
Cruncher: Distributed In-Memory Processing for
Location-Based Services

Ahmed S. Abdelhamid⇤, Mingjie Tang⇤, Ahmed M. Aly⇤, Ahmed R. Mahmood⇤, Thamir Qadah⇤,
Walid G. Aref⇤, Saleh Basalamah‡

⇤Purdue University, West Lafayette, IN, USA ‡Umm Al-Qura University, Makkah, KSA

Abstract—Advances in location-based services (LBS) demand
high-throughput processing of both static and streaming data. Re-
cently, many systems have been introduced to support distributed
main-memory processing to maximize the query throughput.
However, these systems are not optimized for spatial data process-
ing. In this demonstration, we showcase Cruncher, a distributed
main-memory spatial data warehouse and streaming system.
Cruncher extends Spark with adaptive query processing tech-
niques for spatial data. Cruncher uses dynamic batch processing
to distribute the queries and the data streams over commodity
hardware according to an adaptive partitioning scheme. The
batching technique also groups and orders the overlapping spatial
queries to enable inter-query optimization. Both the data streams
and the offline data share the same partitioning strategy that
allows for data co-locality optimization. Furthermore, Cruncher
uses an adaptive caching strategy to maintain the frequently-used
location data in main memory. Cruncher maintains operational
statistics to optimize query processing, data partitioning, and
caching at runtime. We demonstrate two LBS applications over
Cruncher using real datasets from OpenStreetMap and two
synthetic data streams. We demonstrate that Cruncher achieves
order(s) of magnitude throughput improvement over Spark when
processing spatial data.

I. INTRODUCTION

The popularity of location-based services (LBS, for short)
has resulted in an unprecedented increase in the volume
of spatial information. In addition to the location attributes
(e.g., longitude and latitude), the created data may include a
temporal component (e.g., timestamp), and other application-
driven attributes (e.g., check-in data, identifiers for moving
objects, and associated textual content) [1]. Applications span a
wide range of services, e.g., tracking moving objects, location-
based advertisement, online-gaming, etc. Although these LBSs
vary according to the nature of the underlying application, they
share the need for high-throughput processing, low latency,
support for adaptivity due to changes in location data distri-
bution over time, and efficient utilization of the computing
resources. This demands for the efficient processing of spatial
data streams with high rates as well as huge amounts of static
spatial data, e.g., OpenStreetMap. Moreover, the worldwide
use of LBS applications requires processing of spatial queries
at an unprecedented scale. For instance, LBSs are required to
maintain information for tens if not hundreds of millions of
users in addition to huge amounts of other service-associated
data (e.g., maps and road networks), while processing millions
of user requests and data updates per second.

Cloud computing platforms, where hardware cost is asso-
ciated with usage rather than ownership, call for enhancing
the query processing and storage efficiency. Furthermore, the

dynamic nature of location data, especially spatial data streams
and workloads, render the conventional optimize-then-execute
model inefficient, and calls for adaptive query processing
techniques, where statistics are collected to fine-tune the query
processing and storage at runtime (e.g., see [2]).

One aspect that distinguishes LBSs is query complexity. In
contrast to enterprise data applications, LBS queries are more
sophisticated and can involve combinations of spatial, tempo-
ral, and relational operators, e.g., see [3], [4]. Some of these
operators are expensive, e.g., k-nearest-neighbor (kNN) [5].
To address these challenges, various parallel and distributed
systems are customized to handle location data, e.g., MD-
Hbase [1], HadoopGIS [6], SpatialHadoop [7], Parallel Sec-
ondo [8], and Tornado [9]. These systems have a common goal;
to store and query big spatial data over shared-nothing com-
modity machines. However, they suffer from disk bottlenecks,
and provide no provisions for adaptive query processing.

