
Graph Indexing for Shortest-Path Finding over Dynamic
Sub-Graphs

Mohamed S. Hassan
Purdue University

West Lafayette, IN, USA
msaberab@cs.purdue.edu

Walid G. Aref
Purdue University

West Lafayette, IN, USA
aref@cs.purdue.edu

Ahmed M. Aly
Purdue University

West Lafayette, IN, USA
aaly@cs.purdue.edu

ABSTRACT
A variety of applications spanning various domains, e.g., social
networks, transportation, and bioinformatics, have graphs as first-
class citizens. These applications share a vital operation, namely,
finding the shortest path between two nodes. In many scenarios,
users are interested in filtering the graph before finding the shortest
path. For example, in social networks, one may need to compute
the shortest path between two persons on a sub-graph containing
only family relationships. This paper focuses on dynamic graphs
with labeled edges, where the target is to find a shortest path af-
ter filtering some edges based on user-specified query labels. This
problem is termed the Edge-Constrained Shortest Path query (or
ECSP, for short). This paper introduces Edge-Disjoint Partitioning
(EDP, for short), a new technique for efficiently answering ECSP
queries over dynamic graphs. EDP has two main components: a
dynamic index that is based on graph partitioning, and a traver-
sal algorithm that exploits the regular patterns of the answers of
ECSP queries. EDP partitions the graph based on the labels of the
edges. On demand, EDP computes specific sub-paths within each
partition and updates its index. The computed sub-paths are cached
and can be leveraged by future queries. To answer an ECSP query,
EDP connects sub-paths from different partitions using its efficient
traversal algorithm. EDP can dynamically handle various types of
graph updates, e.g., label, edge, and node updates. The index en-
tries that are potentially affected by graph updates are invalidated
and are re-computed on demand. EDP is evaluated using real graph
datasets from various domains. Experimental results demonstrate
that EDP can achieve query performance gains of up to four orders
of magnitude in comparison to state of the art techniques.

1. INTRODUCTION
The ubiquity of location-based services, social networks, and

other graph-dependent systems calls for ongoing research efforts in
graph data management systems. One of the most important opera-
tions performed over graphs is finding a shortest path. Many appli-
cations require filtering the underlying graph first before computing
a shortest path. To illustrate, let σpredicate(G) be a relational select

operator that yields a sub-graph Ǵ as a result of filtering Graph G

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2882933

using some select predicate. Let §s,d(Ǵ) be an operator that finds

the shortest path from Node s to Node d in Graph Ǵ. The follow-
ing example queries illustrate useful applications of these operators
when interacting together:
Biological networks: One may need to find the short-
est path (that acts as a relatedness measure) between two
proteins, say p1 and p2, under stable or covalent interac-
tions among these proteins [22]. This can be expressed by
§p1,p2(σinteraction in(stable, covalent)(ProteinNetwork)). In this
example, a shortest-path computation needs to be performed on a
subset graph that is dynamically specified at query time. Hence,
any preprocessing on the original graph will be useless as only a
subset of the graph is of interest to the shortest-path operation.
Road networks: A traveler from Location loc1 to Location
loc2 may be interested in the shortest distance route with cer-
tain types of roads, e.g., avoid roads with construction work to
prevent delays, or avoid toll roads. The latter can be expressed
by §loc1,loc2(σroadtype �=toll(RoadNetwork)). Again, only the sub-
set of the graph that is specified at query time is needed for the
shortest-path operation, hence invalidating any preprocessing that
took place on the entire graph.
Social networks: Some graph analysis techniques compute
the shortest path between two persons, say p1 and p2,
where the returned path has to use certain types of relation-
ships (e.g., family relationships). This can be expressed by
§p1,p2(σrelation = family(SocialNetwork)).

This paper introduces a new technique for finding the shortest
path on a sub-graph, say Gsub, that is dynamically selected at
query time. Gsub is selected by a predicate that uses a set of la-
bels, say A, so that each edge in Gsub is labeled by at least one
label in A. We term this query the Edge-Constrained Shortest-Path
query (or ECSP, for short). An ECSP query, say Q, is expressed
as Q(s, d, A), where s is the source vertex, d is the destination
vertex, and A is the set of allowed labels.

A straightforward approach to answer an ECSP query is to use
Dijkstra’s algorithm [11]. During the traversal of the graph, we
check the label for each edge, say e, on the fly. e is processed
only if it satisfies the filtering predicates, or otherwise is discarded.
Although this approach leads to a correct answer to the query, it
does not leverage any preprocessing, and hence can be inefficient
as it may traverse a large portion of the graph. This calls for novel
techniques that can efficiently answer ECSP queries.

Several existing techniques address unconstrained shortest-path
finding (e.g., [5, 7, 15, 19]). However, these techniques are not di-
rectly applicable to ECSP queries because they rely on indexes that
do not assume any constraints on the graph edges. To illustrate,
consider the ECSP query Q(1, 6, {Blue,Red}) using the graph
in Figure 1, where Vertex 1 is the source vertex, Vertex 6 is the

1

6 3

8

2, B

1, R

2

9

4 7

5

9, R

10, R

8, R
1, G

4, B 6, B

1, R

7, R

Figure 1: Edge-labeled Graph G with each edge having two
values: Weight, Label. R, G, and B refer to the labels Red,
Green and Blue, respectively.

destination vertex, and {Blue,Red} is the set of allowed edge la-
bels. A typical index that pre-computes the shortest paths without
considering the labels will find a shortest path from Vertex 1 to Ver-
tex 6 with cost 8, i.e., the path given by 1 → 2 → 4 → 5 → 6.
However, this path is useless for Q (except for acting as a lower-
bound). The reason is that the green edge from Vertex 4 to Vertex 5
is not allowed by Q. The correct answer to an ECSP query should
be a feasible path with the least cost. The answer to Q is the path
of cost 9 given by 1 → 2 → 6.

This paper introduces Edge-Disjoint Partitioning (EDP, for
short), a new technique that provides an exact answer to ECSP
queries. EDP exploits regular expressions over the labels in the
ECSP query-answers. Refer to Figure 1. Consider the ECSP
Query Qj(1, 9, {Blue,Red}). The shortest path P of Qj is
1 → 2 → 4 → 7 → 8 → 9. P has the following edge labels
in order: Blue, Blue, Blue, Red, Red. The regular expres-
sion (Blue∗ Red∗) matches the ordered labels of P ’s edges, i.e.,
P begins with three Blue edges followed by two Red edges. In
general, Let Qi be an ECSP query whose predicates allow only La-
bels {L1, L2, ..., Lk}. The labels for Qi’s correct answer should
match the regular expression (L1 |L2 | ... |Lk)*. Specifically, EDP
optimizes for paths of the form (L1∗ | L2∗ | ... | Li∗ | ... | Lk∗)+,
i.e., the paths that have consecutive edges of the same label. We
term each sub-path Li∗ of the same label a monochrome sub-
path. EDP supports fast access to the monochrome sub-paths cor-
responding to each label in the graph. For example, Path P has
a monochrome sub-path that consists of three consecutive Blue
edges: 1 → 2 → 4 → 7. EDP provides fast access to this
monochrome sub-path to construct Path P efficiently.

EDP realizes an incremental index to evaluate ECSP queries effi-
ciently. During preprocessing, the input graph is partitioned so that
any monochrome sub-path is constructed by consulting only one
partition, i.e., each partition has edges of the same label. Incremen-
tally, EDP maintains monochrome shortest sub-paths within each
partition in a fixed-size cache. These sub-paths are shortcuts to ef-
ficiently answer future ECSP queries. However, these sub-paths
are not aggressively precomputed for each partition. Instead, EDP
applies a build-as-you-go mechanism that distributes the cost of the
precomputations over all ECSP queries. To illustrate, assume that
a shortest path, say Pi, of a query has a certain monochrome sub-
path, say Pij , and that Pij has already been computed and cached
for a previously answered query. Instead of recomputing Pij , EDP
directly reuses the cached index entry for Pij . In other words,
each sub-path, if needed, is computed only once unless it is invali-
dated by an update operation or is removed from the cache. Also,
EDP uses an efficient traversal algorithm to build an ECSP from its
monochrome sub-paths. EDP’s fixed-size cache puts a cap on the
storage size designated for the stored sub-paths, and hence avoids
the quadratic growth in space requirements (see Section 5.4).

To the best of our knowledge, only two research efforts [8, 18]
study ECSP queries. Bonchi et al. [8] compute an approximate
answer to the problem. In contrast, EDP can compute an exact
answer in a sub-millisecond. Rice et al. [18] present CHLR, an
exact answer to ECSP queries. CHLR is tailored to road-network
graphs as CHLR extends the contraction hierarchies technique [15].
In contrast, EDP is not tailored to any specific graph domain. As
demonstrated in Section 8, EDP outperforms CHLR by up to four
orders-of-magnitude w.r.t. query-processing time. Both [8,18] sup-
ports only static graphs, i.e., if the graph is updated by inserting or
deleting edges or nodes, or by changing edge labels or weights,
the indexes in [8, 18] need to be rebuilt. EDP is the first technique
to process ECSP queries over dynamic graphs. Furthermore, EDP
outperforms the state-of-the-art techniques on static graphs.

The contributions of this paper are as follows:

• We introduce EDP, a new technique for answering ECSP
queries that is applicable to any graph domain. We present
its complexity analysis as well as a proof of its correctness.

• We demonstrate how EDP handles graph updates efficiently.
• We present a dynamic indexing mechanism that amortizes

the indexing cost by incrementally building the index of EDP.
We introduce a fixed-size cache in EDP to cache and reuse
already computed monochrome shortest sub-paths. Use of
this cache puts a cap on the worst-case storage requirements
for the stored sub-paths.

• We present an efficient index traversal algorithm that exploits
the regular expressions in the answers of ECSP queries.

• We conduct extensive experiments using six real datasets
including the Tiger dataset [3] and other graphs from dif-
ferent domains. Results demonstrate that EDP can achieve
more than four orders-of-magnitude enhancement in query
performance compared to CHLR, the state-of-the-art tech-
nique. Moreover, EDP’s performance is stable and robust, as
its variance when applying 95% confidence intervals is small
for all reported speedup measurements.

2. EDGE-CONSTRAINED
SHORTEST-PATH QUERIES

2.1 Problem Definition
Let G = (V,E, L, l, w) be a directed weighted graph, where V

is a set of vertexes, E is a set of positively weighted edges, L is
a set of labels (that can be viewed as colors), l is a function that
assigns a label to each edge, and w is a function that assigns a
weight to each edge (i.e., ∀e ∈ E, ∃l(e) ∈ L and ∃w(e) ∈ R

+).
Let Q(s, d, A) be an edge-constrained shortest-path (ECSP) query,
where s ∈ V is the source vertex, d ∈ V is the destination vertex,
and A ⊆ L is the set of allowed labels by Q. Q searches for a
path P = (e1, e2, . . . , ec) from s to d that uses only edges with
labels from A (i.e., ∀ e ∈ P | l(e) ∈ A) such that the summation∑

e ∈ P w(e) is minimized. Refer to Table 1 for a listing of the
notations used in this paper.

