ORLF: A Flexible Framework for
Online Record Linkage and Fusion

El Kindi Rezig
Purdue University
erezig@cs.purdue.edu

Eduard C. Dragut
Temple University
edragut@temple.edu

Abstract—With the exponential growth of data on the Web
comes the opportunity to integrate multiple sources to give
more accurate answers to user queries. Upon retrieving records
from multiple Web databases, a key task is to merge records
that refer to the same real-world entity. We demonstrate ORLF
(Online Record Linkage and Fusion), a flexible query-time record
linkage and fusion framework. ORLF deduplicates newly arriving
query results jointly with previously processed query results. We
use an iterative caching solution that leverages query locality
to effectively deduplicate newly incoming records with cached
records. ORLF aims to deliver timely query answers that are
duplicate-free and reflect knowledge collected from previous
queries.

I. INTRODUCTION

The sheer amount of information on the Web has triggered
the emergence of a vast array of applications that integrate
data from multiple Web sources to answer users’ queries.
This has brought along new data curation challenges. Data
across different Web sources contains multiple anomalies, such
as missing data, inconsistent data, and oftentimes the same
real world entities, e.g., a company, a person, or a book, is
represented differently by different Web sources.

Web applications often require duplicate-free data and
error-free representation of entities. The former goal is
achieved through Record Linkage (RL) while the latter is
achieved through Data Fusion. Record Linkage and Data
Fusion (RL&F) are two well-studied problems [2], [4]. While
significant effort has been dedicated to solve them, little work
has been conducted to perform them at query time. Online
RL&F differs from its offline counterpart in the following
aspects: (i) the entire data cannot be obtained all at once, e.g.,
usually only through restricted Web query forms, (ii) since
it runs at query time, it has to be performed relatively fast;
and (iii) multiple query submissions may be needed to acquire
enough evidence about an “ideal” representation of an entity.

We introduced the algorithmic infrastructure of ORLF
in [7]. The proposed infrastructure allows seamless application
of RL&F over live data coming from multiple Web sources.
ORLF leverages previously submitted queries to perform
RL&F on query results. As a result, the more queries ORLF
processes, the better the query results are likely to be. To
achieve this goal, ORLF uses a caching system that serves
two main purposes: (i) storing fused records of entities seen
so far from previous queries and (ii) allowing a fast lookup at
query time to identify relevant entities in the cache and update
them with newly arriving query records. We developed a new
record indexing data structure to obtain a fast lookup time. The

Mourad Ouzzani, Ahmed K. Elmagarmid
Qatar Computing Research Institute
{mouzzani, aelmagarmid} @qf.org.qa

Walid G. Aref
Purdue University
aref@cs.purdue.edu

index, which is based on the B¢-tree index [10], is used to
index the cache records and to answer top-k similarity queries.
We implemented a software framework for online RL&F
that incorporates these algorithmic features and a number of
additional ones.

In this demo, we will walk the audience through the
following key features of ORLF:

e An end-to-end framework to support RL&F at query
time.

e The ability to seamlessly customize our framework by
plugging in specific RL and data fusion algorithms.
This feature is important because most RL&F algo-
rithms are data-specific.

e A visually rich user interface that allows monitoring
the quality of the data in the cache over time.

e We prepared several scenarios from five domains, such
as restaurant, hotel and books, to demonstrate that
the quality (cached results include previous knowl-
edge about entities) and efficiency (cached results
reduce the number of unnecessary RL&F operations)
of RL&F greatly benefit from query locality.

II. SYSTEM DESCRIPTION

We show the functioning of ORLF in Figure. 1. After
obtaining the query results from the Web databases, ORLF
first attempts to match them to cached records. If a match is
found in the cache for an incoming record r (the Hit path),
r is fused jointly with its matching cache record. If a match
is not found in the cache for r (the Miss path), ORLF adds
r to a miss list L;. Once all records have been consumed,
ORLF applies a record linkage and fusion process on L; and
appends the result to the cache. To support these two paths,
we introduce several key components.