Recently, the significant drop in main-memory cost has ini-
tiated a wave of main-memory distributed processing systems.
Spark [10] is an exemplification of such computing paradigm.
Spark provides a shared-memory abstraction using Resilient
Distributed Datasets (RDDs, for short) [11]. RDDs are im-
mutable and support only coarse-grained operations (referred
to as transformations). RDDs keep the history of transfor-
mations (referred to as Lineage) for fault tolerance. RDDs
are lazily evaluated and ephemeral. An RDD transformation
is only computed upon data access (referred to as Actions)
and data is kept in memory only upon deliberate request. In
addition, Spark supports near-real-time data stream processing
through small batches represented as RDDs (referred to as
Discretized Streams) [12]. However, Spark is not optimized
for spatial data processing and makes no assumptions about
the underlying data or query types.

This demonstration presents Cruncher, a distributed spatial
data warehouse and streaming system. Cruncher provides
high-throughput processing of online and offline spatial data.
Cruncher extends Spark with adaptive query processing tech-
niques. Originally, Spark processes data stream records in
order of arrival. However, processing a batch of data elements
or queries offers an opportunity for optimization and renders
the fixed batch content ordering sub-optimal. Hence, Cruncher
introduces a new batching technique, where the system dynam-
ically changes the batch content ordering to update the RDDs
efficiently. In addition, processing a batch of multiple queries
offers an opportunity for multi-query optimization, and hence
Cruncher introduces an inter-query optimization technique for
range and kNN queries. Furthermore, Spark speeds-up the
data processing by partitioning the data in main memory.

Lineage Graph

Global Index
<KD-Tree>

Data Catalog
<Fine-Grid>

Worker 1

Master

Worker 2 Worker N

Batching Manager

Query SQL Parser

Query Optimizer

Partitioning Manager

Cache Manager

Garbage Collector

… Stream Batches ...

… Query Answers ...

… Offline Data …
(e.g. Maps)

D
istributed In-M

em
ory C

aching

Fig. 1. An overview of Cruncher.

However, static partitioning of spatial data over a distributed
memory is not robust in case of dynamic workloads and
dynamic data distributions. Hence, Cruncher uses an adaptive
partitioning technique that recognizes the query/data hot spots,
and incrementally updates the data partitioning to minimize
redundant processing. Finally, Cruncher introduces a garbage
collector to remove outdated and obsolete RDDs from the
main memory. Cruncher uses three type of runtime statistics;
a global index of location data partitions, a grid with fine
granularity to maintain count statistics for the location-based
data and queries, and a lineage graph that tracks the RDD
transformations. We demonstrate Cruncher’s capabilities using
data streams of moving objects from BerlinMod [5] and real
static datasets from OpenStreetMap [13].

II. OVERVIEW OF CRUNCHER

A. Supported Features

Below, we summarize the main features of Cruncher:

High Throughput Processing. Cruncher uses dynamic batch-
ing and inter-query optimization to achieve high query
throughput given the underlying resources. Cruncher achieves
orders of magnitude throughput improvement over Spark.

Online and Offline Processing. In addition to offline data
(e.g., maps), Cruncher handles three types of location data
streams, namely, a user queries stream, a data updates stream
(to be applied to the offline data), and application data streams.
Cruncher can process queries with relational and spatial pred-
icates against combinations of all these types of data sources.

Adaptive Main-Memory Data Partitioning. RDDs do not
make any assumptions about the properties of the underlying
data nor the incoming queries. In contrast, Cruncher adaptively
update the RDD partitioning at runtime to cope with the

changes in the query workload and data distribution, and hence
consistently maximize the query throughput.

Efficient Memory Evacuation Policy. Because Cruncher
relies on RDD transformations for query processing and data
updates, multiple RDDs may co-exist in memory carrying
data for the same spatial range fully or partially. For efficient
memory use, only single data copy should be maintained per
spatial region that reflects the most recent updates. Cruncher
utilizes an efficient garbage collector with spatial awareness to
eliminate in-memory duplicates.

Interactive Map-Assisted GUI. Cruncher supports an inter-
active GUI that extends Apache Zeppelin [14] to support SQL-
like and Map-UI querying.