2.2 Straightforward Approaches
One way to answer an ECSP query is to use an index, e.g., as

in [5, 7, 15], that is designed for the unconstrained shortest-path
problem (no restricted edges). This can be achieved by building
2|L| indexes, where L is the set of labels of the underlying graph
G (i.e., the powerset of L). To answer a query, one of the 2|L|

indexes that corresponds to the labels permitted by the query is
selected. Clearly, the exponential space of the required indexes

Notation Description
G A directed, weighted, and labeled graph

V A set of vertexes

E A set of edges

L A set of labels

w(e) Weight of Edge e
l(e) Label of Edge e, e can be represented by

the vertex-identifiers of its endpoints

Qi(s, d, A) ECSP Query Qi from Vertex s to Vertex d
with the allowed Labels-set A

I(G) Edge-disjoint index for Graph G
sp(s, d) Unlabeled shortest path from Vertex s to d
CP (P) Contracted sub-paths of Path P
Pri(v) Vertex v in Partition Pri

Table 1: Frequently used notations

makes this approach impractical. Also, this approach cannot handle
graph updates efficiently.

Another straightforward approach is to modify any traditional
shortest path algorithm (e.g., Dijkstra) to consider only the allowed
edges of an ECSP query. The main drawback of this approach is
that it may explore most of the graph edges if the query has low
selectivity (i.e., most of the labels are allowed by the query). More-
over, this approach will perform an exhaustive traversal if the des-
tination is not reachable from the source using the allowed labels.
Hence, this approach is unlikely to scale for large graphs.

3. RELATED WORK
Since the 1950s, the problem of finding the shortest path has

gained extensive attention (e.g., see [20,21]). Tremendous research
efforts have been conducted to support shortest-path querying (e.g.,
see [5,7,15,19]). In this section, we discuss two main categories of
related work: 1) existing approaches for answering unconstrained
shortest-path queries that can be modified to support ECSP queries,
and 2) existing approaches for answering ECSP queries.

In the first category, several techniques have been proposed to
preprocess a graph, say G, to enable fast computation of uncon-
strained shortest-path queries. Goldberg et al. [16] present a two-
hop approach for answering unconstrained shortest-path queries.
The main idea is to select a set of landmark vertexes LM ⊆ G.V
such that for any shortest path, say sp(u, v), where u, v ∈ G.V , ∃
a vertex, say w ∈ LM , that lies on sp(u, v). The two-hop ap-
proach is not directly applicable to ECSP queries as the shortest
paths from/to the vertexes of LM do not consider any labels. One
modification to this approach is to build a separate graph Gsl for
each possible set of labels sl. Gsl will contain only edges of G
with labels in sl. Unfortunately, this modified approach requires
O(2|L|) space and time complexities as the number of different

subsets of labels is O(2|L|), and hence it will not scale.
In [9], the idea of landmarks is extended to dynamic graph set-

tings, where the weights of the edges may change. However, the
techniques in [9] consider only unconstrained shortest path queries.
One approach to answer ECSP queries using the techniques in [9]
is as follows. Given a query, we set the weights of all the disal-
lowed edges to positive infinity, and re-adjust these weights to their
original values after the query is answered. Clearly, this approach
is not scalable to large graphs especially if the queries are highly
selective (many graph updates will be performed).

In the second category, Bonchi et al. [8] present approximate an-
swers for ECSP queries based on landmark vertexes. They propose

two types of indexes, namely, PowCov and ChromLand that ex-
hibit interesting trade-offs between index size and accuracy. How-
ever, both indexes are not suitable for applications that require exact
shortest-path computations.

CHLR [18] is the state-of-the-art technique that can answer
ECSP queries exactly. CHLR has been extended to support more
flexible edge restrictions [14]. CHLR adopts Contraction Hierar-
chies (CH, for short) [15] to provide an exact answer to the follow-
ing query: Given a source, say s, a destination, say d, and a set of
restricted labels, say R, retrieve the shortest path from s to d that
avoids all the edges with labels in R. An ECSP Query Q(s, d, A)
can be answered by CHLR after computing the complement of Set
A. The main idea of CHLR is similar to that in [15]. The main
difference is that CHLR considers edge-labels while contracting
the underlying graph nodes. In particular, when contracting a node,
say v, and there is a sub-path passing through the vertexes u, v, and
w (i.e., u � v � w) such that a shortcut (u � w) is added, the
shortcut (u � w) is labeled by the labels of the sub-paths (u � v)
and (v � w). Labeling the shortcuts with labels enables CHLR to
avoid these shortcuts if they contain any restricted label.

CH is originally designed for road-network graphs, and so is
CHLR as it uses CH at its core. Consequently, CH has assumptions
that are not valid for other networks. For example, CH assumes
that the average fan-out of the vertexes is small (e.g., 2). The small
fan-out assumption is valid for road networks, but is invalid for
graphs from other domains. For example, an average fan-out of 15
is common in biological networks. In CHLR, when contracting a
vertex with high fan-out, many shortcuts will be added. Adding
many shortcuts by CHLR negatively affects its performance as the
sparsity of the traversed graph will decrease. EDP, as proposed
in this paper, performs up to four orders-of-magnitude faster than
CHLR. Moreover, EDP supports dynamic graphs and is not tai-
lored to road networks. To the best of our knowledge, EDP is the
first technique that processes ECSP queries over dynamic graphs,
and yet outperforms the state-of-the-art on static graphs by up to
four orders-of-magnitude.

Variants for finding Regular-Language-Constraint-Paths (RLCP)
have been studied [6, 10, 17]. An RLCP query works on edge-
labeled graphs where the concatenation of the labels of the found
path satisfies a query-specified regular expression. Unlike ECSP,
RLCP queries assume that the user knows the exact order of the
labels. Hence, RLCP queries are orthogonal to ECSP queries be-
cause ECSP queries do not impose any order on the allowed labels.

4. OVERVIEW OF EDP
A monochrome sub-path consists of edges with the same label.

We define a contracted path of an ECSP query answer P as follows:

DEFINITION 1. The contracted path of Path P , denoted by
CP (P) = (P1, P2, . . . , Pi, . . . , Pm), is an ordered list of
monochrome sub-paths that, if concatenated, will produce P . A
monochrome sub-path Pi ∈ CP (P) is the maximum contraction
of a set of consecutive edges with the same label.

To illustrate how a contracted path is formulated, let
Qi(va, vf , {L1, L2}) be an ECSP query. Assume
that the answer P ′ to Qi is represented by the edges
((va, vb), (vb, vc), (vc, vd), (vd, ve), (ve, vf)), where
the labels of these edges are (L1, L1, L1, L2, L2), respectively.
Then, CP (P ′) = ((P ′

1(va � vd), P
′
2(vd � vf)) represents the

contracted sub-paths of P ′, namely P ′
1 and P ′

2, such that each
sub-path is monochrome and contains the maximum possible
number of consecutive edges with the same label.

Raw Graph
Data

Partitioning

Main-Memory Graph Partitions
(one partition per label)

Traversal

ECSP Query

Periodic
Commits

Secondary
StorageStorageStorageStorage Graph Updates

Figure 2: An Overview of EDP.

EDP consists of two main components:

1. Indexing: treats the contracted sub-paths of any ECSP query
as independent tuples, and indexes these tuples.

2. Traversal: connects the appropriate contracted sub-paths ef-
ficiently to form the answer of any ECSP query.

Figure 2 gives a high-level overview of EDP. First, a raw graph
is partitioned so that constructing any monochrome sub-path is
doable by consulting only one partition. Thus, EDP constructs one
partition per graph label. A partition corresponding to Label Li

hosts all the graph edges with Label Li. Given an ECSP query,
say Q, the traversal algorithm visits the partitions necessary to pro-
duce Q’s answer. Each partition computes local shortest sub-paths.
These local shortest sub-paths are cached in main memory to be
leveraged by future queries (as explained in Section 6). To process
graph updates, EDP assigns timestamps to each index entry. These
timestamps help decide if some index entries need to be recom-
puted. EDP periodically commits the cached shortest sub-paths to
secondary storage to avoid recomputing them upon system restart.

5. INDEX CONSTRUCTION
For a directed weighted graph G, the index I(G) can be viewed

as two integrated components: 1) a set of graph partitions, and 2) a
set of lookup tables, where some shortest monochrome sub-paths
are stored. The lookup tables are continuously updated as queries
arrive. Section 5.1 discusses the graph partitioning of EDP while
Section 5.2 describes the lookup tables of the shortest sub-paths.

5.1 Graph Partitioning
EDP partitions an input graph so that any two edges of different

labels cannot co-exist in the same partition. Thus, each graph la-
bel, say c, has a corresponding partition, say Prc, that holds all the
graph edges with Label c. The intuition behind this partitioning is
twofold. First, only the partitions corresponding to a given set of
query labels are considered and all the other partitions are safely
discarded. This reduces the traversal search space. Second, any
contracted sub-path, say pi, that is part of the query answer will be
computed using only the edges of the partition corresponding to the
label of pi (recall that a contracted sub-path is monochrome). Thus,
each partition can cache all the contracted sub-paths it computes so
that they can be leveraged by future queries. Hence, a contracted
sub-path is computed once from scratch unless it is potentially af-
fected by a graph update (see Section 7). Afterwards, it is recalled
from the cache as needed.

Algorithm 1 constructs an edge-disjoint index I for a given graph
G. Let L be the set of graph labels in G. Algorithm 1 creates a par-
tition for each label and assigns an integral identifier to it (Lines
2-4). Each Label i ∈ {0, 1, ..., |L| − 1} has a corresponding Parti-
tion Pri. The edges in Pri are defined by Pri.E = {(u, v) ∈ G.E

5 4

PrG

1
{B}

{R}

4 2
4

PrB

{G}

{R}
7 1

6

{R}

2

PrR

{B}
1

6 3

8

1, R

2

9

7 5

9, R

10, R

8, R

1, R
7, R

{B}

Figure 3: Edge-disjoint partitioning of the graph in Figure 1.

| l(u, v) = i}, i.e., Pri contains all the edges of G that are labeled
with Label i. To assign edges to each partition, the graph edges
E are scanned only once (Lines 5-18). The |L| partitions form an
edge-disjoint partitioning of G.

To illustrate Algorithm 1, we partition Graph G of Figure 1 into
the partitions of I(G) in Figure 3. G has three labels. Thus, Algo-
rithm 1 creates 3 partitions and assigns an integer identifier to each
label, say {R = 0, B = 1, G = 2}. Thus, we have the 3 partitions
PrR, P rB , and PrG that contain the red, blue, and green edges,
respectively. As we explain in Section 6, the traversal algorithm
traverses only I(G) and not G. Thus, I(G) should preserve all the
connections of G. To preserve the connectivity of G, Algorithm 1
annotates some vertexes with properties as defined below.

