
Prompt: Dynamic Data-Partitioning for Distributed
Micro-batch Stream Processing Systems

Ahmed S. Abdelhamid, Ahmed R. Mahmood, Anas Daghistani, Walid G. Aref

Department of Computer Science, Purdue University

West Lafayette, Indiana

{samy,amahmoo,anas,aref}@purdue.edu

ABSTRACT
Advances in real-world applications require high-throughput

processing over large data streams. Micro-batching has been

proposed to support the needs of these applications. In micro-

batching, the processing and batching of the data are inter-

leaved, where the incoming data tuples are first buffered as

data blocks, and then are processed collectively using par-

allel function constructs (e.g., Map-Reduce). The size of a

micro-batch is set to guarantee a certain response-time la-

tency that is to conform to the application’s service-level

agreement. In contrast to tuple-at-a-time data stream pro-

cessing, micro-batching has the potential to sustain higher

data rates. However, existing micro-batch stream process-

ing systems use basic data-partitioning techniques that do

not account for data skew and variable data rates. Load-

awareness is necessary to maintain performance and to en-

hance resource utilization. A new data partitioning scheme,

termed Prompt is presented that leverages the characteristics
of the micro-batch processing model. In the batching phase,

a frequency-aware buffering mechanism is introduced that

progressively maintains run-time statistics, and provides on-

line key-based sorting as data tuples arrive. Because achiev-

ing optimal data partitioning is NP-Hard in this context, a

workload-aware greedy algorithm is introduced that parti-

tions the buffered data tuples efficiently for the Map stage. In

the processing phase, a load-aware distribution mechanism

is presented that balances the size of the input to the Reduce

stage without incurring inter-task communication overhead.

Moreover, Prompt elastically adapts resource consumption

according to workload changes. Experimental results using

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00

https://doi.org/10.1145/3318464.3389713

real and synthetic data sets demonstrate that Prompt is ro-

bust against fluctuations in data distribution and arrival rates.

Furthermore, Prompt achieves up to 200% improvement in

system throughput over state-of-the-art techniques without

degradation in latency.

CCS CONCEPTS
• Information systems → Data streams; MapReduce-
based systems; Stream management; Record and block
layout; Query optimization; Main memory engines.

KEYWORDS
Distributed Data Processing, Micro-batch Stream Processing,

Data Partitioning, Elastic Stream Processing

ACM Reference Format:
Ahmed S. Abdelhamid, Ahmed R. Mahmood, Anas Daghistani,

Walid G. Aref. 2020. Prompt: Dynamic Data-Partitioning for Dis-

tributed Micro-batch Stream Processing Systems. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of
Data (SIGMOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New

York, NY, USA, 15 pages. https://doi.org/10.1145/3318464.3389713

1 INTRODUCTION
The importance of real-time processing of large data streams

has resulted in a plethora of Distributed Stream Process-

ing Systems (DSPS, for short). Examples of real-time appli-

cations include social-network analysis, ad-targeting, and

clickstream analysis. Recently, several DSPSs have adopted

a batch-at-a-time processing model to improve the process-

ing throughput (e.g., as in Spark Streaming [43], M3 [4],

Comet [21], and Google DataFlow [2]). These DSPSs, of-

ten referred to as micro-batch stream processing systems,

offer several advantages over continuous tuple-at-a-time

DSPSs. Advantages include the ability to process data at

higher rates [42], efficient fault-tolerance [43], and seamless

integrationwith offline data processing [5]. However, the per-

formance of micro-batch DSPSs is highly susceptible to the

dynamic changes in workload characteristics. For example,

resource utilization strongly relies on evenly partitioning the

workload over the processing units. Moreover, the computa-

tional model is inherently subject to performance instability

https://doi.org/10.1145/3318464.3389713
https://doi.org/10.1145/3318464.3389713

M1

M2

M3

R1

R2

Reducer
Buckets

Data
Block

Continuous
Partitioner

Short-lived
task

In-Memory
Data Block

Hashing

Buffering &
Partitioning

Processing Time Batching Time

Output

End-to-End Latency

Data Tuple
Aggregate of
Ki per Mapj

SR1

Data Stream

Figure 1: Example of micro-batch stream processing:
The computation has 3 Map and 2 Reduce tasks, and a
Stream Receiver (𝑆𝑅1) that provides micro-batches from the
input data stream.

with the fluctuations in arrival rates and data distributions.

To illustrate, consider a streaming query that counts users’

clicks per country for a web advertising-campaign every 30

minutes. When applying the micro-batch processing model

to this query, the data flow is divided into two consecu-

tive phases: batching and processing (See Figure 1). Stream

processing is achieved by repeating the batching and the

processing phases for the new data tuples. The two phases

are overlapped for any two consecutive batches (Refer to

Figure 2). In the batching phase, the stream data tuples are

accumulated for a predetermined batch interval. Then, the

batch content is partitioned, and is emitted in the form of

data blocks for parallel processing. In the processing phase,
the query is executed in memory as a pipeline of Map and

Reduce stages. In the Map stage, a user-defined function is

applied in parallel to every data block (e.g., a filter over the

clickstream tuples). Then, a Reduce stage aggregates the out-

come of the Map stage to produce the output of the batch

(e.g., sums the clicks for each country). Finally, the query

answer is computed by aggregating the output of all batches

that are within the query’s time-window. The end-to-end

latency is defined at the granularity of a batch as the sum

of the batch interval and the processing time. The system is

stable as long as 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 ≤ 𝑏𝑎𝑡𝑐ℎ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 . A stable

system prevents the queuing of batches and provides an end-

to-end latency guarantee. In the rest of this paper, the terms

micro-batch and batch are used interchangeably to define a

buffered set of stream-tuples over a predefined small interval

of time (i.e., the batch interval).

In this paper, we address two challenges, namely data

partitioning and performance stability:

Data Partitioning: Data partitioning is crucial to the batch-
ing and the processing phases. First, the execution time of
all Map tasks within a micro-batch needs to be nearly equal.

A Map task that lags due to extra load can severely impact

resource utilization as it blocks the scheduling of the subse-

quent Reduce stage, e.g., as in Cases II, III and IV of Figure 2.

M34

R14

Batch 1

M11

M21

M31

R11

R21

Batch 2 Batch 3 Batch 4 Batch 5

t0 t1 t2 t3 t4 t5

R
ed

uc
e

St
ag

e
M

ap
 S

ta
ge

B
at

ch
in

g

M12

M22

M32

R12

R22

M13

M23

M33

R13

R23

M14

M24

R24

Mij
Map Task for
block i in batch j

Reduce Task i
in batch j Batching Idle Time System

Heartbeat
Map Stage
Completion

 Case
I

 Case
II

 Case
III

 Case
IV

Rij

Figure 2: The effect of data partitioning on the
pipelined-execution over micro-batches: An example
timeline that illustrates three different cases of unbalanced-
load execution in [𝑡0-𝑡5]. Notice that Batch x is processed con-
currently while Batch x+1 is being accumulated.

Similarly, the input to all Reduce tasks should be evenly

distributed to finish at the same time. The system may be-

come unstable as batches get queued. The end-to-end latency

would also increase. Second, the time to process a batch may

exceed the batch interval time due to the lack of even data

distribution in the Map and/or the Reduce stages leading to

mistakenly requesting additional resources. Case IV in Fig-

ure 2 can be avoided by adequately partitioning the data load

at the Map and Reduce stages. The data partitioning problem

in the micro-batch stream processing model is challenging

for the following reasons: (1) The partitioning decision needs
to happen as fast as the data arrive. The reason is that the pro-

cessing starts as soon as the batching is completed. Applying

a basic partitioning algorithm, e.g., round-robin, leads to an

uneven distribution of the workload. (2) The data partition-
ing problem is inherently complex. It entails many optimiza-

tion factors, e.g., key locality, where tuples with the same key

values need to be co-located into the same data blocks. In

fact, as will be explained in Section 4.2, this data partitioning

problem is NP-hard. (3) In a Map-Reduce computation, in-

termediate results of a key must be sent to the same Reducer.

Fixed key-assignment with hashing does not guarantee bal-

anced load at all Reducers. Also, dynamically assigning keys

to the Reducers by globally coordinating among Map tasks is

time-consuming due to the inter-communication cost. Thus,

it is not suitable for streaming applications.

Performance Stability: The healthy relationship between

processing time and batch interval is mandatory to keep the

system stable and achieve latency guarantees. If the process-

ing time exceeds the batch interval while applying even-data

partitioning, then additional resources must be warranted

to maintain system performance. However, resource alloca-

tion in micro-batch DSPSs is challenging for two reasons:

(1) Manually tuning the resources is an error-prone and com-

plicated task. The reason is that, in contrast to offline data

processing, data streams are dynamic, and can change data

rate or distribution at runtime [35, 36, 41, 43]. To maintain its

performance, micro-batch DSPSs need to automatically scale

in and out to react to workload changes. (2) Permanent re-

source over-provisioning for peak loads is not a cost-effective

strategy and leads to a waste in resources.

Previous work on improving the performance of micro-

batch DSPSs focuses on resizing the batch interval [12, 45].

The batch interval is resized to maintain an equal relation-

ship between the processing and batching times. However,

batch resizing does not solve the resource utilization prob-

lem targeted in this paper, and may lead to delays in result

delivery, e.g., when the resized batch interval violates the

application’s latency requirements. In this paper, we focus on

achieving latency guarantees while minimizing the resource

consumption of micro-batch DSPSs.

In Prompt, we introduce a new data partitioning scheme

that optimizes the performance of the micro-batch process-

ing model. In the batching phase, Prompt has a new load-

aware buffering technique that constructs, at runtime, a

sorted list of the frequencies of the occurrences of keys in

the current batch. Prompt partitions the batch content in a

workload-aware manner for the upcoming Map stage. To

prepare partitions for the Reduce stage, Prompt has an ef-

fective distribution mechanism that allows the Map tasks to

make local decisions about placing intermediate results into

the Reduce buckets. This partitioning mechanism balances

the input to the Reduce tasks, and avoids expensive global

partitioning decisions. To account for workload changes and

maintain performance, Prompt employs a threshold-based

elasticity technique to swiftly adjust the degree of paral-

lelism at run-time according to workload needs. Prompt does

not require workload-specific knowledge, and is agnostic to

changes in data distribution and arrival rates. The main con-

tributions of this paper can be summarized as follows:

• We formulate the problem of data partitioning in dis-

tributed micro-batch stream processing systems. We show

that this problem in both the batching and processing phases

is NP-hard. We reduce the data partitioning problems in the

batching and processing phases to two new variants of the

classical Bin Packing problem.

• We introduce Prompt, a data partitioning scheme tai-

lored to distributed micro-batch stream processing systems.

Prompt elastically adjusts the degree of execution parallelism

according to workload needs. Prompt is robust to fluctua-

tions in data distribution and arrival rates.

• We realize Prompt in Spark Streaming [1], and conduct

an extensive experimental evaluation using Amazon EC2.

Prompt improves system throughput by up to 2x using real

and synthetic datasets over state-of-the-art techniques.

