
On Native Location-Optimized Data Systems
Walid G. Aref

Department of Computer Science
Purdue University

West Lafayette, USA
aref@purdue.edu

Abstract—With the ubiquity of location detection devices
and location services and the massive amounts of the location
data being produced, there is dire need for developing highly
scalable location data systems. Currently, location data is usually
supported as an afterthought in existing data systems, and
hence these systems are not optimized natively for location data
handling. This short paper calls for designing systems with
location data being a first-class citizen, and highlights several
important aspects that characterize location-optimized data sys-
tems. These include deterministic performance, supporting write-
optimization, update tolerance, having adaptive location indexes
and adaptive data stores, and having tight integration with the
graph, document, relational and other multi data models for
optimized performance.

Index Terms—location data systems, indexing, location ser-
vices, deterministic performance, adaptive techniques

I. INTRODUCTION

Location-data systems store and process the locations of
objects as they move in space. They are popular due to the
ubiquity of smart-phones and location-detection devices, and
they offer a broad variety of location-based services [12], [16].

Current location data systems are not optimized for handling
location data. Usually, location data is supported by extending
existing relational or NoSQL systems, e.g., [1], [6], [7] that
have been originally designed and optimized with other goals
and objectives in mind. Typically, relational or NoSQL data
systems get extended with spatial or spatiotemporal indexes,
some spatial query operators, e.g., range or k-Nearest-neighbor
operators, and higher-level syntactic sugar to support location
data. The ubiquity of location data and location data services
calls for systems that are solely designed and optimized for
the efficient support of location data.

This short paper advocates for native location-optimized
data systems. These systems are designed with the sole ob-
jective to support location data as first-class citizens. These
systems can be termed location-optimized or location-first data
systems. The rest of this paper highlights several important
features that location-optimized data systems should support.

II. DETERMINISTIC PERFORMANCE

Location-optimized data systems should offer deterministic
performance. Because of the real-time nature of location-
optimized systems, location-data systems should provide de-
terministic performance during query processing, during index

Walid G. Aref acknowledges the support of the National Science Foundation
under Grant Number: IIS-1910216.

operations, and during concurrency control among all other
aspects of data management systems. For example, at times,
some index insert operation may involve splitting an index
node, while at other times, the same index operation may not
involve node splitting. This is common, e.g., in B-trees [5],
and in R-trees [9] and their variants. When inserting a data
item into a leaf node, two scenarios may take place.

(1) If the leaf node is not full, then the data item to be
inserted is placed into the leaf node, and the insertion is
complete. However, in some cases, e.g., in the R-tree case, the
bounding rectangle of that leaf node may need to be expanded,
and this may result in expanding the bounding boxes of the
ancestor nodes of this leaf node.

(2) If the leaf node is full, it has to split, and additional
time has to be spent, e.g., deciding which data items in the
R-tree’s original leaf node would go to the newly formed first
or second children. Also, a new pointer has to be inserted into
the parent node, which may result in the parent node’s being
split as well, and this may propagate up to the root node, and
may even result in an increase in the R-tree height.

The above two scenarios highlight discrepancy in the cost
of an insert operation between the two scenarios. This demon-
strates non-deterministic performance.

Another form of non-determinism is that the same query
may require different execution times if executed twice under
the same conditions. It has been shown that both the B-
tree and the R-tree indexes exhibit non-deterministic query
execution time due to what is referred to as the waves of
misery phenomenon [8], [18]. Unless mitigated properly, the
execution time may increase for the same query if executed at
two different times (without experiencing increase in the tree
height, for example) [18]. The same non-determinism behavior
can be observed in the index delete and update operations.

While the examples above highlight the presence of non-
deterministic performance in the context of data indexing,
other data systems’ components exhibit non-determinism in
their performance that is manifested in a variety of ways.

Query processing is another example. One aspect of de-
terministic performance in location data query processing is
that the rate of producing output tuples in a query evaluation
pipeline needs to be deterministic. For example, consider
nested-loops joins or table-scan-based selects. While some
output select or join tuples can be produced fast, e.g., if
the qualifying tuples appear early in the table, other output
tuples may take significantly more time until they are pro-



duced, hence exhibiting non-deterministic query processing
performance, and non-deterministic output rate. Thus, the al-
gorithms for the building block operators for relational algebra
(e.g., selects, joins, group-by, etc.) need to be reworked for
deterministic behavior. The same is true for the more complex
query evaluation pipelines that are formed by composing these
building block operators. Using ML-based approaches, ML-
for-DB techniques, and extending relational algebra and query
processing with ML inference are promising directions that
can be targeted to mitigate the issue of non-deterministic query
execution. For example, the works in [15] and [10] illustrate
promising steps in this direction.

Generally, location-optimized data systems need to be de-
signed at all layers of the system stack with deterministic
performance in mind, including how the data is organized,
indexing, query processing techniques, concurrency control,
and recovery mechanism, so that all data operations at the
various levels are deterministic.

III. WRITE OPTIMIZATION AND UPDATE TOLERANCE

Location-optimized data systems should be write-
optimized, and should support update-tolerance tech-
niques. With the movements and continuous changes in the
locations of objects over time, location data systems are
update-heavy. Log-Structured Merge-trees (LSM-trees) [14]
have been ubiquitously used for write-heavy workloads. LSM-
ified R-tree indexes [11] have been proposed to support effi-
cient querying along with write-optimized R-trees. However,
the LSM R-tree [11] does not support efficient updates. LSM-
based location indexes need to also be update-tolerant, e.g.,
along the lines of [17].