DEFINITION 2. Bridge Vertex: Given Partitions Pri and Prj ,
a vertex v ∈ Pri is termed a bridge vertex in Pri if and only if ∃
an edge, say (v, u) ∈ Prj where i �= j.

In Figure 3, bridge vertexes are marked with dashed circles. For
instance, Vertex 5 in Partition PrG is a bridge vertex because Ver-
tex 5 has an outgoing edge hosted by another partition (i.e., PrR).
However, Vertex 5 in Partition PrR is not a bridge vertex because
there are no outgoing edges from Vertex 5 that are hosted by a par-
tition other than PrR. We denote a vertex instance v hosted by
Partition Pri by Pri(v).

DEFINITION 3. OtherHosts List: Given a bridge vertex, say
v ∈ Pri (i.e., Pri(v)), the OtherHosts list of Pri(v) is the set of
label identifiers of all the outgoing edges of v ∈ G not equal to the
identifier of Label i, where i is the label identifier of Partition Pri.
Formally, Pri(v).OtherHosts = {j|∃(v, u) ∈ G.E(l(v, u) =
j ∧ j �= i)}.

In Figure 3, the OtherHosts list of each bridge vertex is listed in
curly braces. For instance, the bridge vertex PrG(5) has its Oth-
erHosts list set to {R}, where R is the label identifier of the red
label. The reason is that Vertex 5 in G (as in Figure 1) has an
outgoing Red edge to Vertex 6. Notice that there is a one-to-one
mapping between a label identifier, say R, and its corresponding
partition, say PrR. Hence, the OtherHosts list of PrG(5) indicates
that Partition PrR hosts an outgoing Red edge of Vertex PrG(5).
In Algorithm 1, Lines 9-13 flag the bridge vertexes and set their
OtherHosts lists. The OtherHosts lists are used by the traversal al-
gorithm to connect contracted sub-paths of different labels to form
the requested shortest path (see Section 6). Notice that if a vertex,
say v, is replicated in more than one partition, v keeps the same
local identifier in each hosting partition. However, each vertex in-
stance in a partition has a global identifier consisting of its local
identifier as well as the partition identifier hosting that instance.

Algorithm 1 EDP-Partitioning (G < V,E,L, l, w >)

1: I.P lainGraph ← G
2: for each label identifier i ∈ G.Labels do
3: I.CreatePartition(i)
4: end for
5: for each edge (u, v) ∈ E do
6: Partition ← I.getPartition(l(u, v))
7: for each vertex a ∈ {u, v} do
8: if !Partition.Contains(a) then
9: isBridge ← false

10: OtherHosts ← {l(a, b) ∈ E|l(a, b) �= l(u, v)}
11: if OtherHosts �= ∅ then
12: isBridge ← true
13: end if
14: Partition.addV ertex(a, isBridge, OtherHosts)
15: end if
16: end for
17: Partition.addEdge(u, v, w(u, v))
18: end for
19: return I

Observe that it is possible that the partitions become unbalanced,
e.g., some partitions have most of the edges while the other parti-
tions are almost empty. This unbalance does not affect the effi-
ciency of EDP. In fact, in some cases, it is beneficial to have large
partitions because we will be able to precompute more effective
shortcuts in these partitions. These shortcuts are leveraged by the
traversal algorithm. The only disadvantage for having large par-
titions is the inflation in the number of reachable bridge vertexes
from the partition’s vertexes. We address this issue in Section 6.2.

5.2 Repository for Shortest Sub-Paths
EDP stores a set of shortest paths in each partition. These

shortest paths are used by the traversal algorithm as monochrome
sub-paths to construct the final query answer. Index traversal
is discussed in detail in Section 6.1. For a given ECSP Query
Q(s, d, A), the traversal algorithm keeps a current vertex in-
stance, say Pri(v). When Pri(v) is the current vertex instance,
EDP needs to be aware of only the following two types of paths in
Pri, if any exists: 1) the shortest path from Pri(v) to Destination
d if d is hosted by Pri, 2) the shortest paths from Pri(v) to the
bridge vertexes in Pri. The latter allows EDP to consider other
possible sub-paths hosted by other partitions.

DEFINITION 4. Bridge Shortcut Edge: Given any two ver-
texes hosted by the same partition, say Pri(u) and Pri(v), where
Pri(v) is a bridge vertex, if there is a monochrome shortest path
of Label i from Pri(u) to Pri(v), that path is termed a bridge
shortcut edge, or bridge edge, for short.

For example, consider the two vertexes PrB(1), and PrB(7) in
Partition PrB of Figure 3. Vertex PrB(7) is a bridge vertex that
has an incoming monochrome shortest path from Vertex PrB(1)
(call it P = 1 → 2 → 4 → 7). P is a bridge edge and is represented
as a shortcut edge from PrB(1) and PrB(7) in Figure 4.

So, each partition in EDP holds a set of shortest paths stored in
hash tables. Each vertex in a partition can possibly be a source,
destination, or an intermediate node in a shortest path. This sug-
gests that we might need a comprehensive list of all the shortest
paths between all the possible pairs in any partition in order to sup-
port any query. Although this process can be performed as part
of Algorithm 1 when constructing the index, this does not scale
for large partitions. The space complexity of a partition’s shortest-
path lookup will be quadratic w.r.t. the number of the partition’s
vertexes (O(|V |)); also the pre-processing time for computing the

all-pairs shortest paths will be O(|V |∗ (|E|+ |V |log(|V |)). Fortu-
nately, EDP does not have to aggressively precompute these com-
prehensive shortest paths. Instead, EDP builds incrementally the
shortest-paths repository in response to the queries received. Also,
EDP limits the index size so that it does not exceed a user-specified
size. EDP may replace some existing index-entries by new entries
in order not to exceed the index maximum size (See Section 5.4).

A comprehensive construction of all-pairs shortest paths of a par-
tition’s vertexes assumes that all the vertexes in that partition will
be used as sources and destinations for queries. However, usually
not all the vertexes in a partition are queried as sources and des-
tinations. For example, on a road network, we may have hotspot
vertexes (as destinations) to which the shortest paths need to be
computed, while many other vertexes are unlikely to be queried as
destinations (e.g., a vertex on a highway that does not represent any
point of interest). Hence, we construct a partition’s shortest-paths
list as queries arrive. The computations performed to serve a query,
say Qi, can serve a future query, say Qj . Thus, the cost to update
the index by computing a shortest path, say sp, is amortized over
all the queries that use sp as part of their path discovery process.

5.3 Index Operations
EDP supports the following index operations:

isBridge(pr, v): Returns true if Vertex pr(v) is marked as a bridge
vertex. This operation takes constant time.
getCost(pr, v, u): Returns the cost of the shortest path from Vertex
v to Vertex u inside Partition pr. If one or both of u and v are not
hosted by pr, or they are both hosted by pr but not connected in pr,
positive infinity is returned, and an index entry is added to flag that
pr(v) and pr(u) are not connected. getCost uses a hash table to
store and retrieve a path cost. The key of the hash table is a function
of both v and u.
getBridgeEdges(pr, v): Returns all the bridge edges from Vertex
pr(v) to all the reachable bridge vertexes in pr. The returned list
is sorted in ascending order by the cost of the edges in a hash table.
Section 6.2 explains how getBridgeEdges is implemented as a
non-blocking operator, i.e., a caller to getBridgeEdges will not
be suspended until the whole list is computed.

5.4 Index Size
Although EDP replicates some vertexes in more than one parti-

tion (e.g., Vertex 1 is replicated in PrR and PrB of Figure 3), the
replicated vertexes are light-weight, i.e., only the vertex identifier
and some connectivity information are replicated, but not the whole
vertex’s objects that are stored in G.

For Graph G, let n be the number of vertexes, m be the number
of edges, c be the number of labels, and a be the number of vertexes
that have outgoing edges of different labels. Assume that the max-
imum fan-out of vertexes in G is f . Then, the number of bridge
vertexes in Index I(G) is O(af) = O(nf) in the worst-case, when
all the vertexes are bridge vertexes. For the partitions component of
the index, in the worst case, the space complexity is O(m+ nfc).
Observe that the term (nfc), has the factor c because, in the worst-
case, a bridge vertex will be replicated in c partitions. As the edges
are distributed among the partitions without replication, the space
complexity of the index has the term m.

The repository for shortest sub-paths determines the size of
EDP’s index, however, this size is query-driven. Notice that the
repository for shortest sub-paths does not store full query answers.
Instead, monochrome sub-paths are stored to help construct an-
swers of different queries. Although the number of queries that
vary only in the source/destination vertexes is O(n2), the num-
ber of index entries in practice does not reach O(n2) for two rea-

sons: 1) EDP does not store full paths, and 2) Not all the vertexes
of ECSP queries are designated as sources/destinations. To avoid
any chance of quadratic space-growth, EDP limits the index size
by adopting a least-recently-used (LRU) replacement policy. Sec-
tion 8.4 shows that EDP’s index does not exceed a few gigabytes
after processing millions of queries over real large graphs. The re-
placement policy of EDP tracks the index entries usage by a doubly
linked list to quickly determine the LRU entries. Although the in-
dex of EDP has a light memory-footprint (see Section 8.4), EDP
regularly monitors the hit-rate of the index and writes it into an
event log. Writing the hit-rate into the event log helps an admin-
istrator decide if the limit of the index needs to increase according
the current query-workload.

6. QUERY PROCESSING
EDP’s query processing algorithm (termed EDP-QP, for short)

follows a greedy traversal approach. The greedy traversal connects
the source vertex to the vertexes with least cost. The traversal con-
tinues until reaching the destination vertex. Once the destination
vertex is reached, the shortest cost is obtained, and the shortest path
can be determined.

6.1 EDP Index Traversal
Given an ECSP Query Q(s, d, A) over Graph G, EDP-QP uses

Index I(G) to answer Q. As EDP-QP traverses I(G), all the ver-
texes referenced by EDP-QP are identified by their global identi-
fiers (e.g., Pri(v) to refer to the instance of Vertex v hosted in
Partition Pri). When EDP-QP traverses Partition Pri, it only tra-
verses the shortcut edge to the destination node if hosted by Pri
as well as some bridge edges of Pri. When processing Query Q,
only the partitions corresponding to the allowed labels of Q are
considered; the other partitions are ignored.

EDP-QP uses a min-priority Queue PQ of vertexes whose final
shortest-path weights from the source vertex have not been deter-
mined yet. The structure of PQ is keyed by the 2D global vertex-
identifiers of EDP (i.e., partition Id and vertex Id). An element
in PQ has the following attributes: 1) Pr: a partition’s identifier,
2) v: the vertex’s identifier that is reachable from the source and is
hosted by Pr, and 3) cost: the least cost observed so far that con-
nects the source vertex to Vertex Pr(v), where the elements in the
min-priority queue are ordered by cost. Two additional attributes
in the queue will be introduced in Section 6.2.

