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Abstract

Location-aware environments are characterized by a
large number of objects and a large number of continu-
ous queries. Both the objects and continuous queries may
change their locations over time. In this paper, we focus on
continuous k-nearest neighbor queries (CKNN, for short).
We present a new algorithm, termed SEA-CNN, for answer-
ing continuously a collection of concurrent CKNN queries.
SEA-CNN has two important features: incremental evalu-
ation and shared execution. SEA-CNN achieves both effi-
ciency and scalability in the presence of a set of concur-
rent queries. Furthermore, SEA-CNN does not make any as-
sumptions about the movement of objects, e.g., the objects
velocities and shapes of trajectories, or about the mutability
of the objects and/or the queries, i.e., moving or stationary
queries issued on moving or stationary objects. We provide
theoretical analysis of SEA-CNN with respect to the execu-
tion costs, memory requirements and effects of tunable pa-
rameters. Comprehensive experimentation shows that SEA-
CNN is highly scalable and is more efficient in terms of both
I/O and CPU costs in comparison to other R-tree-based
CKNN techniques.

1. Introduction

The integration of position locators and mobile devices
enables new location-aware environments where all objects
of interest can determine their locations. In such environ-
ments, moving objects are continuously changing locations
and the location information is sent periodically to spatio-
temporal databases. Emerging location-dependent services
call for new query processing algorithms in spatio-temporal
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databases. Examples of these new services include traf-
fic monitoring, nearby information accessing and enhanced
911 services.

The continuous k-nearest neighbor (CKNN) query is an
important type of query that finds continuously the k near-
est objects to a query point. Unlike a snapshot KNN query, a
CKNN query requires that its answer set be updated timely
to reflect the motion of either the objects and/or the queries.

In a spatio-temporal location-aware database server, with
the ubiquity and pervasiveness of location-aware devices
and services, a large number of CKNN queries will be exe-
cuting simultaneously. The performance of the server is apt
to degrade and queries will suffer long response time. Be-
cause of the real-timeliness of the location-aware applica-
tions, long delays make the query answers obsolete. Thus
new query processing algorithms addressing both efficiency
and scalability are required for answering a set of concur-
rent CKNN queries.

In this paper, we propose, SEA-CNN, a Shared Execu-
tion Algorithm for evaluating a large set of CKNN queries
continuously. SEA-CNN is designed with two distinguish-
ing features: (1) Incremental evaluation based on former
query answers. (2) Scalability in terms of the number of
moving objects and the number of CKNN queries. In-
cremental evaluation entails that only queries whose an-
swers are affected by the motion of objects or queries are
reevaluated. SEA-CNN associates a searching region with
each CKNN query. The searching region narrows the scope
of a CKNN’s reevaluation. The scalability of SEA-CNN
is achieved by employing a shared execution paradigm
on concurrently running queries. Shared execution entails
that all the concurrent CKNNs along with their associated
searching regions are grouped into a common query table.
Thus, the problem of evaluating numerous CKNN queries
reduces to performing a spatial join operation between the
query table and the set of moving objects (the object ta-
ble). By combining incremental evaluation and shared exe-
cution, SEA-CNN achieves both efficiency and scalability.

Unlike traditional snapshot queries, the most important



issue in processing continuous queries is to maintain the
query answer continuously rather than to obtain the initial
answer. The cost of evaluating an initial query answer is
amortized by the long running time of continuous queries.
Thus, our objective in SEA-CNN is not to propose another
kNN algorithm. In fact, any existing algorithm for KNN
queries can be utilized by SEA-CNN to initialize the an-
swer of a CKNN query. In contrast, SEA-CNN focuses on
maintaining the query answer continuously during the mo-
tion of objects/queries.

SEA-CNN introduces a general framework for process-
ing large numbers of simultaneous CKNN queries. SEA-
CNN is applicable to all mutability combinations of ob-
jects and queries, namely, SEA-CNN can deal with: (1) Sta-
tionary queries issued on moving objects (e.g., ”Continu-
ously find the three nearest taxis to my hotel”). (2) Moving
queries issued on stationary objects (e.g., ”Continuously re-
port the 5 nearest gas stations while I am driving”). (3) Mov-
ing queries issued on moving objects (e.g., ”Continuously
find the nearest tank in the battlefield until I reach my des-
tination”). In contrast to former work, SEA-CNN does not
make any assumptions about the movement of objects, e.g.,
the objects’ velocities and shapes of trajectories.

The contributions of this paper are summarized as fol-
lows:

1. We propose SEA-CNN; a new scalable algorithm that
maintains incrementally the query answers for a large
number of CKNN queries. By combining incremen-
tal evaluation with shared execution, SEA-CNN mini-
mizes both I/O and CPU costs while maintaining con-
tinuously the query answers.

2. We provide theoretical analysis of SEA-CNN in terms
of its execution cost and memory requirements, and the
effects of its tunable parameters.

3. We conduct a comprehensive set of experiments that
demonstrate that SEA-CNN is highly scalable and is
more efficient in terms of I/O and CPU costs in com-
parison to other R-tree-based CKNN techniques.

The rest of the paper is organized as follows. In Sec-
tion 2, we highlight related work for KNN and CKNN query
processing. In Section 3, as a preliminary to SEA-CNN,
we present an algorithm for processing one single CKNN
query. In Section 4, we present the general SEA-CNN al-
gorithm to deal with a large number of CKNN queries. We
present theoretical analysis of SEA-CNN algorithm in Sec-
tion 5. Section 6 provides an extensive set of experiments
to study the performance of SEA-CNN. Finally, Section 7
concludes the paper.