The rest of this paper proceeds as follows. Section 2

presents background on the distributed micro-batch stream

processing model and the existing data partitioning tech-

niques. Section 3 highlights the objectives of Prompt along

with the problem formalization and the underlying cost

t+2 t+3

Batch

t+4

Current Window Output

Current window

Out-of-Window Batch Output

Slide Size

t+1t

Old Window

In-window Batch Output

Past

Inverse Reduce

Inverse Reduce

Figure 3: Micro-batch Stream Processing

model. The partitioning techniques for batching and process-

ing in Prompt are presented in Sections 4 and 5, respectively.

Section 6 illustrates resource elasticity in Prompt. Perfor-

mance evaluation is detailed in Section 7. Related work is in

Section 9. Finally, Section 10 contains concluding remarks.

2 BACKGROUND
2.1 Processing Model
The distributed micro-batch stream processing model exe-

cutes a continuous query in a series of consecutive, inde-

pendent, and stateless Map-Reduce computations over small

batches of streamed data to resemble continuous processing.

System-wide heartbeats, i.e., triggers, are used to define the

boundaries of the individual batches. Dedicated processes

are responsible for continuously receiving stream data tuples

and for emitting a micro-batch at every heartbeat.

Every micro-batch is partitioned according to the sup-

ported level of parallelism by the computing resources, i.e.,

the number of processing cores. We term every partition a

data block. The input data 𝑆 is an infinite stream of tuples.

Each tuple 𝑡 = (𝑡𝑠 , 𝑘, 𝑣) has a three-component schema; a

timestamp 𝑡𝑠 set by the stream’s originating source, a key

𝑘 , and a value 𝑣 . Keys are not unique, and are used to par-

tition the tuples for distributed processing purposes. The

value 𝑣 can be single or multiple data fields. We make the

following assumptions: (1) Tuples arrive in sorted timestamp

order, and (2) The delay between the timestamp of a tuple

and its ingestion time cannot exceed a maximum delay. A

streaming query 𝑄 submitted in a declarative or imperative

form is compiled into a Map-Reduce execution graph (see

Figure 1). The Map stage is defined over data with (𝑘, 𝑣) pairs
as 𝑀𝑎𝑝 (𝑘𝑖 , 𝑣1) → (𝑘𝑖 , 𝐿𝑖𝑠𝑡 (𝑉)). The Reduce stage follows,

and uses the output of the Map stage to provide the final

output as 𝑅𝑒𝑑𝑢𝑐𝑒 (𝑘𝑖 , 𝑙𝑖𝑠𝑡 (𝑣2)) → 𝑙𝑖𝑠𝑡 (𝑉).
The execution graph shows the physical details of the

execution, e.g., the level of parallelism, i.e., the number of

Map and Reduce tasks, data partitioning, the order of task

execution, and the data dependency among the tasks. The

execution graph applies over each batch to compute a partial

output that is preserved as the query state. In contrast to

tuple-at-a-time systems, the query state is decoupled from

the execution tasks. The streaming query 𝑄 can be defined

over a sliding or tumbling window. The query answer is

computed by aggregating the output of all batches that reside

within the query window (Figure 3). To avoid redundant

recalculations, the micro-batches that exit the window are

reflected incrementally onto the query answer by applying

an inverse Reduce function (e.g., [43]).

2.2 Existing Data Partitioning Techniques
The most popular partitioning techniques are time-
based [43], hashing, and shuffling. Then, we describe the

state-of-the-art data partitioning in continuous tuple-at-a-

time stream processing, namely, a technique referred to as

key-splitting [6] partitioning, and discuss the feasibility of

adopting it in the micro-batch stream processing model.

2.2.1 Time-based Partitioning. Time-based partitioning uses

the arrival time of a new tuple to assign the tuple into a

𝑑𝑎𝑡𝑎 𝑏𝑙𝑜𝑐𝑘 (Figure 4a). Given the target 𝑛𝑢𝑚𝑏𝑒𝑟 of data

blocks, the batch interval is split into consecutive, non-

overlapping, and equal-length time periods, denoted by

𝑏𝑙𝑜𝑐𝑘 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 . All the data tuples received during each pe-

riod constitute a data block. When the batch interval finishes,

all the data blocks are wrapped as a batch, and become avail-

able for processing. This simple partitioning technique has

the following limitation. Time-based partitioning results in

unequally sized data blocks due to dynamic input data rates.

Moreover, time-based partitioning does not have any guaran-

tees on key placement. Data tuples that share the same key

value can end up in different data blocks. This can increase

the cost of the per-key-aggregation step at the Reduce stage.

2.2.2 Shuffle Partitioning. Shuffle partitioning assigns tu-

ples to data blocks in a round-robin fashion based on arrival

order without considering other factors (Figure 4b). This

technique guarantees that all the data blocks have the same

size even with dynamic input data rates. However, this tech-

nique has a major drawback. It does not ensure key locality,
i.e., tuples with the same key are not necessarily co-located

into the same data blocks. This leads to further overhead at

the Reduce stage to combine all the intermediate results of

each key produced by different Map tasks.

2.2.3 Hash Partitioning. Hash partitioning, also termed Key
Grouping [36], uses one or more particular fields of each tu-

ple, i.e., a partitioning key, and uses a hash function to assign

the tuple into a data block (Figure 4c). Hence, all the tuples

with the same keys are assigned to the same data blocks.

Applying this technique in the batching phase eliminates the

per key aggregation at the Reduce stage.

If the input data stream is skewed, then some key values

will appear more often than others. Thus, this partitioning

technique would result in unequally sized data blocks (See

Figure 4c). Moreover, in the processing phase, Map tasks use

the hashing technique to ascertain that all the intermediate

results for a key are at the same Reduce task. In the case of

data skew, this technique will result in uneven input sizes

for the various Reduce tasks.

2.2.4 Key-Split Partitioning. The state-of-the-art in stream

data partitioning achieves the benefits of both the shuffling

and the hashing techniques by splitting the skewed keys over

multiple data blocks. The partitioner applies multiple hash

functions to the tuple’s partitioning key to generate multiple

candidate assignments. Then, the partitioner selects the data

block with the least number of tuples at the time of the deci-

sion [25, 35, 36]. The partitioner keeps track of the following

parameters in an online fashion; (1) The number of tuples

in each data block, and (2) Statistics on the data distribution

to detect the skewed keys in order to split them. Due to the

continuity of execution in native DSPSs, these techniques are

obliged to make a per-tuple decision upon tuple arrival. Oth-

erwise, stream processing will be interrupted. Micro-batch

stream processing systems offer the opportunity to optimize

the partitioning of the entire batch. Instead of relying on

approximate data statistics to detect key-skewness, it can be

accurately evaluated for the entire batch.

3 DATA PARTITIONING
The performance of micro-batch DSPSs depends heavily on

the data partitioning technique adopted. In this section, we

describe the desirable properties of efficient data partitioning

techniques to improve system performance. We formalize

the data partitioning problem, and devise a cost model that

captures the processing of a micro-batch.

3.1 Design Goals
The main goal of Prompt’s data partitioning scheme is to

maximize the overall system throughput under the following

constraints: (1) The batch interval is fixed, and is set as a sys-
tem parameter to meet an end-to-end latency requirement

of the user’s application. (2) The computing resources are

available on-demand, i.e., the number of nodes and cores

available for processing can be adjusted during processing.

The highest throughput is defined as the maximum data

ingestion rate the system can sustain using the allocated

computing resources without increasing the end-to-end la-

tency, i.e., having batches waiting in a queue. The latency is

maintained by keeping the processing time bounded by the

batch interval. To illustrate, the processing time of𝑛Map and

𝑚 Reduce tasks can be modeled using the following equation

that represents the sum of the maximum duration of any

Map task and the maximum duration of any Reduce task:

max

1≤𝑖≤𝑛
𝑀𝑎𝑝𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒𝑖 + max

1≤ 𝑗≤𝑚
𝑅𝑒𝑑𝑢𝑐𝑒𝑇𝑎𝑠𝑘𝑇𝑖𝑚𝑒 𝑗 (1)

Data Block

Batch Interval = ty - tx

Block Interval = (tx-ty)/n

ty tX

Batch Interval

Batch

No. of Blocks = n

Partitioner
Block

Interval

(a) Time-based Partitioning

Data Block

Batch Interval = ty - tx

ty tX

Batch Interval

Batch

No. of Blocks = n

Partitioner1

1

2

2

3467

3

58

64 5
7 8

910

(b) Shuffle Partitioning

Data Block

Batch Interval = ty - tx

ty tX

Batch Interval

Batch

No. of Blocks = n

Partitioner

(c) Hash Partitioning
Figure 4: Existing Data partitioning Techniques

As the maximum MapTask time decreases, the Map stage

completes faster. The same applies to the Reduce stage.

Prompt adaptively balances the load as evenly as possible

at the Map and Reduce stages without increasing the aggre-
gation costs. Utilizing all available resources at processing

time is key to maximizing the data ingestion rate, e.g., Case

I in Figure 2. Similarly, resource usage should be adequate to

workload needs to minimize cost. Extra resources should be

relinquished when possible, e.g., Case III in Figure 2 could

have been executed with less resources. The opposite is also

true. When all the current resources are saturated and run at

maximum capacity, if the workload increases further, then

we need to elastically increase the resources during run-

time. Moreover, the proposed scheme should incur minimal

architectural intervention to the stream processing engine,

and should not disrupt the developer programming inter-

faces APIs so that no modifications are required to the users’

existing programs.

3.2 Problem Formulation
In the batching phase, the input tuples received during a

specified time interval constitute a batch. This batch is parti-

tioned into several data blocks to serve as input to the Map

stage. The partitioning algorithm aims to balance the load at

the Map stage by providing equal-load data blocks for the

Map tasks. The partitioning algorithm uses 3 key aspects to

guide the partitioning process that are defined as follows.

Problem I: Map-Input Partitioning: Given a finite set of

data tuples with known schema <𝑘, 𝑡, 𝑣>, with 𝑘 being the

partitioning key, and a fixed number of output partitions 𝑝 ,

i.e., blocks, it is required to assign each data tuple to one parti-

tion while satisfying the following objectives: (1) Block-size
equality: The execution time of a Map task increases mono-

tonically with its input block size. Having equal data block

sizes to all Mappers decreases the variance in execution time

for the Map tasks. (2) Cardinality balance: Each data block
is assigned an equal number of distinct keys. This require-

ment serves two purposes. First, it enables the Map tasks

to generate equal-sized Reduce buckets. Second, it balances

the computation overheads among the Map tasks. (3) Key
locality: Each key is either assigned to one block, or splits

over a minimal number of blocks. This requirement limits

the per-key aggregation overhead at the Reduce stage.

Once a Map task completes, it assigns its output to a num-

ber of Reduce buckets (that correspond to the Reduce tasks).

The input for each Reduce task is the union of its designated

buckets from all Map tasks. At this point, the partitioning al-

gorithm aims to provide an even-load input for each Reduce

task. We define this problem as follows.

Problem II: Reduce-Input Partitioning: Given a finite

number of data elements in the form of <𝑘 ,𝑙𝑖𝑠𝑡 (𝑣)>, and a

defined number of Reduce buckets, it is required to assign the

data elements to buckets such that: (1) Bucket-size equal-
ity: Buckets need to be equal in size. The execution time of

a Reduce task increases monotonically with the bucket size.