EDP-QP uses a two-dimensional cost table to maintain the least-
costs observed so far to connect the source vertex to the visited
vertexes of I(G) (regardless of whether the visited instances of
vertexes are dequeued or not). A key of the cost lookup table is
identified by: 1) a partition identifier, and 2) a vertex identifier. For
a given key of the cost table, say k, the value that corresponds to k
is a structure holding k as well as the least-cost observed so far to
reach the vertex identified by k from the source vertex.

Algorithm 2 outlines the traversal Algorithm EDP-QP that re-
turns only the cost of the shortest path. Constructing the actual
path is straightforward (see Appendix B). Given an ECSP Query
Q(s, d, A) and I(G), the partitions of I(G) are traversed in a
greedy way to find a feasible path with minimum cost if one exists.
At any point in time, Algorithm 2 will have a current vertex, say
Pri(v). Algorithm 2 checks if there is a sub-path in Partition Pri
that reaches Destination d from Vertex Pri(v). If this sub-path ex-
ists, Algorithm 2 will have a feasible path, say Pi, that can be a
shortest path. To consider other feasible paths that can be shorter
than Pi, Algorithm 2 considers other allowed edges hosted by other
partitions. Edges of other allowed partitions can be reached through
the bridge vertexes of Partition Pri. Algorithm 2 uses the bridge

Algorithm 2 EDP-QP(I, s, d, A)

1: PQ ← ∅, cost(p, v) ← ∅
2: if s and d have edges labeled by at least one label of A then
3: PQ.Insert(getPr(s, A), s, 0))
4: end if
5: while PQ.NotEmpty() do
6: t ← PQ.ExtractMin()
7: if t.v = d then
8: return t.Cost
9: end if

10: PQ.InsertIfRelaxed(t.P r, d, t.Cost + I.w(t, d)))
11: if I.isBridge(t) then
12: for each pr ∈ t.v.OtherHosts ∩A do
13: PQ.InsertIfRelaxed(pr, t.v, t.Cost)
14: end for
15: end if
16: for each e ∈ I.getBridgeEdges(t.P r, t.v) do
17: for each pr ∈ e.To.OtherHosts ∩A do
18: PQ.InsertIfRelaxed(pr, e.To, t.Cost+ e.getWeight())
19: end for
20: end for
21: end while
22: return ∞

vertexes of Partition Pri that are reachable from Vertex Pri(v)
to explore other feasible shorter paths. To explore other feasible
paths from Vertex Pri(v) through a bridge vertex, say Pri(b), the
OtherHosts list of Bridge Vertex Pri(b) is intersected with the
allowed query labels (i.e., Q.A). The intersection of the label sets
Pri(b).OtherHosts and Q.A determines partitions that can form
other feasible paths.

Algorithm 2 does not explore all possible feasible paths. As soon
as the current vertex instance of Algorithm 2 is a destination vertex
instance, Algorithm 2 yields the shortest-path cost and terminates.
To illustrate all the logical branches of Algorithm 2, we use two
query examples using the partitions in Figure 3.

Consider Query Q1(1, 6 {R}). EDP-QP tests if a feasible path
can exist. No feasible path exists if the source vertex has no out-
going edge labeled by Label R. Q1 passes this necessary-but-not-
sufficient test (Lines 2-4), and the vertex PrR(1) will be added
to Priority Queue PQ with cost zero. EDP-QP traverses I(G) as
long as the shortest path is not determined and PQ is not empty
(Lines 5-21). For Q1, the initial status of PQ is ((PrR, 1, 0)).
After extracting (PrR, 1, 0) from PQ, the current vertex will
be PrR(1). As the current partition PrR hosts an instance of
the destination Vertex 6, EDP-QP will compute the shortest path
PrR(1) � PrR(6), and will relax (decrease) the cost to the desti-
nation Vertex PrR(6). Initially, the cost of reaching all the vertexes
except the source is positive infinity. Relaxing the cost of reaching
PrR(6) will update cost(PrR, 6) to 10, and will add PrR(6)
with the updated cost to PQ (Line 10). The status of PQ becomes
((PrR, 6, 10)). As only red edges are allowed, EDP-QP will not
explore other partitions. In the next iteration, the current vertex be-
comes PrR(6). As PrR(6) corresponds to the Destination Vertex
6, EDP-QP returns the shortest cost of 10 (Line 8).

To illustrate how EDP-QP traverses different partitions, consider
Query Q2(1, 6 {R, B}). Q2 uses the Index I(G) of Figure 3. The
edges traversed to answer Q2 are given in Figure 4. The dashed
edges in Figure 4 do not physically exist. They are there to illus-
trate the sequence of traversing the different partitions to answer
Q2. As the source Vertex 1 has two allowed partitions hosting
two instances of Vertex 1, one instance should be selected to start
the traversal. Procedure getPr (Line 3) selects a partition host-
ing an allowed outgoing edge of Vertex 1 with the minimum edge
cost. For Q2, getPr selects Partition PrR as it hosts an outgo-

5 4

PrG

{B}

{R}

4 2

PrB

{G}

{R}
7

1

{R}

2

PrR

{B} 1

6 3

8

10, R

2

9

7 5
7, R

{B}

12

Figure 4: Index traversal for the shortest path from Vertex 1 to
Vertex 6 using only Red and Blue edges.

ing edge of Vertex 1 with the least cost (see Figure 1). So, PQ is
initially set to ((PrR, 1, 0)). At the beginning of the traversal,
the current Vertex becomes PrR(1). As the destination Vertex 6 is
hosted by PrR and is reachable from the current vertex, the short-
est Red path from PrR(1) to PrR(6) is retrieved from the index,
and PQ is updated to ((PrR, 6, 10)). As PrR(1) is a bridge
vertex, its OtherHosts list is intersected with the allowed labels
{R, B}); the set intersection determines other partitions hosting
outgoing edges of the current vertex that are allowed by Q2. The
bridge vertex logic handling (Lines 11-15) causes the following up-
date to PQ ((PrB , 1, 0), (PrR, 6, 10)). Notice that the entry
corresponding to PrR(6) in PQ imposes an upper bound of 10 to
the query answer. In the next iteration, PrB(1) becomes the cur-
rent vertex. Although PrB(1) is a bridge vertex, its OtherHosts
list will not cause any cost relaxation, i.e., the cost of PrR(1)
is already zero. Thus, Lines 11-15 will not update PQ. EDP-
QP will not find Vertex 6 in PrB . However, EDP-QP will try to
leave Partition PrB searching for the destination vertex. As in Fig-
ure 4, leaving PrB is possible through the bridge vertexes PrB(2),
PrB(4) and PrB(7) that are reachable from PrB(1). Edges
(PrB(1), P rB(2)), (PrB(1), P rB(4)) and (PrB(1), P rB(7))
are called the bridge edges of Vertex PrB(1). As the OtherHosts
list of the Bridge-vertex PrB(4) does not contain allowed labels,
the Bridge-vertex PrB(4) is discarded. However, PrB(2) and
PrB(7) have allowed labels in their OtherHosts list. Lines 16-20
handle the bridge edges of the current node and cause the follow-
ing update to PQ ((PrR, 2, 2), (PrR, 6, 10), (PrR, 7, 12)).
In the next iteration, the current vertex becomes PrR(2) that can
reach the destination Vertex PrR(6). Relaxing the cost of reach-
ing PrR(6) from PrR(2) (Line 10) causes the following status of
PQ ((PrR, 6, 9), (PrR, 6, 10), (PrR, 7, 12)). The following
iteration will have PrR(6) as the current vertex. Hence, EDP-QP
will return the exact shortest cost 9 for Q2.

Notice that any computed bridge edges of a vertex (e.g., bridge
edges of Vertex PrB(1) computed by Q2) will be computed from
scratch only once unless it is invalidated by a recent graph-update.
Other queries that need any saved bridge edges will leverage them
from the index to avoid any recomputations as long as they are not
out-of-date (see Section 7). As we explain in Section 6.2, EDP-
QP computes bridge edges by a non-blocking operator that runs on
a separate thread. This allows the traversal algorithm to continue
traversing I(G) while the bridge edges are still being computed.

6.2 Handling Large Bridge Vertexes
For large graph datasets, the partitioning scheme formed by Al-

gorithm 1 may lead to many bridge vertexes in one partition. The
disadvantage of this case is the increased fan-out of the vertexes (re-
call that the traversal algorithm can explore all the outgoing bridge

D

2

PB

2

PR

1

S

2

… 2

6
500

9940

{B}
{G}

900

3

Figure 5: Example of a vertex with many reachable bridge ver-
texes (Vertex S). Dashed vertexes are bridge vertexes.

edges of a given vertex). EDP handles this issue by not explor-
ing all the possible transitions at once, i.e., the bridge edges of the
current node are not relaxed all together. To illustrate the intuition
behind this handling, consider a road-network graph. If the cur-
rent node is a commuter’s location on a highway, and EDP wants
to compute a toll-free exit to a certain destination, it is not wise to
consider all the possible reachable exits from the current position
(some of them will be very far and not of interest). The intuition
is to consider a small near subset of all the possible exits, and the
commuter will most likely reach his/her destination by a cost less
than the cost of reaching other far exits (i.e., bridge vertexes that
are reachable by high costs).

For example, in Figure 5, Vertex S has 900 bridge edges. If we
insert all 900 reachable bridge vertexes in PQ, we will issue 900
insertion operations in PQ. Moreover, ExtractMin on PQ will be
a function of an enlarged number of elements in PQ. Thus, we
modify the way Algorithm 2 handles bridge vertexes. Instead of
performing a breadth exploration when processing a current node
(e.g., S in Figure 5), EDP follows a hybrid traversal approach with-
out losing the correctness of Algorithm 2. Recall that the outgoing
bridge edges of any vertex are sorted by the edge weights. EDP
defines a system parameter, termed MaxBreadth, that is set to a
positive integer. EDP sets MaxBreadth to the average fan-out of
the vertexes in G having at least two edges with different labels (in
order not to increase the average fan-out observed by the traversal
algorithm). MaxBreadth ensures that at any iteration of the main
while loop of Algorithm 2 (Lines 5-21), the maximum number of
explored outgoing edges of the current vertex is not going to exceed
the value of MaxBreadth.

To preserve the correctness of EDP-QP, we add two new at-
tributes to the structure of elements of PQ (namely, edgeId and
costRank). An element PQ becomes a tuple having the follow-
ing five attributes: 1) Pr: a partition’s identifier, 2) v: the identifier
of a vertex that is reachable from the source and hosted by Pr,
3) cost: the least cost observed so far that connects the source ver-
tex to Vertex v, 4) edgeId: the identifier of the outgoing edge of
Vertex v that should be investigated when the element is dequeued
(initialized to zero), and 5) costRank: the key of the PQ element
(initialized to the same value of cost); costRank has the same do-
main as the cost attribute, but its value may differ.