2. Related Work

k-nearest-neighbor queries are well studied in traditional
databases (e.g., see [10, 14, 20, 24]). The main idea is to tra-
verse a static R-tree-like structure [9] using ”branch and
bound” algorithms. For spatio-temporal databases, a di-
rect extension of traditional techniques is to use branch and
bound techniques for TPR-tree-like structures [1, 16]. The
TPR-tree family (e.g., [25, 26, 30]) indexes moving objects
given their future trajectory movements. Although this idea
works well for snapshot spatio-temporal queries, it cannot
cope with continuous queries. Continuous queries need con-
tinuous maintenance and update of the query answer.

Continuous k-nearest-neighbor queries (CKNN) are first
addressed in [27] from the modeling and query lan-
guage perspectives. Recently, three approaches are pro-
posed to address spatio-temporal continuous k-nearest-
neighbor queries [11, 28, 29]. Mainly, these approaches are
based on: (1) Sampling [28]. Snapshot queries are reevalu-
ated with each location change of the moving query. At each
evaluation time, the query may get benefit from the previous
result of the last evaluation. (2) Trajectory [11, 29]. Snap-
shot queries are evaluated based on the knowledge of the fu-
ture trajectory. Once the trajectory information is changed,
the query needs to be reevaluated. [28] and [29] are re-
stricted to the case of moving queries over stationary ob-
jects. There is no direct extension to query moving ob-
jects. [11] works only when the object trajectory functions
are known. Moreover, the above techniques do not scale
well. There is no direct extension of these algorithms to ad-
dress scalability.

The scalability in spatio-temporal queries is addressed
recently in [4, 8, 12, 19, 22, 32]. The main idea is to pro-
vide the ability to evaluate concurrently a set of continu-
ous spatio-temporal queries. However, these algorithms are
limited either to stationary range queries [4, 22], distributed
systems [8], continuous range queries [19, 32], or to requir-
ing the knowledge of trajectory information [12]. Utilizing a
shared execution paradigm as a means to achieve scalability
has been used successfully in many applications, e.g., in Ni-
agaraCQ [7] for web queries, in PSoup [5, 6] for streaming
queries, and in SINA [19] for continuous spatio-temporal
range queries. Up to the authors’ knowledge, there is no ex-
isting algorithms that address the scalability of continuous
k-nearest-neighbor queries for both moving and stationary
queries by making none object trajectory assumptions.

Orthogonal but related to our work, are the recently pro-
posed k-NN join algorithms [2, 31]. The k-nearest-neighbor
join operation combines each point of one data set with its
k-nearest-neighbors in another data set. The main idea is
to use either an R-tree [2] or the so-called G-ordering [31]
for indexing static objects from both data sets. Then, both
R-trees or G-ordered sorted data from the two data sets are
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Figure 1. k-NN queries.

joined either with an R-tree join or a nested-loops join algo-
rithm, respectively. The CKNN problem is similar in spirit
to that of [2, 31]. However, we focus on spatio-temporal
applications where both objects and queries are highly dy-
namic and continuously change their locations.

3. Processing One CKNN Query

As a preliminary to SEA-CNN, we discuss how we eval-
uate incrementally one CKNN query. We assume that the
distance metric is the Euclidean distance. However, other
distance metrics are easily applicable. We do not make any
assumptions with respect to the velocity or trajectory of the
moving objects and/or queries.

Ideally, the answer to a CKNN query should be up-
dated as soon as any new location information arrives to the
server. However, this approach is neither practical nor even
necessary when the number of objects is large. In this pa-
per, we adopt the same scenario as the one in [22], where
the query result is updated periodically. An efficient CKNN
query processing algorithm should allow a smaller time in-
terval between any two consecutive evaluations, and conse-
quently shortens the query response time.

A continuously running CKNN query q at time t is repre-
sented in the form (q.Loct, q.k), where q.Loct is the query
location at time t, q.k is the required number of nearest
neighbors. When q is evaluated at time t, the answer (q.At)
is kept sorted based on the distance from q.Loct. Through-
out the paper, we use the following definitions:
Answer radius q.ARt: The distance between q.Loct and
the q.kth NN in q.At.
Answer region: The circular region defined by the cen-
ter q.Loct and the radius q.ARt.
Searching radius q.SRt: The evaluation distance with re-
spect to q.Loct when q is reevaluated at time t.
Searching region: The circular region defined by the cen-
ter q.Loct and the radius q.SRt.

Due to the highly dynamic environment, the query an-
swer q.At0 (evaluated at time t0) becomes obsolete at a later
time t1. The incremental processing algorithm associates a

searching region q.SRt1 for q, based on the former answer
radius q.ARt0 and the recent movements of both objects
and queries. Then, only objects inside q.SRt1 are checked
with q. To determine q.SRt1 we follow the following three
steps:

Step 1: Check if any object (either in q.At0 or not)
moves in q.ARt0 during the time interval [t0, t1]. If this is
the case, some new objects may become part of the query
answer or the ordering of former K-NNs is changed. Hence,
q.SRt1 is set to q.ARt0 , otherwise, q.SRt1 is set to zero to
indicate a nil searching region.

Step 2: Check if any object that was in q.At0 moves out
of q.ARt0 during the time interval [t0, t1]. If this is the case,
q must be reevaluated since some objects that were out of
q.ARt0 are candidates to be part of the current query an-
swer. Then, q.SRt1 is updated to be the maximum distance
from q.Loct0 to the new locations of the set of objects that
were in q.At0 and are out of q.ARt0 at time t1. If no such
objects exist, q.SRt1 inherits the old value from Step 1.