Equal-sized input to all Reducers minimizes the variation in

execution latencies among all reducers. (2) Key Locality:
Data tuples having the same key must be in the same Reduce

bucket by all Map tasks. This is vital to maintain the correct

computational behavior, i.e., each key is aggregated by a

single Reduce task.

3.3 Cost Model
We introduce the cost model for data partitioning that cap-

tures the problem formulation in Section 3.2. Notice the

positive correlation between the size of a partition and the

execution time of the task responsible to process it. This

applies to both the Map and Reduce stages. Inspired by the

work in [35], we define the Block Size-Imbalance metric(BSI,
for short) over a micro-batch at the granularity of a data

block or a Reduce bucket:

𝐵𝑆𝐼 (𝐵𝑙𝑜𝑐𝑘𝑠) =𝑚𝑎𝑥𝑖 |𝐵𝑙𝑜𝑐𝑘𝑖 | − 𝑎𝑣𝑔𝑖 |𝐵𝑙𝑜𝑐𝑘𝑖 | 𝑖 ∈ 𝑝 (2)

Eqn. 2 defines the size imbalance metric as the difference

between the maximum block size and the average size of all

data blocks, where 𝑝 is the number of data blocks. Similarly,

Eqn. 3 models the size imbalance at the Reduce stage for the

buckets, where 𝑟 is the number of Reduce buckets:

𝐵𝑆𝐼 (𝐵𝑢𝑐𝑘𝑒𝑡𝑠) =𝑚𝑎𝑥 𝑗 |𝐵𝑢𝑐𝑘𝑒𝑡 𝑗 | − 𝑎𝑣𝑔 𝑗 |𝐵𝑢𝑐𝑘𝑒𝑡 𝑗 | 𝑗 ∈ 𝑟 (3)

Eqn. 4 defines the Block Cardinality-Imbalance (BCI, for
short) as the difference between the blockwithmaximum key

cardinality and the average key cardinality of all blocks [25].

𝐵𝐶𝐼 (𝐵𝑙𝑜𝑐𝑘𝑠) =𝑚𝑎𝑥𝑖 | |𝐵𝑙𝑜𝑐𝑘 | | − 𝑎𝑣𝑔𝑖 | |𝐵𝑙𝑜𝑐𝑘) | | 𝑖 ∈ 𝑝 (4)

K F V

k1 40

k2 80

k3 47

k4 45

k5 100

k6 30

k7 20

k8 20

20

45

30 80

20 40 47 100

BatchData

CountTree

Hashtable

pointer

Linked List

Figure 5: Frequency-aware Micro-batch Buffering:
Fully-updated 𝐶𝑜𝑢𝑛𝑡𝑇𝑟𝑒𝑒 and 𝐻𝑇𝑎𝑏𝑙𝑒 after receiving 385 tu-
ples with 8 distinct keys.

Let a key fragment be a collection of tuples that share the

same key value. Eqn. 5 defines the Key Split Ratio metric

(KSR, for short) as the ratio between the total number of

distinct keys in a batch and the number of key fragments on

all data blocks. If no keys are split, then KSR=1.

𝐾𝑆𝑅(𝐵𝑙𝑜𝑐𝑘𝑠) = 𝑆𝑢𝑚𝑘 |𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 |
𝑆𝑢𝑚𝑘 |𝐾𝑒𝑦𝑠 |

𝑘 ∈ 𝐾 (5)

Finally, we define the overall Partitioning-Imbalance met-

ric [25] over a Micro-batch (MPI, for short) using a combina-

tion of the above metrics as follows:

𝑀𝑃𝐼 (𝐵𝑙𝑜𝑐𝑘𝑠) = 𝑝1 ∗ 𝐵𝑆𝐼 + 𝑝2 ∗ 𝐵𝐶𝐼 + 𝑝3 ∗ 𝐾𝑆𝑅 (6)

Notice that the objective is to minimize the three metrics

which lead to minimize MPI. We provide a mathematical

formulation for the problem in Section 4.2. The parameters

𝑝1, 𝑝2, 𝑝3 are adjustable to control the contribution of each

metric (i.e., 𝑝1 + 𝑝2 + 𝑝3 = 1). In our experiments, we set

𝑝1 = 𝑝2 = 𝑝3 = 1/3 to achieve unbiased and equal contribu-

tion from all the metrics (i.e., avoiding onemetric dominating

the others). Setting 𝑝1 = 1 represents the shuffling partition-

ing behavior, while setting 𝑝3 = 1 represents the hashing

partitioning behavior.

4 MICRO-BATCH DATA PARTITIONING
We introduce Prompt’s partitioning technique for the batch-

ing phase in the micro-batch stream processing model. This

partitioning technique has 2 main steps: (1) The input data

tuples are buffered while statistics are collected as the tu-

ples arrive. (2) The partitioning algorithm is applied over the

micro-batch to generate data blocks for the processing phase.

The following subsections explain these 2 steps.

4.1 Frequency-aware Buffering
As in Section 2.1, the micro-batch is to be processed at the

end of the batch interval, i.e., at the system heartbeat. To

minimize the time required to prepare the micro-batch for

partitioning, two data structures are used to maintain run-

time statistics of the data tuples as they arrive. We utilize

a hash table and a Balanced Binary Search Tree (BBST) as
follows: The partitioning key of the incoming data tuples is

used to store the tuples into the hash table 𝐻𝑇𝑎𝑏𝑙𝑒 <𝐾,𝑉>,

where the value part is a pointer to the list of tuples for

every key. Also, 𝐻𝑇𝑎𝑏𝑙𝑒 stores auxiliary statistics for each

key, e.g., frequency count and other parameters that are

utilized in the following update mechanism. In addition, ap-

proximate frequency counts of the keys are kept in a bal-

anced binary search tree 𝐶𝑜𝑢𝑛𝑡𝑇𝑟𝑒𝑒 . Every key in 𝐻𝑇𝑎𝑏𝑙𝑒

has a bi-directional pointer to a designated counting node

in 𝐶𝑜𝑢𝑛𝑡𝑇𝑟𝑒𝑒 . This pointer allows to directly update the

count node of a key. For illustration, Figure 5 gives a simple

example for 𝐻𝑇𝑎𝑏𝑙𝑒 and a fully-updated 𝐶𝑜𝑢𝑛𝑡𝑇𝑟𝑒𝑒 after

receiving 385 tuples with 8 distinct keys. Notice that the typ-

ical size of a micro-batch can grow up to millions of tuples

with 10-100ks of distinct keys. To handle high data rates, a

coarse-grained approach to update 𝐶𝑜𝑢𝑛𝑡𝑇𝑟𝑒𝑒 is used. In-

stead of updating the 𝐶𝑜𝑢𝑛𝑡𝑇𝑟𝑒𝑒 for each incoming tuple,

each key is allowed to update the 𝐶𝑜𝑢𝑛𝑡𝑇𝑟𝑒𝑒 periodically

for a maximum of 𝑏𝑢𝑑𝑔𝑒𝑡 times in a batch interval. A con-

trol parameter, 𝑓 .𝑠𝑡𝑒𝑝 , is defined, where a node is updated

once for every 𝑓 .𝑠𝑡𝑒𝑝 new tuples received of its key. The

𝑓 .𝑠𝑡𝑒𝑝 parameter is estimated adaptively for each key based

on the proportional of the current key frequency to the total

number of tuples received since the beginning of the current

batch interval (i.e., keys with high frequency will require

more data tuples to trigger an update). Furthermore, to en-

sure that nodes for tuples with low frequency get updated, a

time-based 𝑡 .𝑠𝑡𝑒𝑝 is also used. Similarly, 𝑡 .𝑠𝑡𝑒𝑝 is estimated

based on how much of the key’s 𝑏𝑢𝑑𝑔𝑒𝑡 updates are con-

sumed and the remaining duration of the batch interval. An

update is triggered when an incoming tuple satisfies the time

or frequency step for its key. Initially, 𝑓 .𝑠𝑡𝑒𝑝 is set to some

constant 𝑓 that reflects the best step value if the data is as-

sumed to be uniformly distributed. 𝑓 ←− 𝑁𝐸𝑠𝑡

𝐾𝐴𝑣𝑔∗𝐵𝑢𝑑𝑔𝑒𝑡 , where

𝑁𝐸𝑠𝑡 is the estimated number of tuples given the average

data rate and batch interval, and 𝐾𝑎𝑣𝑔 is the average number

of distinct keys over the past few batches. Notice that 𝑓 .𝑠𝑡𝑒𝑝

quickly converges to the proper value that suits the current

batch. Algorithm 1 lists the buffering technique used in the

batching phase. This updating mechanism avoids thrashing

𝐶𝑜𝑢𝑛𝑡𝑇𝑟𝑒𝑒 with re-balancing operations, and bounds the

complexity of all updates to 𝐾𝑙𝑜𝑔(𝐾), where 𝐾 is the total

number of distinct keys received in a micro-batch. This is

comparable to the complexity of sorting keys after the batch

interval has ended. However, this updating mechanism takes

place during the batching phase, and hence does not require

explicit sorting before the start of the processing phase. A

dedicated sorting step would have consumed a portion of

the time available for processing the batch. At the end of

every batch interval, an in-order traversal of the 𝐶𝑜𝑢𝑛𝑡𝑇𝑟𝑒𝑒

generates a quasi-sorted list of the keys with their associated

frequencies. The sorted list: <𝑘𝑖 , 𝑐𝑜𝑢𝑛𝑡𝑖 , 𝑡𝑢𝑝𝑙𝑒𝐿𝑖𝑠𝑡𝑖> is used

as the input to the partitioning algorithm. The 𝐻𝑇𝑎𝑏𝑙𝑒 and

the 𝐶𝑜𝑢𝑛𝑡𝑇𝑟𝑒𝑒 data structures are both cleared at the end of

every batch interval, i.e., system heartbeat.