We describe the modifications required for Algorithm 2 to han-
dle the possibility of having many reachable bridge vertexes from
the current vertex. In particular, we describe the modifications to
Lines 16-20. Before the for-loop at Line 16, EDP-QP defines a
counter that starts at 0 and that is incremented at each iteration of
the for-loop. The body of the for-loop will have an extra check us-
ing the defined counter and the value of MaxBreadth. If EDP-QP
already investigated MaxBreadth outgoing edges of the current
vertex, it performs these steps:
Step 1: Update the edgeId and costRank attributes of the current

element t so that t can be safely re-enqueued into PQ. Notice that
EDP-QP should remember the id of the edge, say e, at which the
investigation stops as well as the potential cost if e is relaxed. For
example, if the last investigated outgoing edge of the current vertex
has index k (w.r.t. the sorted list of outgoing bridge edges from
the current vertex), we set edgeId to k + 1 and set costRank to
t.Cost + the cost of the (k + 1)th edge.
Step 2: Insert Element t to PQ again with an updated costRank
(to ensure that we do not lose a potential path).
Step 3: At every investigation of the outgoing bridge edges of a
current vertex, EDP-QP starts from the edge specified by t.edgeId
(edges with id less than t.edgeId have been already investigated).

Refer to Figure 5. Let MaxBreadth be equal to
2. PQ is initialized to ((PR, S, 0, 0, 0)). Then, we re-
lax up to 2 outgoing bridge edges. So, PQ becomes
((PR, 1, 2, 0, 2), (PR, 2, 6, 0, 6), (PR, S, 0, 2, 500)). Notice that
only two elements are added to PQ plus the element
(PR, S, 0, 2, 500) (name it delayedEntry) instead of adding 900
elements. The delayedEntry indicates that EDP-QP should con-
sider refetching Vertex PR(S) from PQ to explore its third outgo-
ing edge with costRank 500 (edgeId is zero-based). The cost of
the delayedEntry does not change as we have not reached Ver-
tex 3 yet. However, costRank is set to 500 as EDP-QP should keep
the correct order of resuming the processing of Vertex PR(S) (500
is the cost of reaching Vertex PR(3) from Vertex PR(S)).

In the figure, Element (PR, 1, 2, 0, 2) will not be further ex-
plored as it does not have allowed access paths (marked as hav-
ing only outgoing edge(s) with Label G), and hence will be
ignored. Entry (PR, 2, 6, 0, 6) causes a transition to Partition
PB . Now, PQ contains ((PB , 2, 6, 0, 6), (PR, S, 0, 2, 500)). El-
ement (PB , 2, 6, 0, 6) gets processed in the next iteration and PQ
will then include: ((PB , D, 8, 0, 8), (PR, S, 0, 2, 500)). EDP-QP
reaches the destination node when extracting the first element of
PQ. Hence, a minimum cost of 8 is returned without exploring the
delayed outgoing edges of S.
Non-blocking Operator for Computing Bridge-edges. Recall
that the bridge edges of any vertex, say Pr(v), are computed from
scratch only once. Assume that EDP-QP needs Pr(v)’s bridge-
edges for the first time. If Pr(v) has many bridge-edges, EDP-QP
would block until all bridge-edges are computed, and the query re-
sponse time would increase. EDP-QP handles this issue by comput-
ing the bridge-edges of Pr(v) by a non-blocking operator, namely
BridgeEdgesOp. Recall that EDP-QP asks for a maximum of
MaxBreadth bridge-edges at any iteration. So, when EDP-QP
calls BridgeEdgesOp to compute Pr(v)’s bridge-edges, a sep-
arate thread is initiated. This thread runs Dijkstra’s algorithm to
search for the shortest paths from Pr(v) to all the bridge-vertexes
in Partition Pr. Dijkstra’s algorithm finds the bridge-edges in in-
creasing order of their cost. So, once a bridge-edge is computed,
BridgeEdgesOp pipelines it to EDP-QP that can then resume
its traversal. The thread running BridgeEdgesOp computes all
bridge-edges even if all the requests of EDP-QP are satisfied. The
computed bridge-edges are stored in EDP’s index. This avoids any
recomputations of the bridge-edges in the future. EDP-QP runs
a separate thread for the first request to compute a bridge-edges
set from scratch. To address synchronization issues among con-
currently executing queries that attempt to simultaneously build
the bridge-edges of the same vertex, EDP-QP follows a many-
consumer-one-producer synchronization model. In other words,
each bridge-edges set, say Seti, can be requested by more than
one query (consumers). However, only one thread (producer) is
responsible for computing Seti.

6.3 Time Analysis of EDP Traversal
In this section, we analyze the time complexity of the traversal

algorithm EDP-QP, and we present some strategies that make EDP-
QP fast (e.g., parallel execution). For an underlying graph, say G,
recall that EDP-QP traverses Index I(G) and not G. Let n′ and m′

be the number of vertexes and edges of G, and let n and m be the
number of vertexes and edges of I(G), respectively. We analyze
Algorithm 2, and then discuss the implications of the modification
presented in Section 6.2 on the time analysis.

EDP uses a Fibonacci heap implementation for its priority queue,
and hence insertion into the priority queue, and decreasing the key
of an entry are O(1) operations, however, the ExtractMin oper-
ation is O(log n), where n is the number of vertexes in the pri-
ority queue [13]. In Algorithm 2, the number of iterations of
the While loop in Lines 5-21 is bounded by O(n), and the most
costly operation (i.e., ExtractMin) is O(log n). As each bridge
edge is examined at most once (Lines 11-20), Algorithm 2 runs
in O(m+n log n). The number of vertexes of I(G), n, can be ex-
pressed as n = n′+

∑
v∈G.V (l(v)−1), where n′ is the number of

vertexes in G, and l(v) is the number of distinct labels of the out-
going edges of Vertex v. Similarly, the number of edges of I(G),
m, can be expressed as m =

∑
p∈I.P

∑
c∈p.C |c.V | × |c.BV |,

where I.P represents the partitions of Index I , p.C represents the
disconnected components of Partition p, |c.V | represents the num-
ber of vertexes in Component c, and |c.BV | represents the number
of bridge vertexes in c. This formula is a theoretical upper bound.
In practice, not all the vertexes of a component are connected to all
the bridge vertexes of that component. Also, notice that the bridge
edges are computed on demand based on the query workload.

Observe that the bridge edges in I(G) are path contractions
of the edges in G. This means that I(G) has a smaller diam-
eter than G, and hence traversing I(G) is faster than traversing
G. Also, in order not to increase the average fan-out of I(G) ob-
served by the traversal algorithm, Algorithm 2 is modified as dis-
cussed in Section 6.2. The modification described in Section 6.2
may add the current vertex to the priority queue again in order
not to explore all its bridge edges all at once. This may lead

to k =
∑

v∈I.V
|v.BE|

MaxBreadth
priority-queue insertions, where

|v.BE| is the number of bridge edges emerging from Vertex v.
Thus, the worst-case time-complexity of the modified algorithm is
O(m+ k log n).

In practice, not all the bridge edges of a node are examined. The
main reason is that bridge edges have high-variability in their costs
(e.g., in a road network, the bridge edges from a restaurant to all the
highways will have costs with high variance). Hence, in practice,
it is unlikely to scan all the bridge edges of a graph before finding
the shortest path. In addition, the number of bridge edges m is
query-workload dependent. This is because the bridge edges are
computed only on demand according to the received queries. Also,
recall that the modified algorithm allows parallel computation of
the bridge edges if they are not cached (see Section 6.2).

In addition to the parallel computation of bridge edges, Algo-
rithm 2 early computes (in parallel) some shortest paths that may
be required by the main traversal thread. Recall that Line 10 checks
the cost between the current node and the destination node if the
destination is hosted by the same component hosting the current
node. EDP uses parallel execution and caching so that Line 10 can
run in constant amortized time. When a new vertex, say v, is added
to the priority queue, a thread from an active thread-pool computes
the distance between v and the destination node. This computa-
tion is cached to be ready if Vertex v becomes the current node. In
many cases, this distance is marked as infinity in O(1) when the
destination node is not hosted by the component hosting Vertex v.

7. GRAPH UPDATES
The ubiquity of dynamic graphs calls for indexing techniques

that can handle graph updates efficiently. For example, the roads of
a road network have dynamic travel-costs that vary with time (e.g.,
long travel-times during rush hours). Also, roads are sometimes
closed for maintenance/accidents. Similarly, other graph types like
social networks are dynamic in nature (e.g., new relationships are
added with time). To the best of our knowledge, EDP is the first
work to answer ECSP queries on dynamic graphs.

Graph updates can be categorized into two categories: 1) topo-
logical updates (e.g., adding or removing an edge), and 2) non-
topological updates (e.g., updating an edge’s weight). EDP sup-
ports all kind of updates on the underlying graph, i.e., topological
and non-topological updates.

7.1 Timestamp Approach
A straightforward approach for EDP to handle updates is to in-

validate the pre-computations that are only affected by the updates.
However, determining exactly the pre-computations to invalidate
for each update is time consuming and does not scale for online
applications. Hence, EDP adopts a timestamp-based approach to
decide whether an indexed monochrome sub-path needs to be re-
computed or not.

After the graph partitioning phase (see Section 5.1), EDP finds
the disconnected components of each partition. The main idea is
to host any index entry by a single component. As a result, EDP
can invalidate a component instead of invalidating its index entries
individually. The process of finding the disconnected components
in EDP places any two nodes that are connected by any path in the
same component. EDP uses a variation of Tarjan’s algorithm [24]
to find the disconnected components in linear time. For example,
the partitioned graph in Figure 3 is processed to find the discon-
nected components of each partition as shown in Figure 6. Each
disconnected component is given an identifier that is unique with
respect to the hosting partition. For instance, in Figure 6, Parti-
tion PrR has two disconnected components: C1 and C2.

Each disconnected component, say Ci, holds Times-
tamp TS(Ci). Also, each indexed monochrome sub-path in
Component Ci, say Pij , has Timestamp TS(Pij). The timestamp
values in EDP are assigned values from a global clock. The
global clock is advanced by each update operation. Each update
results in advancing the timestamp of the affected components.
Also, each indexed monochrome sub-path, say Pij , is associated
with a timestamp that stores the value of the global clock at the
time of computing Pij . Whenever the traversal algorithm asks
for Sub-path Pij , the timestamps of the Sub-path and its hosting
component are compared to decide if Pij needs to be recomputed,
i.e., if TS(Pij) is less than TS(Ci), Sub-path Pij is recomputed
and is assigned a new higher timestamp.

Notice that adding a new edge may lead to the merge of two com-
ponents. Also, deleting an existing edge may cause a component
to split into two disconnected components. EDP does not perform
the merging/splitting operations instantly to support online updates
and querying. Delaying the merging/splitting operations in these
cases clearly do not affect the correctness of EDP. However, there
is a thread pool that run periodically in the background to perform
the merge/split operations if necessary.