Step 3: If q moves during the time interval [t0, t1], i.e.,
q.Loct0 6=q.Loct1 , q.SRt1 needs to be updated accordingly.
There are two cases: (1) If q.SRt1 from Step 2 is zero, then
q.SRt1 is set to the sum of q.ARt0 and the distance between
q.Loct0 and q.Loct1 . (2) If q.SRt1 6= 0, q.SRt1 is updated
by adding the distance between q.Loct0 and q.Loct1 to the
existing q.SRt1 from Step 2.

As a result from the incremental processing algorithm,
q.SRt1 defines a minimum searching region that includes
all new answer objects. A nil q.SRt1 indicates that q is not
affected by the motion of objects/queries, thus it requires no
reevaluation.

Example. Figure 1 gives an illustrative example for the
incremental processing algorithm. At time T0 (Figure 1a),
two CKNN queries are given; Q1 and Q2. Q1 is a C3NN
query with an initial answer (at time T0) as {o1, o3, o5}. Q2

is a C2NN query with an initial answer {o2, o8}. Q1.LocT0

and Q2.LocT0
are plotted as cross marks. The shaded re-

gions represent Q1.ART0
and Q2.ART0

. At time T1 (Fig-
ure 1b), the objects o5, o8 (depicted as white points) and
the query Q1 change their locations. The objects and query
change of location indicates a movement in the time inter-
val [T0, T1]. By applying the incremental processing algo-
rithm, o5 moves inside Q1.ART0

which involves the chang-
ing of the order among Q1.ART0

(Step 1). Hence Q1.SRT1

is set to Q1.ART0
. Notice that there are no object move-

ment within Q2.ART0
. Thus, Q2.SRT1

is set to zero at
this step. In Step 2, since o8 was in Q2.ART0

(at time
T0) and is out of Q2.ART0

(at time T1), Q2.SRT1
is set

to the distance between Q2.LocT0
and the new location of

o8. Q1.SRT1
inherits its value from Step 1. In Step 3, since

Q1 changes its location, Q1.SRT1
is updated by adding the

distance between Q1.LocT0
and Q1.LocT1

to the former
Q1.SRT1

from Step 2. Figure 1b plots the final Q1.SRT1



Figure 2. Shared execution of CKNN queries

and Q2.SRT1
with dashed lines and dashed circles. Once

we get Q1.SRT1
and Q2.SRT1

, Q1 and Q2 need only to
evaluate objects inside their own searching region. Moving
objects that lie outside the searching region are pruned. Fi-
nally, the answer sets for Q1 and Q2 are {o3, o5, o7} and
{o2, o4}, respectively (does not show in Figure 1).

4. SEA-CNN: Shared Execution Algorithm
for CKNN queries

In this section, we present a Shared Execution Algo-
rithm for processing a large set of concurrent CKNN queries
(SEA-CNN, for short). SEA-CNN utilizes a shared execu-
tion paradigm to reduce repeated I/O operations. The main
idea behind shared execution is to group similar queries in a
query table. Then, the problem of evaluating a set of contin-
uous spatio-temporal queries is reduced to a spatial join be-
tween the objects and queries. To illustrate the idea, Fig-
ure 2a gives the execution plans for two CKNN queries,
Q1: ”Return the 10 nearest neighbors around location L1”,
and Q2: ”Return the 20 nearest neighbors around location
L2”. In the traditional way, one independent query execu-
tion plan is generated for each query. Each query performs a
file scan on the moving objects table followed by a selection
filter that is determined by the query region. With shared ex-
ecution, a global shared plan is generated for both queries as
depicted in Figure 2b. The query table contains the search-
ing regions of CKNN queries. A spatial join algorithm is
performed between the table of objects (points) and the ta-
ble of CKNN queries (circular searching regions). Having
a shared plan allows only one scan over the moving objects
table. Thus, we avoid excessive disk operations. Once the
spatial join is completed, the output of the join is split and
is sent to the queries. For more details of the shared execu-
tion paradigm, readers are referred to [5, 6, 7, 18, 19].

SEA-CNN groups CKNN queries in a query table. Each
entry stores the information of the corresponding query
along with its searching region. Instead of processing the
incoming update information as soon as they arrive, SEA-
CNN buffers the updates and periodically flushes them into
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Figure 3. Example of execution for SEA-CNN

a disk-based structure. During the flushing of updates, SEA-
CNN associates a searching region with each query entry.
Then, SEA-CNN performs a spatial join between the mov-
ing objects table and the moving queries table.

Throughout this section, we use the example given in
Figure 3 to illustrate the execution of SEA-CNN. Figure 3a
gives a snapshot of the database at time T0 with 13 moving
objects, o1 to o13, and three CKNN queries: Q1 (C1NN),
Q2 (C2NN), and Q3 (C3NN). The query center points are
plotted as cross marks. The initial query answers at time T0

is given in Figure 3a. The shaded regions represent the an-
swer regions.

4.1. Data Structures

During the course of its execution, SEA-CNN maintains
the following data structures:

• Object table (OT). A disk-based N × N grid table.
The data space is divided into N × N grid cells. Ob-
jects are hashed based on their locations to the grid
cells. Every object in the space has one entry in OT
where its latest information is stored. An object entry
has the form of (OID, OLoc) where OID is the ob-
ject identifier and OLoc is the latest reported location
information. An index is maintained on OID for lo-
cating the cell number of each object. Data skewness
in the grid structure is treated in a similar way as in [21]
where the grid is partitioned to tiles that are mapped to
disk either in a round-robin or hashing fashion.



• Query table (QT). CKNN Queries are organized
within the in-memory sequential table QT . The query
entry has the form of (QID, QLoc, k, AR, SR). QID
is the query identifier, QLoc is the latest location of the
query focal point, k indicates the required number of
nearest-neighbors, AR is the answer radius of the lat-
est answer result (see Section 3), and SR is the search-
ing radius (see Section 3). The query table is indexed
on QID.