A. ORLF Components

Caching Policy: We implemented in ORLF three caching
policies to support multiple application settings. The caching
policies dictate the cache record update behavior of ORLF
upon processing new queries: dynamic - all the records in the
cache are subject to updates, static - records in the cache are
read-only, and static with in-place updates - is similar to the
static one except that a subset of the cache records are allowed
to be updated until they reach a desired “cleaning factor”.

reading direction

, —
o 0B® -
i b —

/" Lists of records /
/ /

inresponsetoQ /

/ Fusion of Records in Cache
ya £

Answer \\

4 For each list Li
(Li from Web DBi)

Add to IMI

\ 4
IINII 10}
2INS0[0 dANISUB}
a)ndwo)

A

‘:Legend: ;
J‘> RL - acronym for record linkage; }
1> IMI —inverted list of matches; }
rc —arecord in the cache }

|

|

|

|

|

matching an incoming record;
L.i —the records in the incoming
list Li without a match in the cache

0 S

) 2

Insert new records

=
[
3
» | Get r's match in cache |
<
©
©
o
Custom RL \
2
= P Top-k
X
_g —>| Similarity search H matches

7
[

|
|
Updaterc ||
|
|
I

Cache Maintenance
This is step is not performed for static caching.

(cache
e A

<

Fig. 1: Query answering using RL&F with iterative caching.

Record Lookup: ORLF has two processing paths for the
incoming query records: the Hit path and the Miss path (Figure
1). Upon processing an incoming record v, ORLF attempts to
find a record that is similar to 7 in the cache, so that they can be
cleaned collectively. We developed an indexing data structure
based on the B¢?-tree index [10] to support fast (approximate)
record search (see [7] for details) in the cache. The index is
used to retrieve the k£ most similar records to r.

Custom RL: The set of the top-k records returned by the
index needs to be further filtered out using a matching function.
We implemented three domain-specific matching functions
(Section III-A). Users however can input their matching al-
gorithm in the form of a Java code to perform Custom RL.
The function takes as input two records and returns T'rue if
they match (refer to the same entity), and False otherwise.

Handling Non-Matching Records: When the top-k
records for r do not include any matching record, r is
processed in the Miss path. The incoming records that do not
have a match in the cache are stored in a data structure L,
where ¢ is the source index. RL&F are performed across the
records in L; where 1 < k < N, N is the number of data
sources. The resulting fused records are appended to the cache.

Fusion: The fusion procedure fuse is an input to the ORLF
system. Users are allowed to feed ORLF their own data fusion
algorithms (in the form of a Java procedure). ORLF has a
default fusion procedure which uses majority voting as the
fusion criterion. The input of fuse is a collection of records

and the output is one fused record.

ORLF Dashboard: The dashboard allows users to view
and edit the cache configuration. It also provides users with
statistics such as the current size of the cache and the average
query hit ratio (ratio of records returned by the query that were
matched to cache records). The dashboard offers users intuitive
visualizations to better understand the state of the cache. For
example, Figure 2b shows a heatmap of cached entities over
a time window: the darker the entry, the more frequently
that entry was matched to query results. This information is
useful to assess the effectiveness of the cache in terms of
how frequently it matches query results. Figure 2a shows an
example visualization of the cache table, the attribute “sources”
contains the ratio of sources that contributed in fusing the
cache record.

B. ORLF User Input

ORLF accepts four types of user inputs: (1) Schema-related
files; (2) Cache warm up; (3) Record matching procedure; and
(4) Fusion procedure.

Schema-Related Files: ORLF returns an answer to a query
@ over a target schema 7. Users input two sets of XML files:
the source and target schema and the correspondences between
their elements.

Cache Warm up: Users may choose to bootstrap the
system with a set of queries that are posted to ORLF to
populate the cache initially. This input is optional.

Show [10_v | entries

Sources , Name Address Phone city State zip

Search:

Rating

Reviews

312-255-

o
100% R

Le Colonial 937 N Rush St Chicago IL 60611

Lee Sea Food
Company

773-866-

%
100% 2080

3055 W Lawrence Ave Chicago IL 60625

The Alley of
Highwood

210 Green Bay Road,
Highwood

847-433-
0304

Chicago IL 60040

773-268-

301 E43rd St 8770

Le Fleur De Lis Chicago I 60653

847-328-

Addis Abeba e

1322 Chicago Ave. Evanston IL 60201

1020 W Lawrence Ave
ste 1

773-561-
5803

Lawrence
Restaurant

Chicago IL 60640

Lee Wing Wah 2147 S China PI iéi:os' Chicago IL 60616

Alcala Restaurant 3610 W Belmont Ave Chicago IL 60618

773-881-
7700

Leonas Pizzeria 11060 S Western Ave Chicago I 60643

773-862-

10% 5600

Lebouchon 1958 N Damen Ave Chicago IL 60647

0

0

0

0

selus ayoen

Previous | 1 | 2

(a) The Cache Table

Showing 1 to 10 of 45 entries

3

4 5

(b) The Cache Heatmap

Fig. 2: Dashboard: Visualization of the cache content and an example heatmap of cache entries, entries with more frequent query hits are color-coded with a

darker colors

Record Matching Procedure: ORLF requires a pair-wise
record matching function in order to classify a record pair as
a match or a mismatch. Since record matching functions are
highly domain-dependent, ORLF allows users to write their
own Java code to perform record matching. This function is
used to remove false positive record matches from the top-k
result set returned by the index data structure for an incoming
record. The following is the signature of the function compare:

Boolean compare(Record target_record)

Function compare is a non-static member function of the
class Record. It returns True if the calling record matches
target_record, and False otherwise.