For each update type, the global clock is advanced, and EDP
maintains the timestamp of the affected components as follows:
Update edge weight: On updating the weight of an edge, its
hosting component, say Ci, is determined and its timestamp (i.e.,
TS(Ci)) is set to the value of the global clock.
Update edge label: On updating an edge’s label, its original host-

PrR

8

9

7

10, R

8, R

C2

{B}
1

6 3

1, R

2 5

9, R

1, R
7, R

{B}

C1

5 4

PrG

1

{B} {R} C1 4 2
4

PrB

{G}

{R} 7 1
6
{R}

2
C1

Figure 6: Disconnected Components of the graph in Figure 1.

ing component, say Co, and its new hosting component in the new
partition, say Cn, are determined. The edge is removed from Com-
ponent Co and is added to Component Cn (new vertexes may be
added to the new hosting component). The timestamps TS(Co)
and TS(Cn) are updated.
Add edge: On adding a new edge, say e, the label of Edge e deter-
mines the hosting partition. The endpoint vertexes of Edge e can be
either hosted by one or two components. After adding Edge e, the
timestamp of the affected component(s) is updated. If the endpoint
vertexes of Edge e is hosted by different components, EDP adds an
entry to a system hash-table that these components are connected.
Delete edge: After deleting the edge, the timestamp of its hosting
component is updated.
Add vertex: Nothing takes place until an edge connected to this
vertex is added.
Delete vertex: On deleting a vertex, say v, all its instances in all
the partitions are determined. For each instance of v, all the incom-
ing/outgoing edges of that instance are deleted and the timestamp
of the affected components are updated.

EDP performs any graph-update operation in O(1) time except
when deleting a vertex, which takes linear time in the number of
partitions hosting that vertex’s instances, and the number of their
in/out edges. Recall that an indexed monochrome sub-path, say
Pij , hosted by a component, say Ci, is associated with a times-
tamp. On demand, Pij is recomputed only if TS(Pij) is less than
TS(Ci).

8. EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the performance of

EDP against that of CHLR [18] that is the state-of-the-art tech-
nique. Mainly, we measure the average speedup in query-time that
EDP achieves in comparison to CHLR. Our experiments are con-
ducted on a machine running Linux kernel 3.17.7 on 32 cores of
Intel Xeon 2.90 GHz and 192 GB of main-memory. Our imple-
mentation is based on Java 1.8. For fair comparison with CHLR,
we implement all the optimizations mentioned in [18] and [14],
e.g., the node ordering for the contraction algorithm.

8.1 Datasets
We use six real graph datasets: Tiger [3], BioGrid [4],

BioMine [12], String [2], DBLP [1], and Youtube [23]. Table 2
summarizes the properties of the datasets. Tiger is a road network
dataset covering the entire U.S., where the labels describe the types
of roads (e.g., primary road, ramp, alley). The BioGrid and String
datasets are protein-interaction networks, where the vertexes repre-
sent proteins, the edges represent interactions among the proteins,

and the labels represent the interaction types. The BioMine dataset
is a network that captures a set of relationships among biological
entities. DBLP and Youtube datasets are subsets of the popular
co-authorship network, and the popular video sharing service, re-
spectively. In DBLP, the vertexes represent authors, the edges rep-
resent co-authorship, and the labels represent publication topics as
described in [8]. For the Youtube dataset, the vertexes represent
users, the edges represent user relationships, and the edges are la-
beled by relation types as described in [23].

8.2 Preprocessing Time
The preprocessing overhead performed by EDP is much less than

that of CHLR (see Table 2). EDP builds I(G) by scanning the
edges of G in one pass. In contrast, during preprocessing, CHLR
performs many shortest path computations, i.e., it is workload-
independent. On the other hand, EDP computes shortcut edges
on-demand according to the query workload received. The prepro-
cessing time of EDP is affected by the size and the density of the
graph as well as the number of bridge vertexes to be created (see Ta-
ble 2). For example, the time for preporocessing BioGrid is greater
than the time for preprocessing Tiger because the average fan-out
of BioGrid is greater than that of Tiger by an order-of-magnitude.
Also, the maximum fan-out for Tiger is 7, while BioGrid has a
maximum fan-out of 36987.

For static graphs, EDP computes any shortcut edge, say e, only
once. afterwards, other queries can leverage e. However, the first
query that asks for e pays the cost of its computation. In order to
have a tangible measure of the cost to answer shortest path queries
by EDP using a fresh index (i.e., one that has no precomputations),
in our experiments, we run EDP on the query workload twice. We
refer to the first run as cold-run, where we measure the perfor-
mance of EDP without having any precomputations in its cached
index. The second run, called warm-run, assumes that all the re-
quired shortcuts are already computed in the first run.

8.3 Effect of the Number of Query Labels
We study the effect of the number of labels specified in the query

on the speedup of EDP compared to CHLR. For each dataset, we
generate random queries with 1 · · · |L| labels. For each label size
and using 1000 ∗ |L| random source nodes, we generate more than
one million random queries. From these queries, we select 1000
queries randomly for each label Size s.

Figure 7 gives the speedup of EDP when changing the query
label set size for each dataset. Figure 7 also gives the 95%-
confidence interval bars. Notice that the speedup of EDP down-
grades as the query label set size increases. In this case, EDP
explores more partitions and traverses a larger number of bridge
edges.

EDP achieves the highest speedup when the query has only one
label. For example, the Tiger dataset shown in Figure 7(a) reaches
a warm-run speedup of 2068±211 with a 95% confidence-interval.
The speedup downgrades as more labels are considered. The low-
est warm-run speedup is 61±14 when all the labels are considered.
For the cold-run, when no precomputations exist in EDP’s index,
the best speedup is 152±19 and the lowest speedup is 10.4±0.78.
For the Tiger dataset, EDP provides answers in a sub-millisecond
on average during the warm-runs.
Graph Updates: Figure 7 also gives query-performance for dy-
namic graphs. After performing the cold and warm runs, we run a
set of random updates on the graph, and then measure the speedup
using the same queries. For each edge in the graph, an update is
selected based on the following probability distribution: 40% no-
update, 40% weight-update, 10% label-update, 5% edge deletion,

and 5% random edge addition. These probabilities are based on
the occurrence-likelihood of the update types in real applications.
From Figure 7, EDP achieves significant speedups on dynamic
graphs without any downtime for index reconstruction in contrast
to CHLR which requires rebuilding its index from scratch (and may
lead to downtimes of several hours). In this experiment, EDP per-
forms an update operation in 3.43 ± 1.2 microseconds on average
with a 95% confidence interval for the Tiger dataset. The other
datasets experience similar behavior as EDP handles any graph-
update operation in O(1) time. Figure 7 illustrates the effective-
ness of the EDP’s timestamp invalidation approach, and demon-
strates that EDP can handle dynamic graphs efficiently. Note that
the after-update speedup curve is constantly better than the cold-run
curve that outperforms CHLR.

In contrast to CHLR, EDP is not tailored to road networks. For
instance, in the case of the BioGrid dataset in Figure7(b), EDP
achieves up to four orders-of-magnitude speedup over CHLR for
static graphs, and up to three orders-of-magnitude speedup for dy-
namic graphs. EDP shows significant speedups of 14305±2718 in
the best case and 11.7 ± 6.4 in the worst case compared to CHLR
with 95% confidence intervals.

Observe that CHLR and the contraction hierarchies are origi-
nally designed for road-network graphs, and hence they have as-
sumptions that are not valid for other networks. For instance, it is
assumed that the graph vertexes can be placed in hierarchies based
on their importance. Also, it is assumed that the average fan-out
of the vertexes is small (e.g., 2). However, these assumptions are
invalid for graphs of other domains (e.g., a protein-interaction net-
work). For example, the Tiger dataset has an average fan-out of
1.2, but the BioGrid dataset has an average fan-out of 14. More-
over, the maximum fan-out for the Tiger dataset is 7 in contrast to
a maximum fan-out of 36987 for the BioGrid dataset.

One of the reasons of the superiority of EDP over CHLR is that
CHLR’s shortcuts are not sufficient to answer ECSP queries and
they have to be combined with edges from the original graph. In
contrast, the shortcuts of EDP are sufficient to discover any ECSP
query shortest path. Moreover, EDP prunes the irrelevant portions
of the search space at low-cost. The reason is that the graph is par-
titioned, and all the partitions corresponding to disallowed labels
are discarded from the search space.

8.4 Index Size
In this set of experiments, we measure the size of EDP’s index

as queries are processed. We also measure the effect of varying the
maximum index size on the query performance.

To measure the index size of EDP, we process millions of ran-
domly generated queries and measure the index size. Because the
total number of different queries is exponential (i.e., 2|L| × n2),
we use a workload of 10 millions random queries. The number of
labels per query is fixed to half of the number of the labels in each
dataset. Figure 8 shows the size of EDP’s index grows linearly with
the number of processed queries. The reason is that the precompu-
tations added to EDP’s index after processing ECSP queries are
reused by newly arriving queries. The figure also demonstrates that
EDP can process millions of random queries using few gigabytes of
main memory, which can be easily provided by commodity servers.
We observe that the main factor of the index size corresponding to
the Tiger dataset is the indexed monochrome sub-paths with long
lengths, while for the other graphs (e.g., BioMine), the main factor
of the index size was the computed bridge edges in response to the
processed queries.

Figure 9 (cold-run curves) shows the effect of limiting the in-
dex size (i.e., cache) on the query-time speedup using the same

Dataset # Vertexes # Edges # Labels Avg. Fan-out % Bridge Vertexes EDP Preprocessing CHLR Preprocessing

Tiger 24412259 58698439 32 1.2 4% 46 seconds 6.9 hours

BioGrid 56395 1578358 7 14 34% 3.6 minutes 5.1 hours

String 35423 444331 6 13 63% 14 seconds 70 minutes

BioMine 47175 286372 7 3 56% 3 seconds 16 minutes

DBLP 47598 252881 8 6 66% 6 seconds 15 minutes

Youtube 15088 13628895 5 909 73% 9 minutes 10.7 hours

Table 2: The datasets used and the preprocessing time of EDP and CHLR.

1

10

100

1000

10000

0 4 8 12 16 20 24 28 32

Av
er

ag
e

Sp
ee

du
p

Number of Labels per Query

Average-Speedup of Query-Time (Tiger)
Warm-run Cold-run After-update

(a) Tiger dataset

1

10

100

1000

10000

100000

0 1 2 3 4 5 6 7

Av
er

ag
e

Sp
ee

du
p

Number of Labels per Query

Warm-run Cold-run After-update

Average-Speedup of Query-Time (BioGrid)

(b) BioGrid dataset

1

10

100

1000

10000

100000

0 1 2 3 4 5 6

Av
er

ag
e

Sp
ee

du
p

Number of Labels per Query

Warm-run Cold-run After-update

Average-Speedup of Query-Time (String)

(c) String dataset

1

10

100

1000

10000

100000

0 1 2 3 4 5 6 7

Av
er

ag
e

Sp
ee

du
p

Number of Labels per Query

Warm-run Cold-run After-update

Average-Speedup of Query-Time (BioMine)

(d) BioMine dataset

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8

Av
er

ag
e

Sp
ee

du
p

Number of Labels per Query

Warm-run Cold-run After-update

Average-Speedup of Query-Time (DBLP)

(e) DBLP dataset

1

10

100

1000

10000

0 1 2 3 4 5
Av

er
ag

e
Sp

ee
du

p
Number of Labels per Query

Warm-run Cold-run After-update
Average-Speedup of Query-Time (Youtube)

(f) Youtube dataset

Figure 7: Query-Time Speedup of EDP vs. CHRL with 95% confidence intervals w.r.t. the number of labels per query.