Light-Weight Fault Tolerance. Cruncher extends the lineage-
based fault tolerance mechanism of the RDD model [11]. By
associating runtime statistics with the RDD transformations,
Cruncher persists the updated RDDs efficiently on disk.

B. Supported Queries

Cruncher aims to support queries that include both spatial
and relational predicates, where multiple spatial predicates
can appear within a single query. The supported spatial pred-
icates include Range, kNN Select, kNN join, and Spatial
Join. Cruncher also supports temporal and textual predicates.
Queries can run against online streams or offline (i.e., static)
data, and can be snapshot or continuous. Examples of the
supported queries are presented in Section IV.

C. Data Model

An LBS can store data about stationary as well as moving
objects and queries. The following updates are continuously
received by Cruncher: 1) periodic updates for the locations of
the moving objects/queries and their associated data, e.g., the
time of the update, the text associated with the new location,
e.g., tweets from the new location, etc., 2) service updates for
the stationary data, and 3) queries that include spatial, temporal
and textual predicates. The stationary and moving objects have
the format of:{object-identifier, location, timestamp, relational
data, free text}. The queries can be represented in SQL,
from which the following format is extracted: {query-identifier,
timestamp, location, predicate-list}.

III. IN-MEMORY PROCESSING IN CRUNCHER

Cruncher employs a set of techniques that achieve efficient
distributed main-memory processing of spatial data. This sec-
tion highlights each of these techniques.

A. Adaptive Partitioning with On-Demand Indexing

Cruncher dynamically partitions in-memory data to redis-
tribute data over the cluster. The Objective is to repartition the
RDDs based on the query workload and data updates, such
that a query operates on a minimal set of data required to
retrieve its answer. Cruncher’s Partitioning Manager extends
our work in [2]. As in [2], two global indices are maintained.
Refer to Fig. 1. A k-d tree index represents the current
data partitioning scheme, and a fine-grained grid maintains
the count of data points and queries at each grid cell. The

1 1 2

5

3 3 4

1 1 2 3 3 4

1 2 2 2 3 4

1 2 2 5 5

[2][1]

5

4

5
[D

1
, D

2
, ….D

N
]

[Q
1
, Q

2
, … Q

N
]

[3] [4]

 KD-Tree

A worker’s portion of global Index

Streams sub-batches
Data Updates

Groups of updates and queries

Query
Update

Single Query
Single Data Update

Updates Group

Query Group

Queries

Fig. 2. Dynamic Batch Processing.

repartitioning is incrementally triggered based on a cost model
that minimizes redundant data processing. The cost model
integrates the number of points and queries per partition. In
Cruncher, we introduce two extensions. First, we make the
cost model aware of the data updates. Second, when applying
a batch of designated queries on a particular data partition, we
consider the nature of the underlying operators. For example,
in the case of extensive use of kNN operators in a certain
partition, we can dynamically build a suitable index for this
partition to facilitate the execution of the kNN operators within
this partition. Subsequently, the index can be invalidated and
removed upon data updates or partitioning changes, or simply
to preserve memory when the index is not needed anymore.

B. Dynamic Batch Processing

Cruncher partitions the incoming batches of data updates
and queries into small sub-batches according to the data
partitioning scheme. Each sub-batch is sent to the machine
responsible for processing and caching the data for its spatial
region. This partitioning is dynamic and can be different for ev-
ery batch as discussed in Section III-A. Furthermore, Cruncher
groups and sorts the sub-batches for processing. Recall that in
the RDD model, every update triggers the creation of a new
RDD. To handle frequent updates common in LBSs, Cruncher
minimizes the number of transformations required to update
the data in order to reduce the writing overhead. Cruncher
supports two modes of operation: consistent and greedy. In
the former, updates and queries are grouped. The correctness
of evaluation is achieved by guaranteeing that a query will
never process an item, where an update is available with a
timestamp proceeding that of the query, until the update is
applied first. Fig. 2 shows how a batch of queries/updates
is sorted and grouped as a series of transformations. The
grouping and sorting are based on the timestamps and the
spatial regions of the updates/queries. In the greedy mode,
the sub-batch is divided into two transformations only (i.e.,
queries vs. updates). The queries are applied first, and then
the updates. This mode is suitable for LBS applications with
relaxed correctness criteria but that are sensitive to latency.
Minimizing the number of RDD creations leads to shorter
lineage, and hence reduces the overhead during crash recovery.