Fusion procedure: ORLF also gives users the flexibility
to plug in their own fusion procedure. The fusion operation is
performed for each list of matching records. The signature of
the function fuse is:

Record fuse(Collection<Record> records)

fuse is a non-static member function of the class Record. It
fuses the calling record with a collection of records and returns
the fused record. ORLF provides three fusion algorithms:
(i) default, based on majority voting, (ii) Solaris’ ACCU fusion
algorithm [6], and (iii) LTMinc [11].

III. DEMONSTRATION OVERVIEW

In this demonstration, the audience will experience two
different usage scenarios using three datasets.

A. Datasets

While ORLF works directly with Web databases, we will
use three pre-crawled datasets to avoid connectivity issues dur-
ing the demonstration. These datasets are: (1) Restaurants:'
We crawled 9 Web databases that provide information about
restaurant listings in the metropolitan Chicago area, US, such

as Yelp (10,115 records), YellowPages (7,798 records) and
Yahoo (10,820 records); (2) Book Author:2 This dataset is
crawled from abebooks.com. It consists of 1,263 book entities,
2,420 book-author facts, and 48,153 claims from 879 book
seller sources; and (3) Flight:2 This dataset contains flight
data from 38 sources.

B. Demonstration Scenarios

We will showcase two demonstration scenarios: (1) an in-
teractive demonstration in which we walk the audience through
the core features of the ORLF system and (2) a scenario where
users can set up ORLF for a particular application domain.

1) Scenario 1I: A Walk-through of the Core Features of
ORLF: The audience will interact with ORLF at multiple
levels, namely: (1) Record Linkage and Fusion procedures
editor; (2) Warming up the cache; (3) Experimenting with
different cache configurations, presenting their impact on the
data quality of the query results; and (4) Monitoring the state
of the cache.

(1) Plug-and-Play Record Linkage and Fusion: We will
demonstrate multiple custom RL&F algorithms through the
ORLF RL&F rule editor. The audience will select from three
fusion algorithms, namely, majority voting (the default fusion),
the Solaris’ fusion algorithms [6] and the LTM and LTMinc
fusion algorithms [11]. The audience will also have the
opportunity to contrast the outcome of the fusion algorithms
in ORLF on different datasets.

(2) Warming up the Cache: We will showcase two
methods to warm up the cache: (i) import a clean dataset into
ORLF and (ii) generate a simulated user query stream to
ORLF (we explain this procedure in [7]), post them to the
sources, collect the query results, apply off-the-shelf RL&F
algorithms, and save the outcome into the cache.

(3) Selecting Cache Configuration: After the warm up
phase, the audience will select the cache configuration, and

Thttp://cis.temple.edu/~edragut/research.htm

Zhttp://lunadong.com/fusionDataSets.htm

the eviction policy. The goal is to illustrate the outcome of a
query result under different cache configurations.

(4) Monitoring the State of the Cache: ORLF features
a dashboard that shows the audience key insights about the
current state of the cache, these include: (i) the usefulness
of the cache entries computed so far, expressed in terms of
average hit ratio per query; (ii) freshness information of cache
records; and (iii) confidence of fused records based on how
many sources were involved in fusing them.

2) Scenario 1I: Setting up ORLF for a Specific Application
Domain: We will walk the audience through the steps required
to set up ORLF for a specific application domain. As an
example, we will use the Restaurants dataset.

(1) Cache Index: A key part in setting up the B®-tree-
based cache index is the selection of the attributes that are used
as a search key in the index. For example, in the restaurant
data, we chose the attributes {name, address, phone} to be
the search key. After the attribute selection, a few parameters
need to be set empirically for the B¢?-tree index to answer
top-k queries. Details on how to tune these parameters can be
found in [7], [10].

(2) Simulated Queries: In order to simulate the influx of
queries faced by search engines, we proposed in [7] a method
to generate simulated queries. We will give an overview of
the procedure. The stream of generated queries will be used
to demonstrate the cache warm up.