Algorithm 1:Micro-batch Accumulator

Input: 𝑆 : Input Stream, [𝑡𝑠𝑡𝑎𝑟𝑡 -𝑡𝑒𝑛𝑑]: Batch Interval,

𝑏𝑢𝑑𝑔𝑒𝑡 : Update Allowance, 𝑓 : Initial Frequency Step

Output: 𝑆𝑡𝑎𝑡 : Batch Statistics, e.g., 𝑁𝐶: Number of data

tuples, |𝐾 |: Number of keys, 𝐵𝑎𝑡𝑐ℎ:

SortedList<𝑘𝑖 ,𝑐𝑜𝑢𝑛𝑡𝑖 ,𝑡𝑢𝑝𝑙𝑒𝐿𝑖𝑠𝑡𝑖>

1 Reset 𝐻𝑇𝑎𝑏𝑙𝑒 , and 𝐶𝑜𝑢𝑛𝑡𝑇𝑟𝑒𝑒;

2 while 𝑡𝑢𝑝𝑙𝑒𝑖 .𝑡𝑠 ∈ Batch Interval do
3 Increment number of tuples Count: 𝑁𝐶 ;

4 if 𝑡𝑢𝑝𝑙𝑒𝑖 .𝑘 ∈ 𝐻𝑇𝑎𝑏𝑙𝑒 then
5 Insert 𝑡𝑢𝑝𝑙𝑒𝑖 into 𝐻𝑇𝑎𝑏𝑙𝑒𝑘 chain;

6 Update 𝑘.𝐹𝑟𝑒𝑞𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ;

7 𝐷𝑒𝑙𝑡𝑎𝑓 𝑟𝑒𝑞 = 𝑘.𝐹𝑟𝑒𝑞𝐶𝑢𝑟𝑟𝑒𝑛𝑡 - 𝑘.𝐹𝑟𝑒𝑞𝑈𝑝𝑑𝑎𝑡𝑒𝑑 ;

8 𝐷𝑒𝑙𝑡𝑎𝑡𝑖𝑚𝑒 = 𝑇𝑖𝑚𝑒𝑁𝑜𝑤 - 𝑘𝐿𝑎𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑇𝑖𝑚𝑒 ;

9 if 𝑘𝑓 .𝑠𝑡𝑒𝑝 == 𝐷𝑒𝑙𝑡𝑎𝑓 𝑟𝑒𝑞 then
10 Update 𝑘𝑓 𝑟𝑒𝑞 in 𝐶𝑜𝑢𝑛𝑡𝑇𝑟𝑒𝑒;

11 Update 𝑘.𝑏𝑢𝑑𝑔𝑒𝑡 = 𝑘.𝑏𝑢𝑑𝑔𝑒𝑡 -1 ;

12 Update 𝑘.𝐹𝑟𝑒𝑞𝑈𝑝𝑑𝑎𝑡𝑒𝑑 ;

13 Set 𝑘𝑓 .𝑠𝑡𝑒𝑝 =

(𝑁𝐸𝑆𝑇 /𝑏𝑢𝑑𝑔𝑒𝑡)*𝑘.𝐹𝑟𝑒𝑞𝐶𝑢𝑟𝑟𝑒𝑛𝑡 /𝑁𝐶 ;
14 else
15 if 𝑘𝑡 .𝑠𝑡𝑒𝑝 == 𝐷𝑒𝑙𝑡𝑎𝑡𝑖𝑚𝑒 then
16 Update 𝑘𝑓 𝑟𝑒𝑞 in 𝐶𝑜𝑢𝑛𝑡𝑇𝑟𝑒𝑒;

17 Update 𝑘.𝑏𝑢𝑑𝑔𝑒𝑡 = 𝑘.𝑏𝑢𝑑𝑔𝑒𝑡 -1 ;

18 Update 𝑘.𝐹𝑟𝑒𝑞𝑈𝑝𝑑𝑎𝑡𝑒𝑑 ;

19 Set 𝑘𝑡 .𝑠𝑡𝑒𝑝 = (𝑡𝑒𝑛𝑑 -𝑁𝑜𝑤𝑇𝑖𝑚𝑒)/𝑘.𝑏𝑢𝑑𝑔𝑒𝑡 ;

20 else
21 𝑘 is not eligible for an update yet;

22 end
23 end
24 else
25 Increment Unique Keys Count: |𝐾 |;
26 Insert 𝑡𝑢𝑝𝑙𝑒𝑖 into 𝐻𝑇𝑎𝑏𝑙𝑒;

27 Insert 𝑡𝑢𝑝𝑙𝑒𝑖 .𝑘 as new node into 𝐶𝑜𝑢𝑛𝑡𝑇𝑟𝑒𝑒;

28 Initialize 𝑘.𝐹𝑟𝑒𝑞𝐶𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑘.𝐹𝑟𝑒𝑞𝑈𝑝𝑑𝑎𝑡𝑒𝑑 to 1;

29 Initialize 𝑘𝑡 .𝑠𝑡𝑒𝑝 = (𝑡𝑒𝑛𝑑 - 𝑇𝑖𝑚𝑒𝑁𝑜𝑤)/𝑏𝑢𝑑𝑔𝑒𝑡 ;

30 Initialize 𝑘𝑓 .𝑠𝑡𝑒𝑝 = 𝑓 ;

31 end
32 end

4.2 Load-Balanced Batch Partitioning
In this section, we discuss how Prompt handles the Batch Par-
titioning problem. The problem is reduced to a new variant of

the classical bin-packing problem. All data tuples that shares

the same key value are modeled as a single item, whereas

each data block is modeled as a bin. Each bin has a capacity

that corresponds to the expected size of the data block. In

contrast, each item has a distinct size equal to the number of

K1

K1

K2

K4

K5

K6

K7

K8

K2

K3

K4

B1 B2 B3 B4

(a) First Fit Decreasing

K1

K1

K2

K5

K6

K7

K8

K3

K4

B1 B2 B3 B4

(b) Fragment Minimization

K1

K1

K2

K5

K6

K7

K8

K3

K4

B1 B2 B3 B4

K1
K2

(c) Balanced Fragment Mini-
mization

Cut-off

0

20

40

60

80

100

K1 K2 K3 K4 K5 K6 K7 K8

FR
EQ

U
EN

CY

KEY

BATCH DATA DISTRIBUTION

(d) Key Split Cut-off
Figure 6: Assignment Trade-offs for the Bin Packing
with Fragmentable Items problem
tuples that shares same key value. We refer to this problem

as the Balanced Bin Packing with Fragmentable Items (B-BPFI).
An item is fragmented if it is split into two or more sub-items

such that the sum of the sizes of all sub-items is equal to

the initial size of the item before splitting. In this case, the

newly split items with the same key value can be stored in

different bins (i.e., in different data blocks). In this instance

of the bin packing problem, the number of bins is known

a priori, and all bins have equal capacities. In addition, the

items are allowed to be fragmented such that the number

of distinct items per bins are equal. Hence, the solution to

the problem is to find a good assignment of the items to

the bins that satisfies the three objectives captured by the

cost model in Eq 6, mainly, (1) Limit the fragmentation of

the items, (2) Minimize the cardinality variance among the

bins, and (3) Maintain the size balanced among the bins. No-

tice that achieving the three objectives is challenging. For

instance, Figures 6a and 6b give two possible assignments

into four data blocks (𝐵1, 𝐵2, 𝐵3 and 𝐵4) for the batched

data in Figure 5. In both assignments, the data blocks are

of equal size. However, the well known First-Fit-Decreasing

technique [33], illustrated in Figure 6a, does not minimize

item fragmentation. This results in fragmenting 3 out of the

8 keys, namely, 𝐾1, 𝐾2, and 𝐾4. In contrast, in Figure 6b, the

use of the Fragmentation Minimization technique [24] limits

the fragmentation to only one key (𝐾1). Both assignments

fail to meet Objective 2; the number of items in 𝐵4 is twice

the number of items in the other blocks. The B-BPFI problem
can be formally defined as follows:

Definition 1. Balanced Bin Packing with Fragmentable
Items. Given a set of K distinct items: 𝑘1, 𝑘2, · · · , 𝑘𝐾 ; each
with Item Size 𝑠𝑖 , where 1 ≤ 𝑖 ≤ 𝐾 , and B bins, each with
Bin Capacity C, the Balanced Bin Packing with Fragmentable

Items (B-BPFI) is to generate item assignments to bins: 𝑏1, 𝑏2,
· · · , 𝑏𝐵 that satisfy the following 3 requirements: (1) |𝑏 𝑗 |=C
∀𝑗 ∈ [1, 𝐵], where |𝑏 𝑗 | denotes the number of tuples in 𝑏 𝑗 ;
(2) | |𝑏 𝑗 | | ≥ K/B, where | |𝑏𝑖 | | denotes the number of unique
items in 𝑏 𝑗 ∀𝑗 ∈ [1, 𝐵]; (3) For any item ∈ K, it is split over the
minimum number of bins.

The problem can be formulated mathematically as follows.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (
𝐾∑
𝑖=1

𝐵∑
𝑗=1

𝑦𝑖 𝑗) (7)

so that:

𝐵∑
𝑗=1

𝑥𝑖 𝑗 = 𝑠𝑖 ∀𝑖 ∈ [1...𝐾],∀𝑗 ∈ [1...𝐵] (8)

𝐾∑
𝑖=1

𝑥𝑖 𝑗 ≤ 𝑐 𝑗 ∀𝑖 ∈ [1...𝐾],∀𝑗 ∈ [1...𝐵] (9)

𝑥𝑖 𝑗

𝑠𝑖
≤ 𝑦𝑖 𝑗 ∀𝑖 ∈ [1...𝐾],∀𝑗 ∈ [1...𝐵] (10)

𝐾

𝐵
≤

𝐾∑
𝑖=1

𝐾∑
𝑗=1

𝑦𝑖 𝑗 ∀𝑖 ∈ [1...𝐾],∀𝑗 ∈ [1...𝐵] (11)

𝑥𝑖 𝑗 ∈ 𝑁 +, 𝑦𝑖 𝑗 ∈ 0, 1 ∀𝑖 ∈ [1...𝐾],∀𝑗 ∈ [1...𝐵] (12)

The variable 𝑥𝑖 𝑗 represents the size of Item 𝑖’s fragment

that is placed in Bin 𝑗 . 𝑥𝑖 𝑗 must be an integer (included be-

tween 0 and 𝑠𝑖) (see Eqn. 8). Eqn. 8 implies that the sum of

the sizes of the fragments of any item 𝑖 must be equal to

its total size 𝑠𝑖 . Eqn. 9 restricts the sum of the sizes of the

fragments put in any bin 𝑗 to not exceed the capacity 𝑐 𝑗 of

this bin. 𝑦𝑖 𝑗 is a bivalent variable equal to 0 or 1 (see Eqn. 12)

to mark the presence of Item 𝑖 in Bin 𝑗 . As soon as a part of

Item 𝑖 is present in Bin 𝑗 (even a very small part), 𝑦𝑖 𝑗 is equal

to 1. Otherwise, 𝑦𝑖 𝑗 is equal to 0. Eqn 10 forces Variable 𝑦𝑖 𝑗
to be 1 whenever Variable 𝑥𝑖 𝑗 is strictly greater than 0. The

sum of all the variables 𝑦𝑖 𝑗 corresponds to the total number

of fragments of items. It is this quantity that we want to min-

imize (Eqn. 7). Without loss of granularity, we assume that

the data tuples are of the same size for simplicity. However,

our problem formulation can be easily extended to variable

tuple sizes. Moreover, the total capacity of the bins is defined

to be larger than or equal to the total size of the items.

𝐾∑
𝑖=1

𝑠𝑖 ≤
𝐵∑
𝑗=1

𝑐 𝑗 ∀𝑖 ∈ [1...𝐾],∀𝑗 ∈ [1...𝐵] (13)

Theorem 1. The Balanced Bin Packing with Fragmentable
Items problem is NP-Complete.