C. Multi-Query Optimization

Batch query processing creates opportunities for multi-
query optimization. Cruncher applies location-specific inter-

map

Approach 1: Execute the queries in
ascending order of MBR containment

Approach 2: Group execution using
most Contained MBR for all queries

map

Join

Major partial containment
Introduce a container MBR

Perfect containment

Distinct groups

Answers

Queries

Q1

Q1 Q2 Q3
map mapQ1

Q2
Q3

Mutual
MBR

Stage 1

Stage 1

Stage 2

Fig. 3. Multi-query Optimization.

query optimization, e.g., based on the containment in minimum
bounding rectangles (MBRs, for short). Consider a location-
based query, say Q1, that is MBR-contained within another
query’s MBR, say Q2’s. Cruncher sorts the queries within a
batch based on MBR containment. Refer to Fig. 3. 3 cases
for sorting a query group based on their MBRs are illustrated.
The queries are executed using one of two approaches. First,
queries can be executed sequentially as a series of transfor-
mations in descending order of MBR size. Alternatively, we
can join the predicates with the subset of data that includes all
these predicates. In other words, we apply one transformation
to get the data of the biggest MBR, and then join with all the
predicates. In the first approach, an RDD is defined per query,
but in the latter approach, we have one and only one RDD,
where each tuple is tagged with the satisfying query.

D. Distributed Workload-aware Caching

Continuously applying RDD transformations can result in
multiple copies of the same data in main memory (i.e., in
different RDDs). Recall that updating an RDD creates a new
RDD with the update. Also, applying a spatial query on an
RDD, creates a new RDD for the query answer holding a
subset of the original RDD. To avoid these multiple copies,
Cruncher applies a caching mechanism that: 1) increases the
memory hit-ratio by keeping the frequently accessed data in
main memory, and 2) reduces the replication factor of data in
memory. Fig. 4 shows how a spatial index (a grid with fine
granularity) maintains access-counters in the grid cells as well
as coverage relationships among the RDDs and the grid cells.
For each grid cell, Cruncher keeps a counter of usage plus the
time of last access. This information is useful for LRU or ARC
cache replacement policies when the data does not fit in main
memory. In addition, the Garbage Collector uses the coverage
relationship to keep in memory only the most updated RDDs
for each spatial region and evacuate outdated RDDs.

E. Fault Tolerance

Cruncher relies on the lineage-based fault-tolerance mech-
anism of RDDs. However, applying many transformations on
the RDDs results in long lineage chains. It is vital to keep the
lineage graph manageable by forcing periodic persistance of
RDDs (i.e., saving them to disk) when necessary, otherwise
the re-computations of the RDDs in case of failure can be

Ahmed Samy

Ahmed Samy

Maintain the
MBR of each
data partition
adaptively

 Global Spatial Index
<Kd-Tree>

 Catalog
<Fine Grid>

Each cell keep track of RDDs
covering its spatial region

Original Data
<Spatially Partitioned RDD>

Queries Answer RDDs
(e.g., Spatial Range)

Each cell maintains
the number of
objects, queries,
updates and last
accessed time

Fig. 4. Spatial-aware Caching.

more expensive than reading from disk. Cruncher uses a
simple, yet effective, technique to maintain a manageable
lineage chain. Cruncher keeps track of the processing time
of all the transformations. When the total processing time of
a sequence of transformations exceeds the expected reading
time from disk, checkpointing is triggered to save the RDD
to disk. Observe that Cruncher keeps track of the computed
transformations only. The transformations yet to be computed
are not counted.