• Answer Region Grid (ARG). ARG is an in-memory
N × N grid structure that has the same grid organi-
zation as OT . For each grid cell, ARG maintains a
list of QIDs of queries whose answer regions over-
lap with this cell.

• Object Buffer (OB) and Query Buffer (QB). Both
OB and QB are in-memory structures used to buffer
the incoming object and query updates. OB is a N×N
grid buffer as OT . Each grid cell in OB stores the up-
date of moving objects whose new locations belong to
this cell. QB is a linear buffer that stores update tu-
ples of querying points.

For the rest of the section, we use subscripts to denote
one particular cell in grid structures, e.g., OT(1,4), OB(2,5),
ARG(3,3), where the cell order along the x-axis is ahead of
the cell order along the y-axis.

Discussion. Since the number of objects is expected to
be huge, the moving objects table is restricted to reside on
disk. However, the moving queries table is kept in memory
where the number of moving queries is much smaller than
that of moving objects and each CKNN query can be repre-
sented by a small fixed entry. More importantly, the search-
ing region of a moving query changes dynamically during
the movement of objects, which suggests that only memory-
based structures are suitable for the moving queries table.
Notice that while the query itself is concisely represented,
the query answer has potentially a large size (consider a
1000-NN query). To utilize memory resources efficiently,
the query table does not keep the former query answers. In-
stead, only the former answer radius of each query is stored.

Due to the highly dynamic environment, maintaining a
complex spatial index (e.g., R-tree [9]) on moving objects
is not practical. Also, R-tree-like structures (e.g., the LUR-
tree [15] and the FUR-tree [17]) and B-tree-like structures
(e.g., [13]) that are designed to cope with frequent updates
of moving objects are not scalable in the presence of a large
number of continuous queries. In SEA-CNN, we use grid
cells to group moving objects where the grid structure is in-
expensive to maintain for its static organization. Section 6
demonstrates that SEA-CNN with the grid structure largely
outperforms former R-tree-based k-nearest-neighbor algo-
rithms.

Procedure SEA-CNN()

• Repeat

1. Tlast = current time

2. For every query q in QT

(a) q.SR = 0

3. While (((current time - Tlast)<INTERV AL)
AND (OB and QB are not full))

(a) If (there is an object update o)

i. c = h(o), the cell number where o resides

ii. Add o to OBc

(b) If (there is a query update q)

– Add q to QB

4. For (c=0;c<MAX GRID CELL;c++)

(a) For each tuple o in OBc

– Call FlushingObject(o, c)

5. For each tuple q in QB

(a) Call FlushingQuery(q)

6. For (c=0;c<MAX GRID CELL;c++)

(a) Search QT for queries whose non-zero search-
ing regions overlap with cell c, denote this set of
queries as QSetc

(b) For each object tuple o in OTc

– For each query q in QSetc, if o is in q’s
searching region, o is checked against q

7. Send the new query answers to the users

8. For each reevaluated query q, based on the new an-
swer

(a) Update q.AR and q’s entries in ARG

Figure 4. Pseudo code for SEA-CNN

Example. In the example of Figure 3, OT is a 6×6 grid.
Consequently, OB and ARG have the same 6 × 6 grid or-
ganizations. Objects o1 to o13 are stored in different cells
of OT . QT contains three entries for Q1, Q2 and Q3, re-
spectively. For ARG, each ARG cell keeps a list of QIDs
whose answer regions overlap with this cell. For instances,
ARG(1,4) contains the QID of Q1 and ARG(3,3) contains
the QID of Q2. OB and QB are empty for now.

4.2. The SEA-CNN Algorithm

In this section, we provide the details of the SEA-CNN
algorithm. Figure 4 gives the pseudo code for SEA-CNN.
For each course of execution, SEA-CNN first initializes the
time indicator (Step 1 in Figure 4), and the searching radius
of each query to zero (Step 2 in Figure 4). For a short period
of evaluation INTERV AL, SEA-CNN buffers the incom-
ing update information of objects and queries before they
are further processed (Step 3 in Figure 4). The main pur-



Procedure FlushingObject(Tuple ocur, Cell ccur)

1. If oold, the old entry of ocur is not found in OTccur

(a) Search the index on OT to find the cell number cold

where oold resides

(b) Search OTcold
for oold

2. Else cold = ccur

3. For each QID in ARGccur

(a) Call UpdatingSR(oold,ocur, QID)

4. For each QID that is in ARGcold
and not in ARGccur

(a) Call UpdatingSR(oold,ocur, QID)

5. Replace oold with ocur

6. Delete ocur from OBccur

Figure 5. Pseudo code for flushing object up-
date

Procedure UpdatingSR(Tuple oold, Tuple ocur , QID qid)

1. Search QT for qid and let q be the corresponding query en-
try

2. dcur = distance(ocur .OLoc, q.QLoc)
3. dold = distance(oold.OLoc, q.QLoc)
4. If (dcur ≤ q.AR)

(a) q.SR = max(q.AR, q.SR)

5. Else if (dold ≤ q.AR)

(a) q.SR = max(dcur, q.SR)

Figure 6. Pseudo code for updating search-
ing region

pose of the buffering is to avoid redundant access to disk
pages when flushing every single update. SEA-CNN hashes
the incoming updates based on their locations into different
grid cells. Later, updates in the same grid cell are flushed to
disk in a batch. For each object update o, the grid cell num-
ber that o belongs to is calculated by a location-based hash
function h. Then o is added to the buffer cell OBc (Step 3(a)
in Figure 4). For each query update q, q is added to QB di-
rectly (Step 3(b) in Figure 4).