Proof. The classical Bin Packing problem is a special case

of B-BPFI in which all the bins have the same capacities, the

maximum number of fragments per bin is equal to 𝐾 − 𝐵 − 1
(or 1 in case 𝐵 > 𝐾), and the maximum number of fragments

allowed is𝐾 (i.e., no fragmentation is allowed), and the items

can be assigned arbitrarily. Since the bin packing problem

is strongly NP-complete, hence the B-BPFI is strongly NP-

complete, and the optimization form is at least as hard as the

classical bin packing problem. Proof by restriction. □

The classical bin packing problem is a well-known com-

binatorial optimization problem [40] and has been studied

for decades. Some of its forms have even dealt with frag-

mentable items [9, 10, 16, 23, 24, 29, 33, 37–39]. The available

solutions for the bin packing problem fall into two categories:

First, they are very customized to the classical bin packing

optimization problem, where the objective is to minimize

the number of bins required, and hence yields unsatisfactory

results in the case of the B-BPFI problem (e.g., First Fit De-

creasing). The reason is that filling a bin nearly completely

is a good result for BP, because minimizing wasted space

results in fewer required bins, but it is generally a bad strat-

egy for B-BPFI as it results in plenty of fragmentation and

cardinality imbalance. Second, due to the hardness of the

problem, the available computational solution algorithms do

not scale well. They involve problem instances with no more

than 100 items, and may require several minutes or even

hours to solve [29]. Our focus here is on finding a heuristic

algorithm that produces high-quality partitioning for thou-

sands of items in milliseconds. However, to the best of our

knowledge, no algorithms or other heuristic approaches for

B-BPFI exist in the literature.

Algorithm 2 lists the proposed heuristic to partition the

batch of tuples into data blocks, while achieving the three

objectives highlighted above. First, the high-frequency keys

are detected and are fragmented (See Figure 6d). Any key

that has a frequency larger than the ratio of
𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒

𝐵𝑙𝑜𝑐𝑘 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦

is split into two fragments. One fragment is placed in a data

block, and the other fragment is maintained temporarily

in a list. Then, the rest of the keys are assigned to the data

blocks in a zigzag-style, i.e., the blocks’ order is reversed after
each pass. Notice that since the keys are quasi-sorted, this

has the effect of BestFitDecreasing without the need and

cost to maintain the block sizes. Finally, the residuals of the

high-frequency keys are assigned usingBestFitwhile giving
priority to key-locality. Figure 6c gives the assignments for

the batched data example of Figure 5 into four blocks using

Algorithm 2. Notice that this assignment strikes a balance

between fragmentation and cardinality while maintaining

equal-sized blocks, i.e., only two items are fragmented (𝐾1

and 𝐾2) and the key-cardinality is almost identical.

To avoid contributing to the processing time, Prompt ap-

plies a simple latency-hiding mechanism, termed Early Batch
Release. The objective of this mechanism is to ensure that the

batch is partitioned and ready-for-processing at the heart-

beat signal. To achieve this objective, the batching cut-off

is separated from the processing cut-off, i.e., the system’s

heartbeat. The batch content is to be released for partitioning

before the expected system heartbeat that originally signals

the end of the batch interval (See Figure 7). This allows the

partitioner a slack time to execute the partitioning algorithm

Algorithm 2:Micro-Batch Partitioner

Input: 𝑆𝑜𝑟𝑡𝑒𝑑𝐿𝑖𝑠𝑡 <𝑘 , 𝑘𝑐𝑜𝑢𝑛𝑡 , 𝑘𝑇𝑢𝑝𝑙𝑒𝐿𝑖𝑠𝑡>: Input Batch,
𝑁𝑐 : Number of data tuples, 𝐾 : Number of distinct

keys 𝑃 : Number of required data partitions.

Output: 𝑃𝑙𝑎𝑛: Optimized keys-to-partitions assignments

1 Define Partition-Size: 𝑃𝑆𝑖𝑧𝑒=𝑁𝐶 /𝑃 ;

2 Define Partition-Cardinality: 𝑃 |𝑘 | = 𝐾/𝑃 ;
3 Define Key-Split-CutOff: 𝑆𝐶𝑢𝑡 = 𝑃𝑆𝑖𝑧𝑒/𝑃 |𝑘 | ;
4 Set 𝑏𝑖 = 𝑏1 (𝑏1 ∈ 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠);
5 while ∃𝑘 ∈ 𝐿𝑖𝑠𝑡 and |𝑘 | > 𝑆𝐶𝑢𝑡 do
6 Put 𝑆𝐶𝑢𝑡 fragment→ 𝑏𝑖 and add residual to 𝑅𝐿𝑖𝑠𝑡 ;

7 Update 𝑙𝑜𝑜𝑘𝑢𝑝𝐿𝑎𝑟𝑔𝑒𝑃𝑜𝑠 (𝑘 ↔𝑏𝑖);
8 Set 𝑏𝑖 to 𝑏𝑖++%𝑃 ;
9 end

10 while ∃𝑘 ∈ 𝐿𝑖𝑠𝑡 do
11 foreach 𝑏 ∈ 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 do
12 Put one key in 𝑏;

13 Move to next 𝑏;

14 end
15 Reverse Order of 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 loop;

16 end
17 while ∃𝑘 ∈ 𝑅𝐿𝑖𝑠𝑡 do
18 𝑏 = 𝑙𝑜𝑜𝑘𝑢𝑝𝐿𝑎𝑟𝑔𝑒𝑃𝑜𝑠 (𝑘);
19 if 𝑘 fits in 𝑏 then
20 Add 𝑘 to 𝑏;

21 else
22 Fill 𝑏 from 𝑘 ;

23 Add rest of 𝑘 to partition with lowest remaining

capacity that can hold it;

24 end
25 end

Batch 2

Batch 1 Batch 2 Batch 3 Batch 4

Pr
oc

es
si

ng
B

at
ch

in
g

System
Heartbeat

Batch
PartitioningBatch Cut-off Batch i Buffering

Batch i

time

Batch 1 Batch 3 Batch 4

Batch Interval Processing Time

Batch i Processing
Batch i

Batch Partitioning

Figure 7: Early Batch Release

on the collected input data, and make batch data ready at

the heartbeat pulse. The mechanism is implemented within

the batching module, and hence the normal execution of the

processing engine is not influenced. In our experiments, we

have observed that a maximum of 5% of the batch-interval

is sufficient to achieve this objective.

4

Bucket 1

Bucket 2

C
lu

st
er

 2

C
lu

st
er

 1

C
lu

st
er

 5

C
lu

st
er

 3 Hashing

Map Output

(a) Hashing Assignment

4

Bucket 1

Bucket 2

C
lu

st
er

 3

C
lu

st
er

 1
 (S

pl
it)

C
lu

st
er

 5

C
lu

st
er

 2

Map Output

(b) Balanced Assignment
Figure 8: Reduce Replacement Strategies

5 PROCESSING-PHASE PARTITIONING
In this section, we introduce a partitioning technique for

the processing phase of the micro-batch stream processing

model. In the batching stage, each data 𝑏𝑙𝑜𝑐𝑘 is equipped

with a reference table. In this table, keys that exist in the data

block are labeled to indicate if they are split over other data

blocks. Each Map task leverages this information to guide

the assignment of the key clusters to its Reduce buckets.

Figure 8a gives an example of the default assignment of aMap

task output to its Reduce buckets using conventional hashing

approach. This method does not consider the key cluster

sizes, and that leads to un-balanced input to the Reduce stage.

The Map output is key-value pairs grouped into clusters.

Each key cluster has all data values with the same key, and

can be represented as: 𝐶𝑘 = {(𝑘, 𝑣𝑖) | 𝑣𝑖 ∈ 𝑘}.
Key clusters can have different sizes. Assume that there are

𝐾 key clusters in the output of the Map task to be assigned

to 𝑟 Reduce buckets. Let 𝐼 be the output (i.e., referred to as

intermediate results) of the Map task: 𝐼 = {𝐶𝑘 | 𝑘 ∈ 𝐾}. To
provide a balanced load for the Reduce tasks, an equal assign-

ment to each Reduce bucket should be warranted. The ex-

pected size of a bucket can be estimated as: 𝐵𝑢𝑐𝑘𝑒𝑡 𝑆𝑖𝑧𝑒 =
|𝐼 |
𝑟
.

We reduce this problem to a new variant of the bin packing

problem. All key clusters are items, and the Reduce buck-

ets are bins. However, in contrast to the batch partitioning

problem, the bins are of variable capacities, and the items

are not fragmentable. Each key cluster is a non-fragmentable

item as values of the same key must be at the same Reduce

bucket. The bins are of variable capacities because keys split

over multiple data blocks are assigned to the Reduce buckets

using the hashing method. The Map task has the freedom to

assign the non-split keys only. The capacity of each bucket

is the residual of the value estimated by 𝐵𝑢𝑐𝑘𝑒𝑡 𝑆𝑖𝑧𝑒 after

assigning the split key clusters using the hashing method.

The problem is defined and is proved NP as follows:

Definition 2. Balanced Bin Packing with Variable Capac-
ity (B-BPVC). Given a set of items, K, and B bins, each with

Algorithm 3: Reduce Bucket Allocator
Input: 𝐶: Key Clusters - Map intermediate results,

𝑅𝑒 𝑓 : Block Reference Table (Split/NonSplit keys),

𝑅: Set of Reduce buckets.

Output: 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 − 𝐵𝑢𝑐𝑘𝑒𝑡 Assignments

1 Define 𝐵𝑢𝑐𝑘𝑒𝑡𝑠𝑖𝑧𝑒 = |𝐶 |/|𝑅 |;
2 Assign 𝑆𝑝𝑙𝑖𝑡𝐾𝑒𝑦𝑠 to 𝑅 using Hashing;

3 Let 𝐶= 𝐶 - 𝑆𝑝𝑙𝑖𝑡𝐾𝑒𝑦𝑠;

4 Sort 𝑁𝑜𝑛𝑆𝑝𝑙𝑖𝑡 key Clusters in descending order;

5 while ∃𝑘 ∈ 𝐶 do
6 Assign 𝑘 into Bucket 𝑟= Worst-Fit(𝑅) ;

7 𝑅 = 𝑅-𝑟 ;

8 if !∃𝑟 ∈ 𝑅 then
9 Reset 𝑅 = All Reduce Bucket ;

10 else

11 end
12 end

associated capacity 𝐶𝑖 , the Variable balanced bin packing is
to generate item assignments to bins: 𝑏1,𝑏2,...,𝑏𝐵 , that satisfy
three requirements: (1) |𝑏𝑖 |≤ 𝐶𝑖 for any 𝑖 ∈ [1,B], where |𝑏𝑖 |
denotes the number of tuples in 𝑏𝑖 ; (2) | |𝑏𝑖 | |≤ K, where | |𝑏𝑖 | |
denotes the number of unique items in 𝑏𝑖 ;

Theorem 2. The Balanced Bin Packing with Variable Ca-
pacity (B-BPVC) problem is NP-Complete.

Proof. The Bin Packing problem is a special case of

B-BPVC. Since the bin packing problem is strongly NP-

complete, hence the B-BPVC is strongly NP-complete and

the optimization form is at least as hard as the classical bin

packing problem. Proof by restriction. □

Alg. 3 lists the proposed technique used by each Map task

to assign the key clusters to the Map task’s Reduce buckets.

Each Map task assigns the split keys using hashing, and sorts

its non-split key clusters based on size. Next, the Map task

evaluates the capacity of its Reduce buckets, as explained

earlier. The Map task uses WorstFit to assign bigger key

clusters as early as possible to buckets with maximum avail-

able capacity. Notice that the selected bucket is removed from

the candidate list until all other buckets receive an item. This

limits bucket overflow while promoting a balanced number

of key clusters per Reduce bucket. Also, no share of informa-

tion is necessary among the Map tasks. Thus, as each Map

task tries to minimize size imbalance, through the additive

property, the overall imbalance is reduced.

