure 2: The layered architecture of Tornado.

of its child nodes. The inverted lists help speedup the processing of
the spatio-textual queries.

It is expected that the system workload will not be the same at
all times, and hence having a static indexing layer can result in
poor system performance. Some processing bolts may get over-
loaded, while other processing bolts may get underutilized. Tor-
nado is adaptive to changes in both the data and query workload.
It is challenging to ensure workload adaptivity for the following
reasons:

• Replicated Index Bolts: In Tornado, incoming tuples go to
any instance of the indexing bolts. This mandates that all the
indexing bolts maintain the same layout of the global index to
ensure consistency when sending the tuples to the processing
bolts.

• No Global System View: It is relatively easy to achieve
adaptivity in a centralized system, where the workload statis-
tics are centralized. This is not the case in Tornado, where
the workload statistics are distribued, and the indexing bolts
do not have access to the memories of each other.

Tornado uses Apache ZooKeeper [5], an open-source distributed
configuration and synchronization service, to synchronize the
changes in the global index bolt. Zookeeper stores usage statistics
(i.e., the number of data objects and queries processed) from the
data processing bolts. The index bolts access these usage statistics
from the zookeeper to detect when a change in the index is needed.
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Figure 3: Indexing in Tornado.

We model the overhead (i.e., cost), say C, corresponding to a
bolt, say b, as: C(b) = P (b) × Q(b), where P (b) and Q(b) are
the number of data objects and queries in b, respectively. To up-
date the layout of the bolts, we split the space corresponding to
the bolt, say Hb, with the highest overhead. We use a free auxil-
iary bolt to hold a portion of the data of Hb. To keep the number
of bolts constant in the topology, which is a physical constraint
due to cluster resources, we merge two adjacent bolts that have the
lowest overhead into one new bolt. Thus, the layout of the bolts
always follows the structure of a k-d tree. Tornado avoids unnec-
essary splits/merges by integrating its cost model with the cost of
shuffling the data between the bolts. Figure 4 describes the steps
of adapting to workload changes. In Figure 4(a), Bolt X is under
heavy load while Bolts Y and Z are underutilized. Figure 4(b) rep-
resents the transient phase, where the data in Bolt X is split into x1

(remains at Bolt X) and x2 (sent to the free auxiliary Bolt A). The
data from the underutilized Bolt Z is transferred to Bolt Y . After
the transient phase, Bolt Z becomes the free auxiliary bolt to be
used in future adaptivity actions. Figure 4(c) gives the global index
and execution bolts after the change.

3.2 Query Evaluation Layer
The data processing layer is the working horse of Tornado. This

layer is composed of a set of interconnected data processing bolts
(evaluators). Evaluators are responsible for query evaluation over
streamed data. Incoming spatio-textual data and queries go through
the global indexing layer to determine the relevant evaluator bolts
to be sent to. An evaluator bolt is composed of two main com-
ponents, (1) continuous queries buffer, (2) local spatio-textual in-
dexes. Continuous queries are held in a main-memory buffer until



revoked. Incoming streamed data is checked against the continu-
ous queries buffer to update the results of queries. The local spatio-
textual index is composed of multiple k-d trees augmented with text
as descried in Section3.1.

The following steps outline how the queries are evaluated in Tor-
nado: (1) Check the query’s spatial attributes against the global
index. (2) Send the query to the relevant execution bolt(s). (3) Use
the local spatio-textual index to evaluate the query. (4) Consult the
neighboring bolts if needed, e.g., textual-kNN and textual distance
join. (5) Report the query results. Continuous queries are held in
a continuous-queries buffer and query results are updated based on
the incoming data.

3.3 Data Input Layer
Tornado is able to ingest a wide range of spatio-textual data

streams e.g., GPS logs of moving vehicles, tweets, and human in-
teractions with online ads, as well as persistent (i.e., static) data,
e.g., road networks and points of interests. Users of Tornado may
submit queries from either desktop or mobile applications. In a
Storm topology, input streams are accessed through spouts. Tor-
nado extends Storm and follows the same conventions. In Tornado,
there are three main types of inputs, namely (1) streamed queries,
(2) streamed spatio-textual data, and (3) persistent data.

Tornado provides spouts for input types (1) and (2). For input
type (3), we do not use spouts to read persistent data. To avoid
the overhead of going though the indexing layer for persistent data,
Tornado provides an API to directly load this data from disk stor-
age, e.g., from HDFS, HBASE, or RDF stores, into the query pro-
cessing bolts (i.e., the evaluators).

3.4 Deduplication and Fusion Layer
Tornado performs on-the-fly deduplication and fusion of spatio-

textual data streams as the data arrives. For deduplication, we har-
ness Tornado’s spatial indexing scheme to consider only data ob-
jects that are geographically co-located. Incoming spatio-textual
data objects are matched against previously processed streams. In
case of high similarity, the incoming data object is deemed dupli-
cate and is not returned. After identifying the duplicates, fusion is
performed by returning the data that is deemed most informative.

3.5 Textual Semantics Layer
In Tornado, we compute the semantic relatedness among spatio-

textual data to enrich the query results. The computation is per-
formed in two phases: 1) an offline preprocessing phase, where
we calculate semantic relatedness scores among keywords and con-
cepts, and 2) an online phase, where we use the precomputed scores
to match spatio-textual data with queries. If the overall semantic re-
latedness score between a data object and a query is above a certain
threshold, the object is reported among the result set of the query.

4. DEMO SCENARIO
Real-time Human Experience: We demonstrate the scenario
highlighted in Section 1, where a tourist issues a query to view
the tweets that discuss attractions. The real-time feedback from
tweeters can assist the tourist to avoid crowded or uninteresting
attractions. This query can be expressed in Tornado as follows:

REGISTER QUERY q1 AS
SELECT * FROM OSM Data AS O, Tweets AS T
WHERE WITHIN DISTANCE(T, O, Threshold)
and INSIDE(T,@currentMapView)
and INSIDE(O,@currentMapView)
and CONTAINS(O.text, "attraction")

Figure 5: The index visualizer in Tornado.

and OVERLAPS(T.text, O.text);

Nearby Taxi Finder: In this scenario, a user issues a snapshot
query to find nearby taxis from a specific taxi company. This query
resembles a snapshot kNN query with a textual predicate and can
be expressed using the following SQL statement. The output of
this query visualizes the current location of the query issuer along
with 5 nearest taxis that belong to the requested company.

RUN QUERY q2 AS
SELECT kNN FROM Vehicles AS V
WHERE CONTAINS(V.text,"Taxi","Company")
and kNN.k=5 and kNN.Focal(@myLoc);

In addition to the visualization of spatio-textual queries, the Tor-
nado demo displays the internals of the adaptive index component.
We visualize the effect of changing the query and data workloads
on the global spatial index boundaries. To show the global index
adaptivity, we give an initial partitioning of the global index. Then,
we change the workload and show how the global index reacts ac-
cordingly to balance the load. Figure 5 illustrates the interface for
the index adaptivity visualizer.
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