0.01

0.1

1

10

0 1 2 3 4 5 6 7 8 9 10

In
de

x
Si

ze
 (G

B
s)

Number of Random Queries in Millions

EDP Index Size

Tiger
BioMine
Youtube
DBLP
String
BioGrid

Figure 8: Index Size of EDP w.r.t number of processed queries.

query workload described above. In this experiment, we measure
the average query-time speedup of processing 10 million randomly
generated ECSP queries using both EDP and CHLR. For EDP, we
run the queries for different maximum index-size values (according
to Figure 8). EDP has significant speedup for limited cache sizes.
For instance, in Figure 9(a) for the Tiger dataset, EDP achieves a

speedup of 8.79 ± 1.7 with 95% confidence interval when using
only 500 MB of memory (i.e., 9% of the total memory required
after processing the entire workload), and an order-of-magnitude
speedup is achieved when limiting the index-size to just one GB.

8.5 Interleaving Updates
In this experiment, we monitor the performance of EDP when

graph updates are interleaved with ECSP queries. Recall that the
index entries of EDP are invalidated based on the level of the dis-
connected components of a partition (see Section 7.1). So, after
processing 10 million random queries, and after ensuring that the
cache is full, we select a workload of 1000 ECSP queries, say
QS. We run a graph-update workload associated with a percentage
value, say p, to ensure that p% of the components serving QS are
updated, and hence, these components will be invalidated. Deter-
mining the components serving an ECSP query is straightforward
as the monochrome sub-paths forming the query answer are as-
sociated with their hosting components identifiers. After running
the graph-update workload, we measure the average query-time
speedup when executing QS. We interleave this process three time
for three different values of p, specifically 10%, 25%, and 50%.
For instance, in Figure 9, the curve corresponding to 10% updates
means that 10% of the components serving QS are updated.

As Figure 9 shows, EDP has significant speedup for different

0

20

40

60

80

100

0 1 2 3 4 5 6

Av
er

ag
e

Sp
ee

du
p

Maximum Cache Size (GBs)

Cold-run 10% Updates
25% Updates 50% Updates

(a) Tiger dataset

0

100

200

300

400

500

600

0 10 20 30 40 50

Av
er

ag
e

Sp
ee

du
p

Maximum Cache Size (MBs)

Cold-run 10% Updates
25% Updates 50% Updates

(b) BioGrid dataset

0

20

40

60

80

100

120

0 100 200 300 400 500

Av
er

ag
e

Sp
ee

du
p

Maximum Cache Size (MBs)

Cold-run 10% Updates
25% Updates 50% Updates

(c) String dataset

1

10

100

1000

10000

0 200 400 600 800 1000

Av
er

ag
e

Sp
ee

du
p

Maximum Cache Size (MBs)

Cold-run 10% Updates
25% Updates 50% Updates

(d) BioMine dataset

1

10

100

1000

10000

0 100 200 300 400 500

Av
er

ag
e

Sp
ee

du
p

Maximum Cache Size (MBs)

Cold-run 10% Updates
25% Updates 50% Updates

(e) DBLP dataset

0

100

200

300

400

500

600

0 200 400 600 800

Av
er

ag
e

Sp
ee

du
p

Maximum Cache Size (MBs)

Cold-run 10% Updates
25% Updates 50% Updates

(f) Youtube dataset

Figure 9: Query-Time Speedup with interleaved updates w.r.t maximum cache size.

graph-updates frequencies under limited cache sizes. Observe that,
the 10% update curves show the highest speedups because the
queries of these curves have high probabilities of being partially
served from the cache (i.e., similar to a warm-run). The speedup
decreases as the graph-updates frequency increases, however, at the
worst case, the queries will experience a performance similar to
that of a cold-run. Recall that a cold-run of EDP still outperforms
CHLR, and that a cache entry is replaced in O(1) time.

Discussion
EDP outperforms CHLR due to EDP’s natural partitioning based
on edge labels. A query processed by EDP visits only the par-
titions of interest based on the query labels. Another reason for
EDP’s good performance is that it only uses shortcuts to discover a
shortest path. EDP uses the original graph edges to create a short-
cut for the first time only (cold-run). Hence, the added shortcuts of
EDP would not much decrease the sparsity of the underlying graph.
Also, by using the MaxBreadth parameter as described in Sec-
tion 6.2, EDP does not necessarily investigate the whole shortcuts
of a vertex visited during the traversal. While limiting the index-
size of EDP, EDP still achieves orders-of-magnitude speedup as
it efficiently frees space for new index-entries, besides the afore-
mentioned reasons of why EDP performs well on cold-runs. EDP
executes online graph updates efficiently in O(1) time by flagging
the affected components as invalidated. An index entry in an in-
validated component will be computed on demand based on the
query-workload. Hence, with no downtime, EDP presents query-
time speedups that lie between warm-run and cold-run speedups
for dynamic graphs.

9. CONCLUSION
EDP is a technique for answering edge-constrained shortest path

queries (ECSP). It assumes a dynamic graph where each edge has

one label. EDP also works for multi-graphs with edges having
multiple labels. EDP has two components: an index and a traver-
sal algorithm. We exploit the notion of contracted monochrome
sub-paths of any ECSP shortest path to design the index for EDP.
We illustrate how to decrease recomputations of monochrome sub-
paths by caching them once computed. Thus, the costs of on-
demand computation of these sub-paths are amortized over all
future queries that use the already constructed shortcuts. More-
over, we demonstrate that the cache size needed is small. The
monochrome sub-paths are only re-computed on demand if they
are potentially affected by some graph updates. We present EDP’s
traversal algorithm and provide its proof of correctness. The exper-
imental study over real six graphs spanning different domains show
up to four orders-of-magnitude speedup compared to the state-of-
the-art with 95% confidence intervals.

10. ACKNOWLEDGMENTS
We would like to thank Engy M. Abdallah for her help in editing

this paper. This research was supported in part by National Science
Foundation under Grant IIS 1117766.

11. REFERENCES
[1] http://dblp.uni-trier.de/xml/.

[2] http://string-db.org/.

[3] https://www.census.gov/geo/maps-data/data/tiger.html.

[4] http://thebiogrid.org.

[5] I. Abraham, D. Delling, A. V. Goldberg, and R. F. F.
Werneck. Hierarchical hub labelings for shortest paths. In
Algorithms - ESA 2012 - 20th Annual European Symposium,
Ljubljana, Slovenia, September 10-12, 2012. Proceedings,
pages 24–35, 2012.

[6] C. Barrett, K. Bisset, R. Jacob, G. Konjevod, and M. V.
Marathe. Classical and contemporary shortest path problems

in road networks: Implementation and experimental analysis
of the transims router. In Proceedings of the 10th Annual
European Symposium on Algorithms, ESA ’02, 2002.

[7] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes.
In transit to constant time shortest-path queries in road
networks. In Proceedings of the Nine Workshop on
Algorithm Engineering and Experiments, ALENEX 2007,
New Orleans, Louisiana, USA, January 6, 2007, 2007.

[8] F. Bonchi, A. Gionis, F. Gullo, and A. Ukkonen. Distance
oracles in edge-labeled graphs. In Proc. 17th International
Conference on Extending Database Technology (EDBT),
Athens, Greece, March 24-28, 2014., pages 547–558, 2014.

[9] D. Delling and D. Wagner. Landmark-based routing in
dynamic graphs. In Experimental Algorithms, 6th
International Workshop, WEA 2007, Rome, Italy, June 6-8,
2007, Proceedings, pages 52–65, 2007.

[10] J. Dibbelt, T. Pajor, and D. Wagner. User-constrained
multimodal route planning. J. Exp. Algorithmics, 19, Apr.
2015.

[11] E. W. Dijkstra. A note on two problems in connection with
graphs. Numerical Mathematics, 1:269–271, 1959.

[12] L. Eronen and H. Toivonen. Biomine: Predicting links
between biological entities using network models of
heterogeneous database. In BMC Bioinformatics, pages
13–119, 2012.

[13] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms. J. ACM,
34(3):596–615, July 1987.

[14] R. Geisberger, M. N. Rice, P. Sanders, and V. J. Tsotras.
Route planning with flexible edge restrictions. ACM Journal
of Experimental Algorithmics, 17(1), 2012.

[15] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.
Contraction hierarchies: Faster and simpler hierarchical
routing in road networks. In Experimental Algorithms, 7th
International Workshop, WEA 2008, Provincetown, MA,
USA, May 30-June 1, 2008, Proceedings, pages 319–333,
2008.

[16] A. V. Goldberg, H. Kaplan, and R. F. F. Werneck. Better
landmarks within reach. In Experimental Algorithms, 6th
International Workshop, WEA 2007, Rome, Italy, June 6-8,
2007, Proceedings, pages 38–51, 2007.

[17] A. O. Mendelzon and P. T. Wood. Finding regular simple
paths in graph databases. SIAM J. Comput., 24(6), Dec. 1995.

[18] M. N. Rice and V. J. Tsotras. Graph indexing of road
networks for shortest path queries with label restrictions.
PVLDB, 4(2):69–80, 2010.

[19] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable
network distance browsing in spatial databases. In
Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2008, Vancouver, BC,
Canada, June 10-12, 2008, pages 43–54, 2008.

[20] A. Shimbel. Applications of matrix algebra to
communication nets. Bulletin of Mathematical Biophysics,
13:165–78, 1951.

[21] A. Shimbel. Structural parameters of communication
networks. Bulletin of Mathematical Biophysics, 15:501–507,
1953.

[22] S. N. Simões, D. C. Martins-Jr, H. Brentani, and R. Fumio.
Shortest paths ranking methodology to identify alterations in
ppi networks of complex diseases. In Proceedings of the
ACM Conference on Bioinformatics, Computational Biology

and Biomedicine, BCB ’12, pages 561–563, 2012.

[23] L. Tang, X. Wang, and H. Liu. Community detection via
heterogeneous interaction analysis. Data Min. Knowl.
Discov., 25(1):1–33, July 2012.

[24] R. Tarjan. Depth first search and linear graph algorithms.
SIAM Journal on Computing, 1972.

APPENDIX
A. CORRECTNESS OF EDP

THEOREM 1. The traversal Algorithm EDP-QP finds a correct
shortest path if one exists.