When the updating time interval times out or when
the memory is filled out, SEA-CNN starts to flush all the
buffered updates to the moving objects table (Step 4 in Fig-
ure 4) and the moving queries table (Step 5 in Figure 4). The
flushing process serves two purposes: (1) Materializing the
updates of moving objects and queries into the correspond-
ing moving object table and moving query table, respec-
tively. (2) Determining the searching radius and searching
region for each query. Figures 5, 6, and 7 give the pseudo
code for the flushing process of the SEA-CNN algorithm.

Procedure FlushingQuery(Tuple q)

1. Search QT for the old query entry Q

2. Q.SR = Q.SR + distance(Q.QLoc, q.QLoc)
3. Update Q.QLoc with q.QLoc

4. Delete q from QB

Figure 7. Pseudo code for flushing query up-
date

Figure 5 gives the pseudo code for flushing one object
update. The algorithm starts by searching for the old en-
try of this object in OT . In case the old entry is not found
in the current OT cell, then the index on OID is exploited
to obtain the old cell number of this object (Step 1 in Fig-
ure 5). For each object update, only queries whose answer
regions overlap the old cell or the current cell of the ob-
ject are candidates to be affected queries (i.e., the query
search region needs to be redetermined). The QIDs of can-
didate queries are kept in the corresponding ARG cells. For
each candidate query, the procedure UpdatingSR in Fig-
ure 6 is called to determine the effects of this object update
(Step 3 in Figure 5). Notice that if the object changes its
cell, the same processing is required for the queries whose
answer regions overlap the old cell. Possibly, the object was
in some query answer whose answer region overlapped with
the old cell and not with the new cell (Step 4 in Figure 5).
Finally, the old entry is updated with the new location infor-
mation (Step 5 in Figure 5), and the update entry is released
from the object buffer (Step 6 in Figure 5).

Given one object update and a query identifier, the algo-
rithm in Figure 6 determines the effect on the query search
radius by that update. First, the corresponding query entry
is obtained by searching the QID through the index on QT
(Step 1 in Figure 6). Then the new distance and the old dis-
tance from the object to q are calculated (Steps 2 and 3 in
Figure 6). If the new distance is less than or equal to the
former q.AR, the object update results in either a new an-
swer or a new order to the former answer. In this case, the
search radius q.SR is set to the maximum value of q.AR
and the existing q.SR (Step 4 in Figure 6). Otherwise, if the
current distance is larger than the former q.AR, the algo-
rithm further checks whether this object was in q’s answer
or not. This checking is performed by comparing q.AR with
the distance between q and the former location of the ob-
ject (Step 5 in Figure 6). If the object was in the answer of
q, q also needs to be reevaluated since some other objects
may become part of the query answer. In this case, q.SR is
set to the maximum value of the current distance to the ob-
ject and the existing q.SR value.

Figure 7 sketches the steps for flushing one query up-
date. Basically, we search the query table for the old entry
of the query (Step 1 in Figure 7). Then the searching ra-



dius SR of the query is updated in the same manner as in
Section 3. Namely, the query’s SR is calculated by adding
the query focal point moving distance to the existing SR
(Step 2 in Figure 7). At last, the location of the query focal
point is updated (Step 3 in Figure 7), and the correspond-
ing update entry is released from the query buffer (Step 4 in
Figure 7).

Once updates of objects and queries are flushed, SEA-
CNN performs a spatial join between the moving objects
table and the moving queries table. Following the discus-
sion in Section 3, if for any query q, the searching radius is
zero, then q should not be considered for the join. So only
queries with non-zero search regions are processed in the
join. Step 6 in Figure 4 illustrates the execution of the join-
ing step. For each disk-based grid cell c in OT , we join all
moving objects in OT with all queries that their searching
regions overlap with the grid cell c. Notice that each page in
the disk-based grid cell is read only once to be joined with
all overlapped queries.

Finally, after getting the new k-nearest-neighbors for all
continuous queries, these query answers are sent to clients
(Step 7 in Figure 4). At the end of the execution, the an-
swer radius of each affected moving query and the entries
in ARG are updated according to the new answer set (Step 8
in Figure 4).

Example Figure 3b gives a snapshot of the database at
time T1. From time T0 to T1, only objects o4, o5, o9, and o12

change their locations. These objects are plotted with white
points in Figure 3b. Additionally, Q3 changes its location.
The current query location is plotted with bold cross mark
while the old query location is plotted with slim cross mark.
By the end of the buffering period (Step 3 in Figure 4), OB
keeps the updated tuples of o4, o5, o9, and o12 in their cor-
responding cells. QB contains only the update tuple for Q3.
Figure 3c gives the execution result after flushing (Steps 4
and 5 in Figure 4). The dashed circles in Figure 3c repre-
sent the calculated SRs for Q1, Q2, and Q3, respectively.
For Q1, since only the motion of o12 affects its SR by leav-
ing the former answer region, Q1’s SR is calculated as the
distance from Q1 to the updated o12. For Q2, its SR is deter-
mined as its former answer region. This is because only o4

moves in Q2 former answer region, and no former answer
object is moved outside. In the case of Q3, the SR is first
calculated as the distance from the old query point to the up-
dated o5 when flushing o5 to OT (Step 4 in Figure 4). At the
moment of flushing the query updates, since Q3 moves to a
new querying point, Q3’s SR is updated as the sum of the
former calculated SR and the distance that Q3 has moved
(Step 5 in Figure 4). When performing the joining between
OT and QT (Step 6 in Figure 4), the grid cell OT(2,3) is
evaluated by Q1 and Q3 where the SRs of Q1 and Q3 over-
lap with this cell. Similarly, the cells OT(3,2) and OT(3,3)

are evaluated by Q2 and Q3, respectively. Other grid cells

are either evaluated only by one single query (e.g., the cells
containing o1, o2, o5, o6, o8, o9, o12 and o13) or evaluated
by no query (e.g., the grid cells containing o3 and o10). Fi-
nally, Figure 3d gives the new answer sets for Q1, Q2 and
Q3 after one execution cycle of SEA-CNN.