6 DYNAMIC RESOURCE MANAGEMENT
We introduce Prompt’s technique to adaptively adjust the

degree of execution parallelism according to workload needs.

The objective of this technique is to enforce latency require-

ments of the users’ applications, while maximizing resource

utilization. As explained earlier, the execution graph of a

streaming query includes the physical details of the execu-

tion including the level of parallelism, i.e., the number of

Map and Reduce tasks and the data dependency among the

tasks (see Figure 1). To enforce latency, Prompt continuously

monitors the relationship between the batch interval and
the processing time for the running micro-batches. Figure 9a

depicts the possible relationships between the processing

time and the batch interval in micro-batch DSPSs. The sta-

bility line represents the ideal scenario, when the processing

time and the batch interval are equal. For Prompt, the stabil-

ity line means that the system is meeting the latency require-

ment with the currently utilized resources, i.e., the degree

of parallelism is sufficient to meet the workload. Otherwise,

the system is either overloaded or under-utilized. In the for-

mer case, overloading leads to queuing of micro-batches that

await processing, and the system experiences an increase in

latency time. On the latter case, the system meets its latency

requirements, but the resources are under-utilized, i.e., the

system is idle and is waiting for the next batch to process.

Micro-batch
processing

time

Micro-batch
interval

sta
bil

ity
Queueing

Low
processing

time
Micro-batch Interval

<<<
Processing time

Micro-batch Interval
>>>

Processing time

(a) Workload Behavior

Processing Time

Ba
tc

h
In

te
rv

al

Queu
ein

g

Batc
h I

nte
rva

l

<<<
Pro

ces
sin

g t
im

e

Batc
h I

nte
rva

l
>>>

Pro
ces

sin
g t

im
e

Zone 1 Zone 2

Zo
ne

 3

Lazi
ly

Drop
 M

ach
ine Stab

ilit
y

(b) Prompt’s Zones

Figure 9: Prompt’s Elasticity Zones
Prompt seeks to meet the latency requirement using min-

imum resources. Figure 9b illustrates how Prompt defines 3

elasticity zones to guide when auto-scale actions should take

place. The purpose of Zone 2 is to shield Prompt from sudden

workload changes. It can be viewed as an expansion of the

stability line. It queues the delayed batches briefly in case of

load spikes, and lazily reduces the executing-tasks when the

load is reduced. In Zone 1, Prompt can remove some of the

Map or Reduce tasks without affecting the latency guaran-

tees. In Zone 3, Prompt must add more resources to restore

stability. The objective is to maintain Prompt in Zone 2.

Prompt uses a threshold-based technique to change the

level of parallelism at runtime (see Alg. 4). When the ra-

tio𝑊 =
𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇𝑖𝑚𝑒

𝐵𝑎𝑡𝑐ℎ 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙
exceeds a system-defined threshold

(termed 𝑡ℎ𝑟𝑒𝑠) for 𝑑 consecutive batches, a scale-out is trig-

gered. Prompt adds Map and/or Reduce tasks to the execu-

tion graph according to workload changes. It uses the two

statistics data rate and data distribution in the past 𝑑 batches

to guide the process. The two metrics are computed as part

of the Frequency-aware buffering technique (Section 4.1). If

both metrics increase, then Map and Reduce tasks are added.

If only the data rate (i.e., the total number of tuples) increases,

then Mappers are added. If only the data distribution (i.e., the

number of keys) increases, then Reducers are added. The pro-

cess repeats until𝑊 ≤ 𝑡ℎ𝑟𝑒𝑠 . When𝑊 ≤ 𝑡ℎ𝑟𝑒𝑠 −𝑠𝑡𝑒𝑝 is true

for 𝑑 consecutive batches, scale-in is triggered. Prompt re-

moves Map or Reduce tasks from the execution graph by

the same criteria for scaling out. A grace period of 𝑑 batches

is used after completing a scale-in or scale-out, where no

reverse decision is made.

Algorithm 4: Latency-aware Auto-Scale
Input: 𝑆𝑡𝑎𝑡𝑠𝑑 : Processing Time/Batch Interval for previous

d batches, 𝐾 : Current number of keys and 𝑆𝑖𝑧𝑒 :

Current data rate, 𝑝: Current number of Map tasks,

𝑟 : Current number of Reduce tasks, 𝐿𝑠𝑡𝑒𝑝 :

increments of W (10%), 𝐿𝑡ℎ𝑟𝑒𝑠 : Upper Load

Threshold (90%)

Output: 𝑁𝑒𝑤 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑃𝑙𝑎𝑛 : 𝑝 𝑎𝑛𝑑 𝑟

1 Define𝑊𝑖 = |𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇𝑖𝑚𝑒𝑖 |/|𝐵𝑎𝑡𝑐ℎ𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖 |;
2 Append𝑊𝑖 to 𝑆𝑡𝑎𝑡𝑠𝑑 ;

3 Update data Rate / data distribution into 𝑆𝑡𝑎𝑡𝑠𝑑 ;

4 if𝑊𝑖 > 𝑡ℎ𝑟𝑒𝑠 then
5 if count = d then
6 Increment 𝑝 if data rate increased;

7 Increment 𝑟 if data distribution increased;

8 reset 𝑐𝑜𝑢𝑛𝑡 ;

9 else
10 increment 𝑐𝑜𝑢𝑛𝑡 ;

11 end
12 return Execution Plan;

7 EVALUATION
We conduct experiments on 20 nodes in Amazon EC2. Each

node has 16 cores and 32GB of RAM. The nodes are con-

nected by 10 Gbps Ethernet and are synchronized with local

NTP servers. We realize Prompt’s partitioning technique in

Apache Spark v2.0.0. The same concepts are applicable to

other micro-batch streaming systems that have a similar de-

sign principle of block and batch, e.g., M3 [4], Comet [21],

and Google Dataflow [2]. Prompt is realized by modifying

four components in Spark Streaming [43]. Algorithm 1 in is

implemented in a customized receiver. The receiver layer is

responsible to ingest data tuples and maintain the two data

structures of Algorithm1. Algorithm2 is implemented in the

batch module. The batching module is responsible to seal and

serialize the data blocks and place them on the memory of

the cluster nodes. Algorithm 3 is implemented in the shuffle

phase of the mappers. Algorithm 4 is implemented within the

scheduler (i.e., Spark Driver). It is responsible for deciding

the number of mappers and reducers for each micro-batch

computation. The same JVM heap size and garbage collec-

tion flags are applied to launch all Spark executor instances.

Datasets’ Statistics

Name. Size Cardinality

Tweets 50GB 790k

SynD 40GB 500k-1M

DEBS 32GB 8M

GCM 16GB 600K

TPC-H 100GB 1M

Table 1: Datasets Properties

The queries of the used benchmarks are written as a map-

reduce computation. Figure 1 shows the execution graph

(i.e., the topology of the computation). The execution graph

illustrates the data ingestion within the receiver and process-

ing by mappers and reducers. The window operations are

defined over the batch computations similar to Figure 3.

To alleviate the effects of CPU, network, and disk I/O bot-

tlenecks on performance, the following measures are taken:

(1) Inverse Reduce functions are implemented for all win-

dow queries to account for the expired batches leaving the

window span, and hence avoid re-evaluations. (2) Previous

in-window batch results are cached in memory to be used in

future computations. We ensure that all the window length

can fit in memory to avoid spilling to disk. (3) The number

of data blocks is bounded by the number of CPU cores on

Spark executor instances to avoid any Map task queuing.

(4) The system is allowed some time to warm up and stabi-

lize before measuring performance results. Spark Streaming

back-pressure is used to indicate when the maximum inges-

tion rate is reached for every experiment. (5) All the tech-

niques under comparison are assigned the same resources.

For PK2 [36],PK5 [35] and cAM [25], the number of candi-

dates per key refers to the maximum number of partitions

a key can be assigned to (i.e., the number of hash functions

per key). This is different from the total number of workers

assigned to the system. For PK2 [36],PK5 [35], the number

of candidates per key are fixed at 2 and 5, respectively. For

cAM [25], we always report the best performance achieved

from several runs with various candidates. For each work-

load, we increase the number of candidates until performance

is stable (i.e., does not improve) or degrades.

7.1 Datasets and Workloads
We test the performance of the proposed techniques using

various workloads of increasing complexity (refer to Table 1):

WordCount performs a slidingwindow count over 30 seconds,

and TopKCount finds the 𝑘 most-frequent words over the

past 30 seconds. We use the following two datasets, namely

Tweet and SynD. Tweet is a real sample of tweets collected

in 2015. Each tweet is split into words that are used as the

key for the tuple. SynD is a synthetic dataset generated using

keys drawn from the Zipf distribution with exponent values

𝑧 ∈ {0.1, ..., 2.0} and distinct keys up to 10
7
. Also, we use the

following 3 real and synthetic workloads:

0%
25%
50%
75%

100%

2 4 8 16Ra
tio

 w
.r.

t.
H

as
hi

ng

Number of Nodes

Block Size Imbalance - Tweets

Shuffle TimeBlock PK-5 cAM Prompt

(a) Relative BSI: Tweets

0%

25%

50%

75%

100%

2 4 8 16

Ra
tio

 w
.r.

t.
H

as
hi

ng

Number of Nodes

Block Size Imbalance - TPC-H

Shuffle TimeBlock PK-5 cAM Prompt

(b) Relative BSI: TPC-H

0%

25%

50%

75%

100%

4 8 16

Ra
tio

 w
.r.

t.
Sh

uf
fle

Number of Nodes

Block Cardinality Imbalance - Tweets

Hash TimeBlock PK5 cAM Prompt

(c) Relative BCI: Tweets

0%

25%

50%

75%

100%

4 8 16

Ra
tio

 w
.r.

t S
hu

ff
le

Number of Nodes

Block Cardinality Imbalance - TPC-H

Hash TimeBlock PK5 cAM Prompt

(d) Relative BCI: TPC-H
Figure 10: Data Partitioning Metrics

1. ACM DEBS 2015 Grand Challenge (DEBS): This
dataset contains details of taxi trips in New York City. Data

are reported at the end of each trip, i.e., upon arriving in the

order of the drop-off timestamps.We define 2 sliding-window

queries: DEBS Query 1: Total fare of each taxi over 2 hrs win-

dows with a 5-min slide. DEBS Query 2: Total distanceper
taxi over 45-min window with a slide of 1 min.

2. Google Cluster Monitoring (GCM): represents the
execution details of a Google data cluster. The GCM queries

used are similar to the ones used in [25].

3. TPC-H Benchmark: Table 𝐿𝑖𝑛𝑒𝐼𝑡𝑒𝑚 tracks recent or-

ders, and TPCH Queries 1 and 6 are to generate Order Sum-

mary Reports, e.g., Query 1: Get the quantity of each Part-ID

ordered over the past 1 hr. with a slide-window of 1 min.