IV. ADAPTIVE AND EVOLVING LOCATION INDEXES AND
DATA STORES

Location-optimized data systems should have adaptive
and continuously evolving data indexes and location data
stores that morph from being write-optimized at times into
being read-optimized at other times, and vice versa. In
addition to being write-heavy, the ubiquitous location-services
and real-time analytical activities required of location-data
systems mandate the need for location-data systems to handle
read-heavy workloads as well. Thus, in addition to being write-
optimized at times, location data systems should also be read-
optimized to handle heavy analytical and location-services
workloads, e.g., shortest path queries during rush hours.

Oscillating between being write-optimized at times to max-
imize high data-ingestion rates and being read-optimized at
other times to handle location services and analytical work-
loads based on the spatial and temporal dimensions call
for having adaptive location-based indexing techniques and
location data stores that morph into being write-optimized at
times and being read-optimized at other times.

LSM-like indexes being write-optimized cannot support
efficiently read-heavy and analytics workloads. Adaptive and
evolving indexes, and more generally, data stores that seam-
lessly morph between being read- or write-heavy are essential

in location-optimized systems. Example access methods and
systems along this direction include [2], [4], [13], [19], [20].

V. NATIVE MULTI-MODEL SUPPORT

Typically, location data is associated with other data types,
e.g., text and document data, road network and social network
graph data, time series and trajectory data, image, video
and audio data, etc. In addition to efficiently supporting
location data, a native location-optimized data system should
support and tightly integrate these multi-models to avoid
impedance mismatch and performance hits when processing
queries across multiple models.

Other Important Features. Native location-optimized data
systems should support other important features including
supporting high concurrency, awareness of new hardware and
vectorization trends, privacy, among many other important
features. The reader is referred to [3] for further elaboration.

REFERENCES

[1] “Oracle big data spatial and graph.” [Online]. Available: https://www.
oracle.com/database/technologies/bigdata-spatialandgraph.html

[2] I. Alagiannis, S. Idreos, and A. Ailamaki, “H2o: a hands-free adaptive
store,” in ACM SIGMOD ’14, 2014, p. 1103–1114.

[3] W. G. Aref, A. M. Aly, A. Daghistani, Y. Rayhan, J. Wang, and L. Zhou,
“ILX: intelligent ”location+x” data systems (vision paper),” CoRR, vol.
abs/2206.09520, 2022.

[4] L. Arge, “The buffer tree: A technique for designing batched external
data structures,” Algorithmica, vol. 37, no. 1, pp. 1–24, 2003.

[5] R. Bayer and E. M. McCreight, “Organization and maintenance of large
ordered indices,” Acta Informatica, vol. 1, pp. 173–189, 1972.

[6] A. Davoudian, L. Chen, and M. Liu, “A survey on nosql stores,” ACM
Computing Surveys, vol. 51, no. 2, p. 1–43, 2019.

[7] A. Eldawy and M. F. Mokbel, “The era of big spatial data: A survey,”
Foundations & Trends in Databases, vol. 6, no. 3-4, pp. 163–273, 2016.

[8] N. Glombiewski, B. Seeger, and G. Graefe, “Waves of misery after index
creation,” BTW 2019, 2019.

[9] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proceedings of the ACM International Conference on Management
of Data (SIGMOD), 1984, pp. 47–57.

[10] K. Karanasos and et al., “Extending relational query processing with
ml inference,” in 10th Annual Conference on Innovative Data Systems
Research (CIDR ‘20), 2020.

[11] Y.-S. Kim, T. Kim, M. J. Carey, and C. Li, “A comparative study of
log-structured merge-tree-based spatial indexes for big data,” in IEEE
ICDE, 2017, pp. 147–150.

[12] M. F. Mokbel and et al., “Towards mobility data science (vision paper),”
CoRR, vol. abs/2307.05717, 2023.

[13] M. H. Moti, P. Simatis, and D. Papadias, “Waffle: A workload-aware
and query-sensitive framework for disk-based spatial indexing,” vol. 16,
no. 4, 2022.

[14] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (lsm-tree),” Acta Informatica, vol. 33, no. 4, pp. 351–385,
1996.

[15] I. Sabek and T. Kraska, “The case for learned in-memory joins,” 2022.
[16] S. Shekhar, S. K. Feiner, and W. G. Aref, “Spatial computing,” Commun.

ACM, vol. 59, no. 1, pp. 72–81, 2016.
[17] J. Shin, J. Wang, and W. G. Aref, “The LSM rum-tree: A log structured

merge r-tree for update-intensive spatial workloads,” in 37th IEEE
International Conference on Data Engineering, ICDE 2021, Chania,
Greece, April 19-22, 2021. IEEE, 2021, pp. 2285–2290.

[18] L. Xing, E. Lee, T. An, B. Chu, A. Mahmood, A. M. Aly, J. Wang, and
W. G. Aref, “An experimental evaluation and investigation of waves of
misery in r-trees,” Proc. VLDB Endow., vol. 15, no. 3, pp. 478–490,
2021.

[19] F. Zardbani, N. Mamoulis, S. Idreos, and P. Karras, “Adaptive indexing
of objects with spatial extent,” Proc. VLDB Endow., vol. 16, no. 9, p.
2248–2260, may 2023.

[20] K. Zoumpatianos, S. Idreos, and T. Palpanas, “ADS: the adaptive data
series index,” VLDB J., vol. 25, no. 6, pp. 843–866, 2016.