5. Analysis of SEA-CNN

In this section, we analyze the performance of SEA-
CNN in terms of the execution costs, memory requirements,
and the effects of tunable parameters. As a dominating met-
ric, the number of I/Os is investigated for the cost analysis.
The theoretical analysis is based on a uniform distribution
of moving objects and moving queries in a unit square.

Assume that there are Nobj moving objects in the data
space while Nqry CKNN queries are concurrently running.
The arrival rates of object updates and query updates are
robj and rqry per second, respectively. The size of an ob-
ject entry in the object table is Eobj and the size of a query
entry in the query table is Eqry. The page size is B bytes.
SEA-CNN equally divides the space into G cells, and the
evaluation interval of SEA-CNN takes I seconds.

I/O Cost. The number of pages in each disk-based grid
cell in the moving objects table is estimated as:

Pcell = dd
Nobj

G
e/b

B

Eobj

ce

Hence, the total number of pages in the object ta-
ble is:

POT = dd
Nobj

G
e/b

B

Eobj

ce ∗ G

The I/O cost of SEA-CNN has two parts: (1) Flushing
buffered updates from moving objects, and (2) The spatial
join process between the moving objects table and the mov-
ing queries table. The I/O cost of flushing buffered updates
is calculated by:

IOflush = 2 min(POT , Cupdate ∗ Pcell)

+ 2δ ∗ I ∗ robj ∗ Pcell

(1)

where Cupdate is the number of cells that receive mov-
ing object updates during the evaluation interval. δ is the
percentage of objects that change their cells in two con-
secutive updates. Each such object needs to search for its
old entry in its former grid cell, which introduces the sec-
ond part of Equation 1. The coefficient ”2” is intro-
duced to indicate one reading and one writing per flushed
cell. Finding the expected value of Cupdate can be re-
duced to and solved by the canonical ”coupon-collecting
problem” in the field of probability theory [23]. The ex-
pected value of Cupdate is:



Cupdate = G[1 − (
G − 1

G
)I∗robj ]

Assume that the average number of grid cells that over-
lap with a query search region is CSR. Since each disk-
based grid cell is read only once and is processed by all
queries, the I/O cost of the spatial join in SEA-CNN is:

IOjoin = min(POT , CSR ∗ Pcell) (2)

The total I/O cost of SEA-CNN is the sum of the I/O
cost for flushing moving objects updates (Equation 1) and
the I/O cost for the spatial join process (Equation 2), that is,

IOSEA−CNN = min(POT , CSR ∗ Pcell)
+ 2 min(POT , Cupdate ∗ Pcell)
+ 2δ ∗ I ∗ robj ∗ Pcell

(3)

Thus, the upper bound of total I/O cost is:

IOSEA−CNN = 3POT + 2δ ∗ I ∗ robj ∗ Pcell (4)

Equation 4 indicates that the upper bound of the total
I/Os for SEA-CNN is jointly decided by: (1) The total num-
ber of object pages, (2) The percentage of objects that re-
port cell changes since last evaluation, (3) The evaluation
time interval, and (4) The arrival rate of object updates. δ is
affected by the velocity of objects and the size of the grid
structure. robj is affected by the policy of reporting updates
and the number of moving objects. However, usually the lat-
ter part of the sum is far less than the first part. In this case,
we declare that the I/O cost of SEA-CNN is bounded pri-
marily by the total number of object pages.

Memory requirements. We maintain four mem-
ory structures, namely, the query table QT , the answer re-
gion grid ARG, the object buffer OB, and the query
buffer QB. Suppose that the buffer entry has the same for-
mat as its according table entry. During any evaluation
interval, the memory size consumed by these struc-
tures is:

Nqry∗Eqry+Nqry∗CAR∗EARG+I∗robj∗Eobj+I∗rqry∗Eqry

where CAR is the average number of grid cells that over-
lap a query answer region, and EARG is the size of the en-
try in the answer region grid. In the above equation, the
four parts represent the memory sizes consumed by QT ,
ARG, OB, and QB, respectively. Suppose that the avail-
able memory size is M . In a typical spatio-temporal appli-
cation (e.g., location-aware environments), the number of
moving queries that the server can support is determined by
the following equation:

Nqry =
M−I∗(robj∗Eobj+rqry∗Eqry)

Eqry+CAR∗EARG
(5)

Equation 5 suggests that once the available memory size
and the environment parameters (i.e., the size of entries

(Eobj , Eqry, EARG), the arrival rates for objects and queries
(robj , rqry)) are fixed, the number of supported queries is
determined by the evaluation time interval I and the aver-
age number of grid cells that a query answer region over-
laps with CAR. In a specific environment and grid struc-
ture, CAR is affected only by the number of the required k
nearest-neighbors in a CKNN query. Thus the only indepen-
dent factor to the number of supported queries is the evalu-
ation interval I .

The evaluation interval. The evaluation interval I plays
an important role in SEA-CNN. By decreasing I , Equa-
tions 3 and 4 indicate that the I/O cost and I/O upper
bound for each evaluation decrease. Given fixed-size mem-
ory, Equation 5 shows that a smaller I also enables a larger
number of concurrent queries as we consider memory avail-
ability.