7.2 Experimental Results
Data Partitioning.We assess the effectiveness of the pro-

posed batch partitioning scheme using two metrics: Block
Size Imbalance - BSI and Block Cardinality Imbalance - BCI.
For this purpose, we use two datasets, namely Tweets and

TPC-H in this experiment. We compare with existing and

state-of-the-art techniques: Shuffle, Hashing, PK-2 [36], PK-
5 [35] and cAM [25]. Figures 10a and 10b compare the BSI
metric achieved for all the techniques relative to the hash-

ing technique, i.e., as in [25]. Results for all the techniques

are shown relative to the hashing technique since hashing

provides no guarantees on size balancing. As the relative

value approaches 0, this means the technique is providing a

balanced load under this metric. In this experiment, Shuffle,

Time-based, and Prompt achieve the best performance. Shuf-

fle and Time-based partitioning are expected to achieve that

as they assign equal number of tuples to the data blocks. How-

ever, they perform badly when it comes to balancing block

cardinality. Also, notice that Time-based partitioning per-

forms well on BSI because the data rate is fixed. Figures 10c

0

1

2

3

4

5

6

1 sec 2 sec 3 sec

Th
ro

ug
hp

ut
 (G

B/
s)

Micro-batch Interval

Throughput - Tweets

Prompt PK-5 Time-Based cAM

(a) Tweets (Counting)

0

1

2

3

4

5

1 sec 2 sec 3 sec

Th
ro

ug
hp

ut
 (G

B
/s

)

Batch Interval

Tweets - Median

Prompt PK-5 Time-Based cAM

(b) Tweets (Median)

0

1

2

3

4

5

1 sec 2 sec 3 sec

Th
ro

ug
hp

ut
 (G

B/
s)

Micro-batch Interval

Throughput - DEBS

Prompt PK-5 Time-Based cAM

(c) DEBS

0

1

2

3

4

5

6

0.1 1.5 2

Th
ro

ug
hp

ut
 (G

B/
s)

Zipf Exponent Value

Throughput - SynD

Prompt PK-5 Time-Based cAM

(d) SysD
Figure 11: Effect of Variable Data Rate and Data Skew
on Throughput

and 10d compare the BCI achieved for all the techniques rel-

ative to the shuffle technique using the two datasets. In this

case, the shuffle technique is used as the relative measure

because it provides no guarantees on key assignment. Hash-

ing and Prompt performs significantly better than all the

other techniques. In these two experiments, Prompt out-
performs state-of-the art techniques by striking a bal-
anced optimization for both block size and block car-
dinality. This contributes to the throughput reported in

Figure 11. GCM and DEBS have shown similar results but

are omitted due to space limitation.

Effect of Variable Input Data Rate. We study the ro-

bustness of Prompt against sinusoidal changes to the input

data rate. This simulates variable spikes in the workload. The

provided resources are fixed, otherwise. Also, the target end-

to-end latency is bounded by the batch interval (1,2,3 secs).

The triggering of Spark Streaming’s back-pressure is used

to report the maximum throughput achieved. Back-pressure

stabilizes the system to avoid data loss by signaling the data

source to lower the input data rate. Figure 11 gives the max-

imum throughput achieved using the various partitioning

techniques. All the techniques perform better when increas-

ing the batch interval. However, Prompt maintains up to 2x-

4x better throughput than those of cAM and Time-based par-

titioning. Time-based partitioning shows the worst through-

put as it is sensitive to changing the data rate. While PK5

and cAM exhibit back-pressure sooner, Prompt allows the
system to achieve up to 2x throughout compared to
existing techniques, before activating back-pressure.

Effect of Variable Data Distribution. We use the syn-

thetic dataset, SynD, to evaluate the performance of the par-

titioning techniques under skewed data distribution. In this

experiment, the batch interval is set to 3 seconds. We report

the highest throughput achieved for each technique before

0

20

40

60

80

100

120

140

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

N
um

be
r o

f T
as

ks

Th
ro

ug
hp

ut
 (G

B/
s)

Elasticty Decisions

Throughput vs. Degree of Parallelism

Prompt-Throughput Number of tasks

(a) Prompt Scale-out

0
1
2
3
4
5
6
7
8

60 60 60 64 64 68 68 72 76 80 84 88 88 88 92 96 96 96 10
0

10
4

10
8

11
2

11
2

11
6

12
0

12
4

(G
B/

s)

Number of Tasks

Throughput as a function of input data
rate and scale-out

Data Input Rate Prompt-Throughput

(b) Prompt Throughput

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

N
um

be
r o

f T
as

ks

Elasticity Decisions

Map vs. Reduce Ratio

Mappers Reducers

(c) Prompt Maps/Reducers

0

10

20

30

40

50

60

70

80

90

100

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

N
um

be
r o

f T
as

ks

Th
ro

ug
hp

ut
 (G

B/
s)

Elasticty Decisions

Throughput vs. Degree of Parallelism

Prompt-Throughput Number of tasks

(d) Prompt Scale-In

Figure 12: Prompt Elasticity
back-pressure is triggered. Figure 11d gives the performance

results of all partitioning techniques under different Zipf ex-

ponent values. In contrast to the existing techniques,
Prompt consistently maintains the highest through-
put even when the input data is highly skewed (be-
tween 2x to 5x better throughput).

Latency Distribution. In this experiment, we report the

processing details for thousands of batches under the de-

fault Spark Streaming’s partitioner (i.e., Time-based) and

when using Prompt. For each batch, we report the average

completing time of the reduce tasks. In Figure 13a, the av-

erage processing time of the reduce tasks is highly variable

when using Time-based data partitioning, and hence the

higher distribution of latency. Figure 13b illustrates how

Prompt reduce the distribution of execution time among

the reduce tasks, and hence there is low variance between

the latency’s upper and lower bounds. The variance of re-

duce tasks execution depends on the the partitioning qual-

ity. The ultimate objective for micro-batch DSPSs to main-

tain the latency guarantee, while maximizing throughput.

By applying Prompt in Spark Streaming, both the av-
erage and maximum latencies increase because of de-
creasing the partitioning imbalance. This contributes
to the increase in overall system throughput, while
maintaining upper bound of latency.

Resource Elasticity. We assess Prompt’s ability to ad-

just the degree of parallelism in response to changes in

workload. In the experiment, Prompt has a pool of Spark

executors, each set with 4 cores. Back pressure is disabled

to allow for Prompt’s elasticity technique to be triggered.

Figure 12a illustrates the effect of increasing the number

of tasks on Prompt’s throughput. We continuously increase

the number of input data tuples and data distribution (i.e.,

number of unique keys) over time. Figure 12b illustrates

how Prompt responds swiftly to the increase in workload

by adding more execution tasks. Notice that when Prompt’s

0
2
4
6
8

10
12
14
16

1
25

6
51

1
76

6
10

21
12

76
15

31
17

86
20

41
22

96
25

51
28

06
30

61
33

16
35

71
38

26
40

81
43

36
45

91
48

46
51

01
53

56
56

11
58

66
61

21
63

76
66

31
68

86

Ba
tc

h
Co

un
t

Th
ou

sa
nd

s

Latency (Milli-Seconds)

Procesing Time Histogram

(a) Time-based

0

5

10

15

20

25

30

1
21

4
42

7
64

0
85

3
10

66
12

79
14

92
17

05
19

18
21

31
23

44
25

57
27

70
29

83
31

96
34

09
36

22
38

35
40

48
42

61
44

74
46

87
49

00
51

13
53

26
55

39
57

52
59

65
61

78
63

91
66

04
68

17

Ba
tc

h
Co

un
t Th

ou
sa

nd
s

Latency (Milli-Seconds)

Procesing Time Histogram

(b) Prompt
Figure 13: Latency Distribution: (b) Latency when using
Time-based partitioning, (b) Latency when using Prompt.

0

2.5

5

1 sec 2 sec 3 sec

Th
ro

ug
hp

ut
 (G

B/
s)

Batch Interval

Post-Sort Overhead

Prompt PK-5 Time-Based cAM Prompt (Post-Sort)

(a) Post-Sort Throughput

0%

20%

40%

60%

80%

100%

1 sec 3 secPe
rc

en
ta

ge
 o

f B
at

ch
 In

te
rv

al

Batch Interval

Partitioning Overhead

Tweets TPCH GCM DEBS SysD

(b) Prompt Overhead
Figure 14: Post-Sort cost and Partitioning Overhead:
(a) Throughput of Prompt with Post-Sort, (b) Partitioning
overhead for Prompt.

throughput matches the input rates, it maintains its stabil-

ity and provide latency guarantees (Figure 9a). Figures 12c

and 12d show the behavior when data rate is decreased and

how Prompt can adapt the ratio of map/reduce tasks accord-

ing to changes in data rate or data distribution. Prompt’s
ability to match its throughput to that of the input
workload is crucial to maintain latency guarantees.

Partitioning Overhead.We study the overhead of apply-

ing Prompt. Figure 14a shows the effect on throughput when

using post-sorting instead of Prompt Algorithm1. Figure 14b

gives the time required to apply Prompt as percentage of the

micro-batch interval. Observe that the cost is bounded by 5%

of the micro-batch interval. Notice that this cost does not con-

tribute to the processing time due to the use of the early batch

release mechanism explained in Section 4.2. Prompt is able
to utilize the complete statistics of the batched-data
while matching latency guarantees.

8 CONSISTENCY IN PROMPT
Prompt relies on the micro-batching computational engine

(i.e., [43]) to maintain consistency: (1) The isolation of state

is natural as each batch is defined by system-wide heart-

beats. The execution tasks are decoupled from the state that

is preserved in-memory and is immutable. Window opera-

tions are defined over the states of the batches within the

window’s time predicate (Figure 3). (2) Exactly-once seman-

tics is guaranteed by initially replicating the input batch.

Once the batch output is produced and the batch expires

from the query window, this batch can be removed. Exactly-

once semantics is guaranteed at the batch level. In case of

losing a batch’s state due to hardware failure, this state is re-

computed using the replicated batched data. (3) The ordering

of the tuples is guaranteed at a coarse-granularity as in [43],

where a maximum delay (i.e., a small percentage of the batch

interval) can be defined to all delayed tuples from the source

to be included in the correct batch. Cases where the data tu-

ples are expected to be delayed more than the batch-interval

are to be handled outside of Prompt’s execution engine, e.g.,

via revision tuples [15]. In addition, the optimization of join

queries in map-reduce computations include several factors

besides data partitioning, e.g., communication and sched-

uling overheads, which are out of the scope of this paper.

9 RELATEDWORK
(1) Data Partitioning in Tuple-at-a-time Stream Pro-
cessing Systems: Early work in parallel stream process-

ing focus on the efficient partitioning of the incoming data

stream tuples to workers. Cagari et al. [7] exploits the poten-

tial overlap of sliding-window queries to guide data partition-

ing. The partitioning decision is applied to each data stream

tuple through a split-merge model. The number of splits,

query replicas, andmerge nodes are dynamically set tomatch

the changes in workload. Cagri et al. [8] relies on forecast-

ing the future behavior and known metrics of the workload

(e.g., peak-rate). Prompt differs in that it exploits exact sta-

tistics about the data to make proper partitioning decisions.

Zeitler et al. [44] propose a spitting operator where the input

data stream is split into multiple sub-streams based on query

semantics. Liroz-Gistau et al. [32] propose DynPart to adap-

tively re-partition continuously growing databases based on

the workload. DynPart co-locates the newly appended data

with the queries to maintain fixed execution time. Gedik et

al. [18] provide a formal definition of the desired properties

for stream data partitioning for System S [22]. It enables

compactness by applying lossy-counting to maintain key fre-

quencies, and uses consistent hashing for state-ful operators.