Proof . The proof for this theorem follows very closely the proof
of correctness of Dijkstra’s algorithm. Recall that I(G) preserves
the connectivity of G by construction (refer to Section 5.1). Hence,
a shortest path that exists in G also exists in I(G). To prove the
correctness of EDP-QP, we need only to prove that when a vertex,
say prm(u), is dequeued from PQ, the cost of prm(u) in the cost
table is the cost of the shortest path from the source vertex to Vertex
prm(u). This can be proven by contradiction.

Figure 10: Proof of correctness for EDP-QP. The big dashed
circle encloses the set S of dequeued elements. A vertex is rep-
resented by a pair (pr, v) indicating Vertex v in Partition pr.

Let S be the set of all I(G) vertexes that are extracted from PQ.
We claim that the following invariant holds till the termination of
Algorithm 2: ∀ element e ∈ S, we have cost(e) = δ(s, e.v),
where s is the source vertex and δ(s, e.v) is the cost of the shortest
path from s to e.v. Notice that when a bridge vertex is visited, all
of its copies in other allowed partitions are added to PQ with the
same cost of the visited bridge-vertex. For the sake of contradic-
tion, assume that e = (prm, u) in Figure 10 is the first element
added to S, where cost(e) �= δ(prj(s), prm(u)). prm(u) cannot
represent prj(s) because cost(prj , s) = 0. Hence, there must be a
path from (prj , s) to (prm, u). Otherwise, cost(prm, u) would be
infinity and it would not appear in S. If a path exists from (prj , s)
to (prm, u), then a shortest one is there.

At the time, say t, when (prk, x) gets added to S,
cost(prk, x) equals δ(prj(s), prk(x)) (recall our hypothesis
that prm(u) is the first element that violates the claimed in-
variant). Also, cost(prl(y)) = δ(prj(s), prl(y)) (because
edge (prk(x), prl(y)) has been relaxed at Time t). Then,
cost(prl(y)) = δ(prj(s), prl(y)) ≤ δ(prj(s), prm(u)) ≤
cost(prm(u)). However, as both vertexes prm(u) and prl(y)
were not in S when prm(u) was chosen, it follows that
cost(prm(u)) ≤ cost(prl(y)). Then, the previous inequal-
ity relation becomes equality as follows: cost(prl(y)) =

0
0.5

1
1.5

2
2.5

3
3.5

N
um

be
r o

f Q
ue

rie
s

(x
10

00
)

Speedup

Warm-run Cold-run

Speedup-Histogram of Query-Time (Tiger)

(a) Speedup Histogram of EDP vs. CHLR

0
1
2
3
4
5
6
7
8
9

10

N
um

be
r o

f Q
ue

rie
s

(x
10

00
)

Speedup

Warm-run Cold-run

Cumulative-Histogram of Speedup (Tiger)

(b) Cumulative Speedup of EDP vs. CHLR

Figure 11: Speedup of EDP vs. CHLR for the Tiger dataset

δ(prj(s), prl(y)) = δ(prj(s), prm(u)) = cost(prm(u)). Con-
sequently, cost(prm(u)) = δ(prj(s), prm(u)), which contradicts
our choice of prm(u). Therefor, this proves that cost(prm(u)) =
δ(prj(s), prm(u)) when prm(u) is added to S, and this equality
is maintained afterwards. Hence, when Line 10 of Algorithm 2 ex-
tracts a PQ entry that corresponds to a destination vertex instance,
then its associated cost is the cost of the shortest path cost.

B. SHORTEST PATH CONSTRUCTION
In this section, we illustrate how EDP-QP builds the actual short-

est path. Each entry in the cost lookup table used by EDP-QP
keeps an attribute called parent. Whenever EDP-QP relaxes the
cost of an edge, say (pri(u), prj(v)), it sets the parent attribute of
cost(prj(v)) to pri(u)’s cost entry. When the cost of the shortest
path is found, the chain of entries ending at cost(prk(d)).parent
is constructed by a backward traversal (d is the final destination ver-
tex). The constructed chain indicates the vertex/partition pairs that
construct the shortest path in order. This chain gives the contracted
monochrome sub-paths CP (P) and not P . Using I(G), the de-
tails of each monochrome sub-path in CP (P) are to form the final
shortest path P . The complexity of this construction algorithm is
O(|CP (P)|), where |CP (P)| is the number of monochrome sub-
paths in P .

C. MULTI-GRAPHS AND MULTI-LABELS
SUPPORT

A multi-graph is a graph where any two vertexes can have more
than one edge connecting them. EDP can safely handle multi-
graphs. EDP has an edge disjoint partitioning. Given any two ver-
texes u, v with multi-edges, each of these edges, say e, is hosted
by a separate partition based on e’s label. EDP treats each edge in-
dependently and the semantics of an ECSP query does not change.
However, if a certain edge has more than one label, an ECSP query
can have two different but valid semantics.

Let Q(s, d, A) be an ECSP query. Given a labeled graph G′

where an edge e ∈ G′.E can have multi-labels (i.e., l(e) ⊆ G′.L),
Q can have two different possible semantics:

• Semantic 1: An edge in |G′| is allowed if its labels contain
at least one query label (i.e., ∀ e ∈ sp(s, d, A) | l(e) ∩ Q.A
�= Φ).

• Semantic 2: An edge in |G′| is allowed if all its labels are in
the query labels (i.e., ∀ e ∈ sp(s, d, A) | l(e) ⊆ Q.A).

ECSP supports Semantic 1 by viewing a multi-labeled edge as
a set of independent edges. If interested in Semantic 2, the user
may transform the graph to have single label edges, if possible.

D. EXCLUSION LOGIC AND QUERY
REWRITING

Given a labeled graph where each edge has only one label, an
ECSP Query Q(s, d, A) can take one of the following two forms:

• Inclusion logic form: Labels in A are allowed in the shortest
path.

• Exclusion logic form: Labels in A are not allowed in the
shortest path, and hence the labels in overlineA are allowed.

The inclusion logic form is suitable for social network graphs,
e.g., a query will most likely include only a small subset of the edge
labels, e.g., two or three social relation types. In contrast, the exclu-
sion logic form is suitable for road network graphs, e.g., avoiding
toll roads. The two forms are equivalent for graphs with single-
label edges, and can be transformed to each other easily. EDP sup-
ports both forms and can rewrite a query accordingly, e.g., rewrite
Qi(s, d, A) into Qe(s, d, A) to support the exclusion semantics
based on a simple yet effective cost model.

D.1 Query Rewriting
EDP-QP can process an ECSP query in either of the inclusion

and exclusion forms. It can choose the form that makes the pro-
cessing faster. For example, since the OtherHosts list of the in-
dex I(G) is fixed w.r.t. any query, being a frequent operation, the
intersection operation between OtherHosts(Pr(v)) ∩ Q.A for
every visited bridge-edge Pr(v) will depend on the size of Q.A.
Clearly, some queries are better written in a particular form over the
other depending of the size of A vs. L−A. Hence, we can rewrite
the query to be in either the inclusion or the exclusion-forms, and
Algorithm 2 adapts its edge selection logic, accordingly (e.g., the
comparison logic of Line 18 in Algorithm 2).

When executing an ECSP Query, say Q, a query-rewrite step
takes place, and an attribute is set for Q, say Q.Type, to indicate
its logic-form. If Q.Type is inclusion and |Q.A| > |L - Q.A|,
Q.Type is changed to exclusion and Q.A is reset to L - Q.A. Sim-
ilarly, if Q.Type is exclusion and |Q.A| > |L - Q.A|, Q.Type is
changed to inclusion and Q.A is rest to L - Q.A. When EDP-QP
processes Q, it checks Q.Type to perform the right label filtering.

E. EDP FOR NON-DIRECTED GRAPHS
As every non-directed graph can be represented by an equiva-

lent directed graph, EDP easily supports non-directed graphs. EDP
takes a parameter to indicate if the input graph is directed or non-
directed. If the input graph is non-directed, then an edge, say e,
is stored only once. However, at each of the endpoint vertexes of

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6

H
it

R
at

e
(%

)

Maximum Cache Size (GBs)

EDP Hit-Rate (Tiger)

Figure 12: Hit Rate of EDP w.r.t. Maximum Cache Size.

Edge e, EDP stores the identifier of Edge e in both the "InEdges"
and "OutEdges" lists of its endpoints. Hence, in a non-directed
graph, each vertex is aware of all of its edges.

F. ADDITIONAL EXPERIMENTS

F.1 Fixing Query-Label Size
In this experiment, we fix the query label size, and study the per-

formance speedup of individual queries. We generate more than
50K random queries such that each query has |L|/2 allowed labels.
The reason for setting the number of labels per query to |L|/2 is to
cancel the effect of the query labels size on both EDP and CHLR.
Recall that for a given ECSP query with allowed labels A, we com-
pute a restricted set R = L - A as the input to the CHLR technique.
So we choose A so that |A| = |L| / 2 to give CHLR a query with
restricted labels R where |R| is of size |L| / 2. This cancels the
effect of query labels-set size when comparing EDP to CHLR.

From the 50K queries generated, we execute 10, 000 random
queries, measure the running time of EDP and CHRL per query,
and compute the speedup. Figure 11(a) gives a histogram of the
results. The x-axis indicates buckets of speedup ranges and the y-
axis indicates the number of queries out of the 10,000 queries that
fall in each bucket of the x-axis.

As shown in Figure 11(a), EDP and CHLR perform similarly in
the warm-run for only 31 queries out of the 10k queries (i.e., there
is no speedup for only 0.3% of the random queries). However, for
the remaining 99.7% random queries, EDP has a speedup of more
than two over CHLR. For the cold-run, where the precomputation
time is added to each query, there is no speedup for 30% of the
random queries while 70% of the queries experience a speedup of
at least two. Figure 11(b) gives the cumulative distribution of the
speedups. About 95% of the queries have at least a speedup of
one order-of-magnitude for the warm-run while, for the cold-run,
near 38% of the queries experience at least an order-of-magnitude
speedup.

F.2 Cached-Index Hit-Rate
In this experiment, we measure the hit rate of EDP’s cached-

index w.r.t. different index-size limits. This experiment uses the 10
millions randomly-generated ECSP queries used before to measure
the index size. Although the workload is random and EDP uses
an LRU replacement-policy, the hit rate is still a good measure to
represent the likelihood of finding an index entry in the cache when
needed by new ECSP queries.

Starting from a maximum index-size of 500 MBs to 5.5 GBs,
we measure the hit rate of EDP’s cached index after processing the
entire workload. As Figure 12 shows, the hit rate increases linearly
when increasing the maximum index-size. EDP achieves a hit rate
of more than 50% when using only 1 GB cache, and a hit rate of
84% when using 4 GBs cache. Figure 12 shows that EDP has a high
potential of not missing requested index-entries even when limiting
the index size by small values (e.g., 500 MBs).