(3) Cache Warm up: The previously generated queries fol-
low a power-law distribution. The 20% most frequent queries
are posted to the Web databases, and their results are cleaned
offline using FRIL [5].

(4) Record Matching and Fusion Procedures: As dis-
cussed previously, the record matching and fusion procedures
need to be set up depending on the application domain. We
will show the audience those functions for the restaurant data.

IV. RELATED WORK

In this section we give a brief overview of some related
systems built to address record linkage and fusion.

NADEEF/ER [3] is a RL system built as an extension of the
open-source generalized data cleaning system NADEEF [3]. It
leverages NADEEF’s programming interface to specify entity
resolution rules. Users specify such rules based on their
knowledge of the data and NADEEF treats them as black boxes
to detect duplicates. We adopt the same idea for specifying the
entity matching and fusion functions in ORLF. As opposed to
ORLF, NADEEF/ER requires all the data to be available at
once which makes it unsuitable for query-time RL.

Online entity resolution has been addressed in [1], [9], [8].
In [1], the main goal is to reduce the overhead incurred by
resolving record pairs. The authors propose a set of semantics
that would avoid resolving some pairs altogether as long as
the selected semantics constraints are met.

Authors in [9] propose a query-time cleaning algorithm
for aggregate queries. The idea is to use a clean sample of the
database to estimate the aggregate attribute value.

In [8], record duplicates are identified at query time. The
solution employs two classifiers that collaborate with each
other iteratively to refine the set of found duplicates.

ORLF differs from the above systems in two key aspects:
(1) it performs fusion on top of RL and (ii) it harnesses RL&F
results from previous queries.

A set of algorithms to perform online data fusion is
proposed in [6]. The key idea is to stop querying further data
sources that are unlikely to change the decision about the
“correct” fused value computed so far. As opposed to ORLF,
these techniques do not perform record linkage and assume the
availability of information about the accuracy of the sources
and their copying relationships. Because ORLF is orthogonal
to the fusion algorithm being used, we have implemented one
of these techniques, namely ACCU [6], into our system.

A Bayesian approach to perform data fusion is proposed
in [11]. It learns the quality of data sources and incorporates
this knowledge in the fusion operation. Because of its stateless
nature, the approach falls short in the online setting.

V. CONCLUSIONS

The proposed demonstration brings a new dimension to
the tasks of RL and fusion: query time. At its core, ORLF
leverages query locality, iterative caching, and smart indexing
techniques to efficiently deliver duplicate-free and accurate
query results. MI’'mMoreover, ORLF provides users with the
ability to use their own record matching and fusion procedures.
To showcase its flexibility, the audience will be able to try
the system on multiple application domains and with different
record matching and fusion algorithms.

ACKNOWLEDGMENT

This work was supported in part by the U.S. National Sci-
ence Foundation grants IIS 1117766 and BIGDATA 1546480.

REFERENCES

[1] H. Altwaijry, D. V. Kalashnikov, and S. Mehrotra.
approach to entity resolution. PVLDB, 2013.

[2] J. Bleiholder and F. Naumann. Data fusion. ACM Comput. Surv., 41(1),
Jan. 2009.

[3] A. Elmagarmid, I. F. Ilyas, M. Ouzzani, J.-A. Quiané-Ruiz, N. Tang,
and S. Yin. NADEEF/ER: Generic and interactive entity resolution. In
SIGMOD, pages 1071-1074, 2014.

[4] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record
detection: A survey. TKDE, 2007.

[S] P Jurczyk, J.J. Lu, L. Xiong, J. D. Cragan, and A. Correa. Fril: A tool
for comparative record linkage. In AMIA, 2008.

[6] X. Liu, X. L. Dong, B. C. Ooi, and D. Srivastava. Online data fusion.
In PVLDB, 2011.

[7]1 E.K.Rezig, E. C. Dragut, M. Ouzzani, and A. Elmagarmid. Query-time
record linkage and fusion over web databases. In ICDE, 2015.

Query-driven

[8] W. Su, J. Wang, and F. H. Lochovsky. Record matching over query
results from multiple web databases. IEEE TKDE, 2010.

[9] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska, and
T. Milo. A sample-and-clean framework for fast and accurate query
processing on dirty data. SIGMOD, 2014.

[10] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D. Srivastava. Bed-tree:
an all-purpose index structure for string similarity search based on edit
distance. In SIGMOD Conference, pages 915-926, 2010.

[11] B. Zhao, B. I. P. Rubinstein, J. Gemmell, and J. Han. A bayesian ap-
proach to discovering truth from conflicting sources for data integration.
PVLDB, 2012.