During a period of time T , the total I/O cost is given by:

IOT = I/OSEA−CNN ∗ bT
I
c (6)

By combining Equations 4 and 6, we observe that a short
interval incurs a larger total cost on the long run. When
the interval is too short, the system may not sustain it be-
cause the processing may not terminate in the interval time.
To the contrary, choosing a long evaluation interval enables
a smaller total cost on the long run. However, the cost at
each evaluation round increases. Additionally, the number
of supported queries for a given memory size decreases.
Following the above observations, the interval parameter
must be tuned carefully according to the application re-
quirements and system configurations.

6. Performance Evaluation

In this section, we evaluate the performance of SEA-
CNN with a set of CKNN queries. We compare SEA-
CNN with a variant of the traditional branch and bound
k-nearest-neighbor algorithm [24]. The branch-and-bound
R-tree traversal algorithm evaluates any k-nearest-neighbor
query by pruning out R-tree nodes that cannot contain a
query answer. To be fair in our comparison, we apply the
kNN algorithm in [24] to deal with the Frequently Updated
R-tree (FUR-tree, for short) [17]. The FUR-tree modifies
the original R-tree and efficiently handles the frequent up-
dates due to the moving objects. We refer to the branch-
and-bound kNN algorithm combining with FUR-tree by the
FUR-tree approach. To evaluate CKNN queries, the FUR-
tree approach updates continuously the FUR-tree for mov-
ing objects, and evaluates periodically every query (perhaps
with new query focal points) against the FUR-tree.

The remaining of this section is organized as follows.
First, Section 6.1 describes our experimental settings. In
Section 6.2, we study the scalability of SEA-CNN in terms
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Figure 8. The impact of grid size

of the number of objects and the number of queries. In Sec-
tion 6.3, we study the performance of SEA-CNN under vari-
ous mutability combinations of objects and queries. Finally,
Section 6.4 studies the performance of SEA-CNN while
tuning some performance factors (e.g., the number of neigh-
bors, velocity of objects).

6.1. Experimental Settings

All the experiments are performed on Intel Pentium IV
CPU 3.2GHz with 512MB RAM. We use the Network-
based Generator of Moving Objects [3] to generate a set
of moving objects and moving queries. The input to the
generator is the road map of Oldenburg (a city in Ger-
many). Unless mentioned otherwise, the following param-
eters are used in the experiments. The set of objects con-
sists of 100,000 objects and the set of queries consists of
10,000 CKNN queries. Each query asks for ten nearest-
neighbors, i.e., k=10 for all queries. When normalizing the
data space to a unit square, the default velocity of objects
is equal to 0.000025 per second1. The evaluation interval of
SEA-CNN is set to 30 seconds, which we call one time step.
At each time step, some objects and queries change their lo-
cations. The default moving percentage is set as 10%. In all
experiments, we compare both the number of I/Os and the
CPU time for SEA-CNN and the FUR-tree approach. For
the FUR-tree approach, the cost has two parts: updating the
FUR-tree and evaluating the queries. The page size is 4096
bytes. Consequently, the fan-out of the FUR-tree node is
256. An LRU buffer of 20 pages is used. The first two lev-
els of the FUR-tree reside in main memory.

An important parameter for the SEA-CNN performance
is the grid size (i.e., the number of grid cells) for the mov-
ing objects table. If the grid size is too small (e.g., less than
10 × 10), each grid cell contains a large number of disk
pages, which incurs unnecessary I/O and CPU cost when a

1 This velocity corresponds to 90 miles per hour if the unit square rep-
resents area of 1000 × 1000 miles2
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Figure 10. Scalability with number of queries

cell is touched by a query. If the grid size is too large (e.g.,
larger than 60× 60), each cell is under-utilized for contain-
ing only a few tuples, which results in an excessive num-
ber of disk pages. For the ideal choice of grid size, each
cell should contain only one page that is reasonably utilized.
For our experimental setting (100,000 moving objects), Fig-
ure 8a gives the number of total grid pages with different
grid sizes. Figure 8b gives the number of pages per cell with
different grid sizes. Figure 8 suggests that the optimal grid
size is 36× 36, so this grid size is chosen for the rest of our
experiments.

6.2. Scalability

In this section, we compare the scalability of SEA-CNN
with the FUR-tree approach in terms of the number of ob-
jects and the number of queries. Figure 9 gives the effect of
increasing the number of objects from 20K to 100K, given
the presence of 10K queries. On the other hand, Figure 10
gives the effect of increasing the number of queries from
2K to 10K, given 100K objects. From Figure 9, the FUR-
tree approach incurs an increasing number of I/Os and CPU
time where a large number of moving objects results in a
larger-size R-tree. Thus, each CKNN query needs to search
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Figure 11. Stationary queries on moving objects

more nodes before getting a complete answer. Figure 9a il-
lustrates that one query needs to search at least 6 disk pages
even in the case of only 20K objects, which results in a large
number of I/Os. However, for SEA-CNN, the number of
I/Os is not affected apparently by the number of objects.
The reason is that the number of I/Os is determined primar-
ily by the grid size. For the CPU time, SEA-CNN has much
slower increase rate than that of the FUR-tree and outper-
forms the FUR-tree approach in all cases. In terms of the
scalability with the number of queries, Figure 10 demon-
strates that SEA-CNN largely outperforms the FUR-tree ap-
proach in both I/O and CPU time. The number of I/Os in
SEA-CNN is nearly stable, and is an order of magnitude
less than that of the FUR-tree approach. The FUR-tree ap-
proach increases in a sharp slope where each single CKNN
query independently exploits the FUR-tree. The CPU time
of the FUR-tree is 2 to 5 times higher than that of SEA-
CNN. The reason is that the cost of updating the FUR-tree
as well as the cost of evaluating queries are much higher
than that of SEA-CNN.