Recently, the concept of key-splitting [6] has been proposed

to improve load-balanced stream processing. It allows tuples

with skewed keys to be sent to two or more workers [35, 36].

In addition, Nikos et al. [25] propose an enhancement to the

key-splitting technique by accounting for tuple imbalance

and the aggregation cost. These approaches are optimized for

the tuple-at-a time stream processing. Prompt differs from

these approaches in the sense that provide a formalization

for the partitioning in micro-batching setting.

(2) Data Partitioning ForMap-Reduce Framework: The
Map-Reduce framework [13] has received criticism due to its

load balancing and skewness issues [14]. Previous effort to

handle these issues focus on three dimensions [11, 20, 27, 28,

30]: (1) The use of statistics from a sample of the input data

to devise a balanced partitioning plan for the whole input

data [17, 19]. (2) Performing a partial re-partitioning of the

input data based on changing workload characteristics, i.e.,

query and data distribution [3, 31]. (3) Repartitioning the

input of the Reduce stage dynamically based on Mappers

output statistics [26, 34]. Although the micro-batch stream

processing model has adopted the Map-Reduce processing

model, it is different in many aspects. For example, the in-

put data is coming online and a series of the batch jobs are

launched against new data. This allows computing complete

statistics as the batches build up, and devise a partitioning

plan that is independently customized for every batch. More-

over, latency expectations are different in streaming work-

loads. Hence, the use of global statistics from all Mappers to

guide the partitioning for the Reduce stage is not suitable.

(3) Adaptive Batch Resizing in Micro-Batch Stream
Processing Systems: Das et al. [12] propose a control algo-
rithm to set the batch interval based on runtime statistics.

The processing time of previous batches is used to estimate

the expected processing time of the next batch, and hence

set the batch interval accordingly. The batch interval is set

such that it matches the processing time. Similarly, Zhang

et al. [45] use statistical regression techniques to estimate

both batch and block sizes under variable input data rates.

These techniques are orthogonal to Prompt. Batch resizing

techniques treat the micro-batch stream processing engine

as a black box, and focus on stabilizing the relationship be-

tween the batch interval and the processing time. However,

Prompt delves into the data partitioning aspect of the micro-

batch stream processing model. Prompt uses online statistics

within each batch to guide its partitioning decisions. The

objective is to increase the throughput of the system and

maximize resource utilization for a micro-batch interval.

10 CONCLUSION
In this paper, we investigate and formulate the problem of

data partitioning in themicro-batch stream processingmodel.

We show how it is imperative to optimize the data partition-

ing for both the batching and processing phases of the micro-

batch stream processing model to reach the peak throughput.

We show that finding the optimal data partitioning is an

NP-hard problem. We introduce Prompt with two heuristics

for partitioning the Map and the Reduce input. We introduce

elasticity to Prompt to adjust the degree of execution paral-

lelism according to workload needs. This allows Prompt to

be robust to fluctuations in data distribution and arrival rates.

Finally, we present an extensive experimental evaluation of

the performance of Prompt that shows that our proposed al-

gorithms achieve up to 2x improvement in the overall system

throughput compared to the state-of-the-art techniques.

ACKNOWLEDGMENTS
Walid G. Aref acknowledges the support of the U.S. NSF

under Grant Numbers: IIS-1910216 and III-1815796.

REFERENCES
[1] https://spark.apache.org/.

[2] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. F. Indez-

Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and

S. Whittle. The dataflow model: A practical approach to balancing

correctness, latency, and cost in massive-scale, unbounded, out-of-

order data processing. In VLDB, 2015.
[3] A. M. Aly, A. S. Abdelhamid, A. R. Mahmood, W. G. Aref, M. S. Hassan,

H. Elmeleegy, and M. Ouzzani. A demonstration of aqwa: Adaptive

query-workload-aware partitioning of big spatial data. In VLDB, 2015.
[4] A. M. Aly, A. Sallam, B. M. Gnanasekaran, L.-V. Nguyen-Dinh, W. G.

Aref, M. Ouzzani, and A. Ghafoor. M3: Stream processing on main-

memory mapreduce. In ICDE, 2012.
[5] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi,

I. Stoica, and M. Zaharia. Structured streaming: A declarative api for

real-time applications in apache spark. In Sigmod, 2018.
[6] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations.

In SIAMJ.Comput., 1999.
[7] C. Balkesen and N. Tatbul. Scalable data partitioning techniques for

parallel sliding window processing over data streams. In 8th Inter-
national Workshop on Data Management for Sensor Networks (DMSN),
2011.

[8] C. Balkesen, N. Tatbul, and M. T. Ozsu. Adaptive input admission and

management for parallel stream processing. In DEBS, 2013.
[9] B. Byholm and I. Porres. Fast algorithms for fragmentable items bin

packing. In TUCS Technical Report, No 1181, 2017.
[10] C.A.Mandal, P.P.Chakrabarti, and S.Ghose. Complexity of frag-

mentable object bin packing and an application. In Computers and
Mathematics with Applications. ELSEVIER, 1998.

[11] Y. Chen, Z. Liu, T. Wang, , and L. Wang. Load balancing in mapreduce

based on data locality. In ICA3PP. Springer, 2014.
[12] T. Das, Y. Zhong, I. Stoica, and S. Shenker. Adaptive stream processing

using dynamic batch sizing. In SoCC, 2014.
[13] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on

large clusters. In OSDI, 2004.
[14] D. DeWitt and M. Stonebraker. Mapreduce: A major step backwards.

In Database Column, 2008.
[15] M. C. E. Ryvkina, A. S. Maskey and S. Zdonik. Revision processing in

a stream processing engine: A high-level design. In ICDE, 2006.
[16] L. Epstein, L. M. Favrholdt, and J. S. Kohrt. Comparing online algo-

rithms for bin packing problems. In Journal of Scheduling, 2012.
[17] Y. Gao, Y. Zhou, B. Zhou, L. Shi, and J. Zhang. Handling data skew in

mapreduce cluster by using partition tuning. In Journal of Healthcare
Engineering. Hindawi, 2017.

[18] B. Gedik. Partitioning functions for stateful data parallelism in stream

processing. In VLDB Journal, volume 23,4, pages 75–87, 2014.

[19] B. Gufler, N. Augsten, A. Reiser, and A. Kemper. Handling data skew

in mapreduce. In International Conference on Cloud Computing and
Services Science, 2011.

[20] B. Gufler, N. Augsten, A. Reiser, and A. Kemper. Load balancing in

mapreduce based on scalable cardinality estimates. In ICDE, 2012.
[21] B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, and L. Zhou. Comet:

Batched stream processing for data intensive distributed computing.

In SoCC, 2010.
[22] N. Jain, L. Amini, H. Andrade, R. King, Y. Park, P. Selo, and C. Venka-

tramani. Design, implementation, and evaluation of the linear road

benchmark on the stream processing core. In SIGMOD, 2006.
[23] K. Jansen, S. Kratsch, D. Marx, and I. Schlotter. Bin packing with fixed

number of bins revisited. In Journal of Computer and System Sciences.
Academic Press, 2013.

[24] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Gareyi, and R. L. Grahamii.

Worst-case performance bounds for simple one-dimensional packing

algorithms. In Journal of Computing. SIAM, 1974.

[25] N. R. Katsipoulakis, A. Labrinidis, and P. K. Chrysanthis. A holistic

view of stream partitioning costs. In VLDB, 2017.
[26] L. Kolb, A. Thor, and E. Rahm. Load balancing for mapreduce-based

entity resolution. In IEEE, 2012.
[27] Y. Kwon, K. Ren, M. Balazinska, and B. Howe. Managing skew in

hadoop. In TCDE, 2013.
[28] Y. Le, J. Liu, F. Ergun, and D. Wang. Online load balancing for mapre-

duce with skewed data input. In INFOCOM, 2014.

[29] B. LeCun, T. Mautor, F. Quessette, and M.-A. Weisser. Bin packing with

fragmentable items: Presentation and approximations. In Theoretical
Computer Science. ELSEVIER, 2015.

[30] J. Li, Y. Liu, J. Pan, P. Zhang, W. Chen, and L. Wang. Map-balance-

reduce: An improved parallel programming model for load balancing

of mapreduce. In FGCS. ELSEVIER, 2017.
[31] M. Liroz-Gistau, R. Akbarinia, D. Agrawal, E. Pacitti, and P. Valduriez.

Data partitioning for minimizing transferred data in mapreduce. In

Globe, 2013.
[32] M. Liroz-Gistau, R. Akbarinia, E. Pacitti, F. Porto, and P. Valduriez.

Dynamic workload-based partitioning for large-scale databases. In

DEXA, pages 183–190, 2012.
[33] N. Menakerman and R. Rom. Bin packing with item fragmentation. In

WADS. Springer, 2001.
[34] J. Myung, J. Shim, J. Yeon, and Sang-goo. Handling data skew in join

algorithms using mapreduce. In Expert Systems with Applications, 2016.
[35] M. A. U. Nasir, G. D. F. Morales, N. Kourtellis, and M. Serafini. When

two choices are not enough: Balancing at scale in distributed stream

processing. In ICDE, 2016.
[36] M. A. U. Nasir, G. D. F. Morales, D. G. Soriano, N. Kourtellis, and

M. Serafini. The power of both choices: Practical load balancing for

distributed stream processing engines. In ICDE, 2015.
[37] K. Pienkosz. Bin packing with restricted item fragmentation. In

Operations and Systems Research Conference, 2014.
[38] H. Shachnai, T. Tamir, and O. Yehezkely. Approximation schemes for

packing with item fragmentation. In Theory of Computing Systems,
2008.

[39] H. Shachnai and O. Yehezkely. Fast asymptotic fptas for packing

fragmentable items with costs. In FCT, 2007.
[40] D. S.Johnson. Fast algorithms for bin packing. In Journal of Computer

and System Sciences. ELSEVIER, 1974.
[41] L. Sun, M. J. Franklin, S. Krishnan, and R. S. Xin. Fine-grained parti-

tioning for aggressive data skipping. In SIGMOD, 2014.
[42] S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust, A. Ghodsi,

M. J. Franklin, B. Recht, and I. Stoica. Drizzle: Fast and adaptable

stream processing at scale. In SOSP, 2017.
[43] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized

streams: Fault-tolerant streaming computation at scale. In SOSP, 2013.
[44] E. Zeitler and T. Risch. Massive scale-out of expensive continuous

queries. In VLDB, 2011.
[45] Q. Zhang, Y. Song, R. R. Routray, and W. Shi. Adaptive block and batch

sizing for batched stream processing system. In IEEE International
Conference on Autonomic Computing, 2016.

https://spark.apache.org/

	Abstract
	1 Introduction
	2 Background
	2.1 Processing Model
	2.2 Existing Data Partitioning Techniques

	3 Data Partitioning
	3.1 Design Goals
	3.2 Problem Formulation
	3.3 Cost Model

	4 Micro-batch Data Partitioning
	4.1 Frequency-aware Buffering
	4.2 Load-Balanced Batch Partitioning

	5 Processing-Phase Partitioning
	6 Dynamic Resource Management
	7 Evaluation
	7.1 Datasets and Workloads
	7.2 Experimental Results

	8 Consistency in Prompt
	9 Related Work
	10 Conclusion
	References