IV. DEMO SCENARIO

We demonstrate Cruncher’s capabilities using two applica-
tions, where we use a real dataset of points of interest from
OpenStreetMap [13] and synthetic datasets of moving objects
from the BerlinMod Benchmark [5]. We append a textual
description to each moving object. We generate a synthetic
data stream that simulates offers (e.g., coupons) made by the
restauarants in the OpenStreetMap dataset.

Online Data Processing: In this scenario, the user locates her
nearby friends who have certain text associated to them. This
query runs against a stream of moving objects, and can be
expressed as follows:

RUN QUERY q1 AS
SELECT kNN FROM Friends AS F
WHERE CONTAINS (F.text, ‘Sam’)
and kNN.k=3 and kNN.Focal(@Current_Location);

Online and Offline Data Processing: In this scenario, the
user gets notified of offers (e.g., coupons, sales) applicable to
the restaurants that are inside a specific spatial region. This is a
continuous query that requires hybrid processing of an online
stream (i.e., offers) and offline data in the map. The query can
be expressed as follows:

REGISTER QUERY q2 AS
SELECT * FROM OSM_Data AS O, OFFERS AS F
WHERE INSIDE(O, @Spatial_Range)
and CONTAINS(F.text, ‘Coupon’, ‘Sale’)
and OVERLAPS(O.text, F.text)
and F.type = ‘Restaurant’;

We will show the performance of Crusher under different
rates of online data streams and user queries. We will use

Fig. 5. Cruncher SQL and Map User Interface.

different batch sizes for processing various combinations of
the above queries. We will visualize how the global data
partitioning scheme adapts given the change in the query
workload and data updates. We will compare the throughput of
Cruncher against original Spark. Conducted experiments show
how Cruncher achieves orders of magnitude improvement in
query throughput.

ACKNOWLEDGMENT

This research was supported in part by National Science
Foundation under Grant Number IIS 1117766.

REFERENCES

[1] S. Nishimura, S. Das, D. Agrawal, and A. E. Abbadi, “MD-HBase:
A scalable multi-dimensional data infrastructure for location aware
services,” in IEEE MDM, 2011.

[2] A. M. Aly, A. S. Abdelhamid, A. R. Mahmood, W. G. Aref, M. S.
Hassan, H. Elmeleegy, and M. Ouzzani, “A demonstration of aqwa:
Adaptive query-workload-aware partitioning of big spatial data,” in
VLDB, 2015.

[3] A. M. Aly, W. G. Aref, and M. Ouzzani, “Spatial queries with k-nearest-
neighbor and relational predicates,” in SIGSPATIAL, 2015.

[4] ——, “Spatial queries with two knn predicates,” in VLDB, 2012.
[5] C. Düntgen, T. Behr, and R. H. Güting, “Berlinmod: a benchmark for

moving object databases,” VLDB J., 2009.
[6] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. H. Saltz,

“Hadoop-GIS: A high performance spatial data warehousing system
over mapreduce,” PVLDB, vol. 6, no. 11, 2013.

[7] A. Eldawy and M. F. Mokbel, “SpatialHadoop: A mapreduce framework
for spatial data,” in ICDE, 2015.

[8] J. Lu and R. H. Guting, “Parallel secondo: A practical system for large-
scale processing of moving objects,” in ICDE, 2014.

[9] A. R. Mahmood, A. M. Aly, T. Qadah, E. K. Rezig, A. Daghistani,
A. Madkour, A. S. Abdelhamid, M. S. Hassan, and S. B. Walid G. Aref,
“Tornado: A distributed spatio-textual stream processing system,” in
VLDB, 2015.

[10] “Apache Spark,” https://spark.apache.org/, 2015.
[11] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,

M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in NSDI,
2012.

[12] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at scale,”
in SOSP, 2013.

[13] “OpenStreetMap,” http://www.openstreetmap.org/, 2015.
[14] “Apache Zeppelin,” https://zeppelin.incubator.apache.org, 2015.

Ahmed Samy

Ahmed Samy

Ahmed Samy

Ahmed Samy