6.3. Mutability

In this section, we evaluate the performance of SEA-
CNN and the FUR-tree approach under various mutabil-
ity combinations of objects and queries. Figure 11 gives
the performance when 10K stationary queries are issued on
100K moving objects. For each evaluation time, the per-
centage of moving objects varies from 0% to 20%. In all
I/O cases, SEA-CNN outperforms the FUR-tree approach
by one order of magnitude. The FUR-tree approach has a
sharp increase in the number of I/Os where each moving
object incurs I/O operations when updating the FUR-tree.
However, SEA-CNN groups updates and flushes them in
batches. Hence, SEA-CNN maintains a stable number of
I/Os. For similar reason, SEA-CNN outperforms the FUR-
tree approach in CPU time.

Figure 12 gives the performance when 10K moving
queries are issued on 100K stationary objects. For each
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Figure 13. Moving queries on moving objects

evaluation time, the percentage of moving queries varies
from 0% to 20%. Since the objects are stationary, only the
queries that move need to be reevaluated in SEA-CNN and
the FUR-tree approach. Again, SEA-CNN outperforms the
FUR-tree approach in all cases. Comparing to the FUR-tree
approach, SEA-CNN saves a large number of I/O operations
because each object page is read only once for all queries.
SEA-CNN outperforms in CPU cost, since for any query,
only the object cells that overlap the query search region are
evaluated. The number of evaluated objects is smaller than
that of the FUR-tree approach, where R-tree nodes overlap
with each other.

Figures 13 and 14 give the performance of SEA-CNN
and the FUR-tree approach when 10K moving queries are
running on 100K moving objects. In Figure 13, the percent-
age of moving objects is fixed at 10%, while the percentage
of moving queries varies from 0% to 20%. In this case, the
number of I/Os and CPU time of the FUR-tree approach are
constantly high. The reason is that the FUR-tree approach
requires that each query exploits the FUR-tree regardless
of whether the query moves or not. SEA-CNN demon-
strates a constant and low I/O cost since the shared exe-
cution paradigm shares object pages among queries. SEA-
CNN has a slight increase in CPU time where more queries
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Figure 15. Number of neighbors

are reevaluated when the percentage of moving queries in-
creases.

In Figure 14, the percentage of moving queries is fixed
at 10%, while the percentage of moving objects varies from
0% to 20%. With the increase in object updates, the FUR-
tree approach receives a large number of I/Os from both
the increasing cost of updating FUR-tree and the constantly
high cost of evaluating queries. Without surprise, SEA-
CNN still achieves stable low number of I/Os. In this case,
the CPU time performance is similar to the situation when
stationary queries are issued on moving objects. Compared
to Figure 11b, the only difference is that the cost for SEA-
CNN is slightly higher by evaluating some more queries,
however, the difference is trivial comparing to the high cost
of the FUR-tree approach.

6.4. Affecting Factors

In this section, we study the effect of various factors on
the performance of SEA-CNN. We consider two factors,
namely, the number of nearest neighbors and the velocity
of moving objects. Figure 15 gives the performance when
the number of required nearest neighbors for each query
varies from 1 to 30. Figure 15a illustrates that the num-
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ber of I/Os of SEA-CNN keeps constantly low under all
cases, while the number of I/Os of the FUR-tree approach
is high and shows an increasing trend. The reason is that
when more NNs are required, the searching region extends
in both SEA-CNN and FUR-tree approach. However, SEA-
CNN avoids repeated I/O by sharing object pages. More-
over, SEA-CNN outperforms in CPU time as given in Fig-
ure 15b.

Another factor that affects the performance of SEA-CNN
is the velocity of moving objects. When the velocity of ob-
jects increases, for the FUR-tree approach, more objects
change from their original R-tree nodes to new nodes, which
involves more I/O update operations. SEA-CNN avoids the
increase in I/O by buffering updates and grouping them
based on cell locality. The only increase of I/O in SEA-
CNN is the additional I/Os when searching the old entries
of cell-changing objects. However, this increase is still very
small, compared to the number of I/Os of the FUR-tree ap-
proach. Figure 16a gives the I/O comparison when the ve-
locity of objects increase from 0.00001 to 0.00005. Fig-
ure 16b gives the CPU cost comparison under the same set-
ting. While both the CPU time for SEA-CNN and the FUR-
tree approach increase, the CPU time of SEA-CNN is only
about one third of that of the FUR-tree approach.

7. Conclusion

In this paper, we investigate the problem of evaluating a
large set of continuous k-nearest neighbor (CKNN) queries
in spatio-temporal databases. We introduce the Shared Exe-
cution Algorithm (SEA-CNN, for short) to efficiently main-
tain the answer results of CKNN queries. SEA-CNN com-
bines incremental evaluation and shared execution to min-
imize the costs when updating the query answers. With in-
cremental evaluation, only queries affected by the motion
of objects are reevaluated. To minimize the evaluation time,
each affected query is associated with a searching region
based on its former query answer. Under the shared exe-
cution paradigm, concurrent queries are grouped in a com-



mon query table. Thus the problem of evaluating multiple
queries is solved by a spatial join between the query table
and the object table. Furthermore, SEA-CNN is a generally
applicable framework. First, SEA-CNN does not make any
assumptions about the movement of objects (e.g., velocities,
trajectories). Second, SEA-CNN is suitable for processing
moving/stationary queries issued on moving/stationary ob-
jects. We provide theoretical analysis of SEA-CNN in terms
of the execution costs, the memory requirements and the ef-
fects of tunable parameters. Comprehensive experiments il-
lustrate that SEA-CNN is highly scalable and is more effi-
cient than R-tree-based CKNN techniques in terms of both
the number of I/Os and the CPU cost.
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